首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The glutamine-dependent activity of Serratia marcescens anthranilate synthase was inactivated by pyridoxal 5′-phosphate and sodium cyanide. The reaction was specific in that the ammonia-dependent activity of the enzyme was unaffected. The inactivation was stable to dilution or dialysis but was reversed by dithiothreitol. The enzyme contains dissimilar subunits designated anthranilate synthase components I (AS I) and II (AS II). Incorporation of [14C]NaCN demonstrates that modification was limited to one to two residues per AS I · AS II protomer. An active site cysteine is involved in the glutamine-dependent activity. Modification by pyridoxal 5′-phosphate and NaCN blocked affinity labeling of the active site cysteine by the glutamine analog 6-diazo-5-oxo-l-norleucine and reduced alkylation of the active site cysteine by iodoacetamide. These results suggest modification is at the glutamine active site. Initial modification by iodoacetamide did not prevent pyridoxal 5′-phosphate-dependent incorporation of 14CN showing that the pyridoxal 5′-phosphate modification did not involve the essential cysteinyl residue. These results suggest that modification of a lysyl residue in the glutamine active site of anthranilate synthase reduces the reactivity of the essential cysteinyl residue resulting in the loss of the amidotransferase activity.  相似文献   

2.
Alkylation of guanosine 5'-monophosphate (GMP) synthetase with the glutamine analogs L-2-amino-4-oxo-5-chloropentanoic acid (chloroketon) and 6-diazo-5-oxonorleucine (DON) inactivated glutamine- and NH3-dependent GMP synthetase. Inactivation exhibited second order kinetics. Complete inactivation was accompanied by covalent attachment of 0.4 to 0.5 equivalent of chloroketon/subunit. Alkylation of GMP synthetase with iodacetamide selectively inactivated glutamine-dependent activity. The NH3-dependent activity was relatively unaffected. Approximately 1 equivalent of carboxamidomethyl group was incorporated per subunit. Carboxymethylcysteine was the only modified amino acid hydrolysis. Prior treatment with chloroketone decreased the capacity for alkylation by iodacetamide, suggesting that both reagents alkylate the same residue. GMP synthetase exhibits glutaminase activity when ATP is replaced by adenosine plus PPi. Iodoacetamide inactivates glutaminase concomitant with glutamine-dependent GMP synthetase. Analysis of pH versus velocity and Km data indicates that the amide of glutamine remains enzyme bound and does not mix with exogenous NH3 in the synthesis of GMP.  相似文献   

3.
Glutamine 5-phosphoribosylamine:pyrophosphate phosphoribosyltransferase (amidophosphoribosyl-transferase) has been purified to homogeneity from Escherichia coli. The molecular weight of the native enzyme was 194,000 by sedimentation equilibrium centrifugation and 224,000 by gel filtration. A subunit Mr = 57,000 was estimated by gel electrophoresis in sodium dodecyl sulfate. Cross-linking experiments gave species of Mr = 57,000, 117,000, and 177,000. A trimer or tetramer of identical subunits is indicated for the native enzyme. Highly active E. coli amidophosphoribosyl-transferase lacks significant nonheme iron. Enzyme activity was not enhanced by addition of iron salts and sulfide. Amidophosphoribosyltransferase exhibited both NH3- and glutamine-dependent activities. Glutaminase activity was detected in the absence of other substrates. Both glutamine- and NH3-dependent activities were subject to end product inhibition by purine 5'-ribonucleotides. AMP and GMP, in combination, gave synergistic inhibition. AMP and GMP exhibited positive cooperativity. In addition, GMP promoted cooperativity for saturation by 5-phosphoribosyl-1-pyrophosphate. Glutamine utilization was inhibited by NH3, suggesting that the amide of glutamine is transferred to the NH3 site prior to amination of 5-phosphoribosyl-1-pyrophosphate. The glutamine-dependent activity was selectively inactivated by the glutamine analogs L-2-amino-4-oxo-5-chloropentanoic acid and 6-diazo-5-oxo L-norleucine (DON) and by iodoacetamide. Incorporation of 1 eq of DON/subunit (Mr = 57,000) caused complete inactivation of the glutamine-dependent activity, thus providing evidence for one glutamine site per monomer and for the functional identity of the subunits. Following alkylation with iodoacetamide, carboxymethylcysteine was the only modified amino acid isolated from an acid hydrolysate. The glutamine-dependent activity was sensitive to oxidation. Inactivation by exposure to air was reversed by incubation with high concentrations of dithiothreitol.  相似文献   

4.
Cysteine 84 was replaced by glycine in Serratia marcescens anthranilate synthase Component II using site-directed mutagenesis of cloned trpG. This replacement abolished the glutamine-dependent anthranilate synthase activity but not the NH3-dependent activity of the enzyme. The mutation provides further evidence for the role of active site cysteine 84 in the glutamine amide transfer function of anthranilate synthase Component II. By the criteria of circular dichroism, proteolytic inactivation, and feedback inhibition the mutant and wild type enzymes were structurally similar. The NH3-dependent anthranilate synthase activity of the mutant enzyme supported tryptophan synthesis in media containing a high concentration of ammonium ion.  相似文献   

5.
Glutamate synthase from Escherichia coli K-12 exhibits NH3-dependent activity. NH3-dependent activity is increased approximately 5-fold in apoglutamate synthase lacking flavin and non-heme iron. Whereas glutamine plus 2-oxoglutarate have the capacity to reoxidize the chemically reduced flavoenzyme, no such reoxidation is obtained with 2-oxoglutarate plus NH3. These results establish that the glutamine- and NH3-dependent syntheses of glutamate occur by different pathways of electron transfer from NADPH. The NH3-dependent activity of native and apoglutamate synthase exhibits similar catalytic properties. Some properties of apoglutamate synthase are similar to those of glutamate dehydrogenase. These properties include pH optima for synthesis and oxidative deamination of glutamate, inactivation by alkylating reagents and p-mercuribenzoate, an enhanced rate of inactivation by alkylating reagents and p-mercuribenzoate at low pH, 2-oxoglutarate protection against inactivation by p-mercuribenzoate, and reactivation of p-mercuribenzoate-treated enzyme by 2-mercaptoethanol. 2-Oxoglutarate protects against alkylation of glutamate synthase by iodo [1-14C]acetamide and reduces incorporation of methyl [1-14C]carboxamide into the small subunit of the enzyme.  相似文献   

6.
Acivicin [(alphaS,5S)-alpha-amino-3-chloro-4,5-dihydro-5-isoxazoleacetic acid] was investigated as an inhibitor of the triad glutamine amidotransferases, IGP synthase and GMP synthetase. Nucleophilic substitution of the chlorine atom in acivicin results in the formation of an imine-thioether adduct at the active site cysteine. Cys 77 was identified as the site of modification in the heterodimeric IGPS from Escherichia coli (HisHF) by tryptic digest and FABMS. Distinctions in the glutaminase domains of IGPS from E. coli, the bifunctional protein from Saccharomyces cerevisiae (HIS7), and E. coli GMPS were revealed by the differential rates of inactivation. While the ammonia-dependent turnover was unaffected by acivicin, the glutamine-dependent reaction was inhibited with unit stoichiometry. In analogy to the conditional glutaminase activity seen in IGPS and GMPS, the rates of inactivation were accelerated > or =25-fold when a nucleotide substrate (or analogue) was present. The specificity (k(inact)/K(i)app) for acivicin is on the same order of magnitude as the natural substrate glutamine in all three enzymes. The (alphaS,5R) diastereomer of acivicin was tested under identical conditions as acivicin and showed little inhibitory effect on the enzymes indicating that acivicin binds in the glutamine reactive site in a specific conformation. The data indicate that acivicin undergoes a glutamine amidotransferase mechanism-based covalent bond formation in the presence of nucleotide substrates or products. Acivicin and its (alphaS,5R) diastereomer were modeled in the glutaminase active site of GMPS and CPS to confirm that the binding orientation of the dihydroisoxazole ring is identical in all three triad glutamine amidotransferases. Stabilization of the imine-thioether intermediate by the oxyanion hole in triad glutamine amidotransferases appears to confer the high degree of specificity for acivicin inhibition and relates to a common mechanism for inactivation.  相似文献   

7.
A selection strategy has been developed to identify amino acid residues involved in subunit interactions that coordinate the two half-reactions catalyzed by glutamine amidotransferases. The protein structures known for this class of enzymes have revealed that ammonia is shuttled over long distances and that each amidotransferase evolved different molecular tunnels for this purpose. The heterodimeric Escherichia coli imidazole glycerol phosphate (IGP) synthase was probed to assess if residues in the substrate amination subunit (HisF) are critical for the glutaminase activity in the HisH subunit. The activity of the HisH subunit is dependent upon binding of the nucleotide substrate at the HisF active site. This regulatory function has been exploited as a biochemical selection of mutant HisF subunits that retain full activity with ammonia as a substrate but, when constituted as a holoenzyme with wild-type HisH, impair the glutamine-dependent activity of IGP synthase. The steady-state kinetic constants for these IGP synthases with HisF alleles showed three distinct effects depending upon the site of mutation. For example, mutation of the R5 residue has similar effects on the glutamine-dependent amidotransfer reaction; however, k(cat)/K(m) for the glutaminase half-reaction was increased 10-fold over that for the wild-type enzyme with nucleotide substrate. This site appears essential for coupling of the glutamine hydrolysis and ammonia transfer steps and is the first example of a site remote to the catalytic triad that modulates the process. The results are discussed in the context of recent X-ray crystal structures of glutamine amidotransferases that relate the glutamine binding and acceptor binding sites.  相似文献   

8.
A series of deletions was constructed in cloned Escherichia coli purF encoding glutamine phosphoribosylpyrophosphate amidotransferase. These deletions extended into the NH2 terminus of the protein and removed amino acids that are required for glutamine-dependent enzyme activity. Enzyme function, ascribed to the NH3-dependent activity, was retained in deletions that removed up to 237 amino acids. This result supports a model in which PurF-type amidotransferases contain an NH2-terminal glutamine amide transfer domain of approximately 194 to 200 amino acids fused to an aminator domain with NH3-dependent function.  相似文献   

9.
L-Glutamine:D-fructose-6-phosphate amidotransferase (glucosamine synthetase) has been purified to homogeneity from Escherichia coli. A subunit molecular weight of 70,800 was estimated by gel electrophoresis in sodium dodecyl sulfate. Pure glucosamine synthetase did not exhibit detectable NH3-dependent activity and did not catalyze the reverse reaction, as reported for more impure preparations [Gosh, S., Blumenthal, H. J., Davidson, E., & Roseman, S. (1960) J. Biol. Chem. 235, 1265]. The enzyme has a Km of 2 mM for fructose 6-phosphate, a Km of 0.4 mM for glutamine, and a turnover number of 1140 min-1. The amino-terminal sequence confirmed the identification of residues 2-26 of the translated E. coli glmS sequence [Walker, J. E., Gay, J., Saraste, M., & Eberle, N. (1984) Biochem. J. 224, 799]. Methionine-1 is therefore removed by processing in vivo, leaving cysteine as the NH2-terminal residue. The enzyme was inactivated by the glutamine analogue 6-diazo-5-oxo-L-norleucine (DON) and by iodoacetamide. Glucosamine synthetase exhibited half-of-the-sites reactivity when incubated with DON in the absence of fructose 6-phosphate. In its presence, inactivation with [6-14C]DON was accompanied by incorporation of 1 equiv of inhibitor per enzyme subunit. From this behavior, a dimeric structure was tentatively assigned to the native enzyme. The site of reaction with DON was the NH2-terminal cysteine residue as shown by Edman degradation.  相似文献   

10.
Rat renal phosphate-dependent glutaminase is rapidly inactivated by incubating with L-2-amino-4-oxo-5-chloropentanoic scid. Concentrations of phosphate, which increase the glutaminase activity, decrease the rate of inactivation by chloroketone. In addition, inactivation is not blocked by glutamine. Instead, glutamate was shown to specifically reduce the rate of chloroketone inactivation. Upon sodium lauryl sulfate-polyacrylamide gel electrophoresis, the purified glutaminase preparation exhibits at least five protein staining bands which range in molecular weight from 57,000 to 75,000. Studies with 14C-labeled chloroketone indicate that this reagent reacts with each of these peptides. The mean stoichiometry of binding was calculated to be 1.3 mol/mol of enzyme. Therefore, these results indicate that the glutaminase may contain a specific site for binding glutamate and that the purified enzyme consists of a series of related peptides which may have resulted from partial proteolysis.  相似文献   

11.
Inactivation of rat renal phosphate-dependent glutaminase by 6-diazo-5-oxo-L-norleucine occurs only under conditions where the enzyme is catalytically active. The glutaminase activity and the rate of inactivation by the diazoketone exhibit very similar phosphate concentration-dependent activation profiles. Because of this phosphate dependency, it was not possible to differentiate an apparent protection by glutamine from the strong inhibition of inactivation caused by glutamate. The ability of glutamate to protect the glutaminase against inactivation is reversed by increasing concentrations of phosphate.The observed characteristics of inactivation by 6-diazo-5-oxo-L-norleucine differ considerably from those reported for the inactivation by L-2-amino-4-oxo-5-chloropentanoic acid. In addition, the presence of o-carbamoyl-L-serine was found to stimulate inactivation by 6-diazo-5-oxo-L-norleucine, but to protect the glutaminase against inactivation by the chloroketone. Preinactivation of the glutaminase by the diazoketone only slightly reduced the stoichiometry of binding of [5-14C]chloroketone. These observations suggest that 6-diazo-5-oxo-L-norleucine and L-2-amino-4-oxo-5-chloropentanoic acid interact with different sites on the glutaminase which are specific for binding glutamine and glutamate, respectively.  相似文献   

12.
Dossena L  Curti B  Vanoni MA 《Biochemistry》2007,46(15):4473-4485
Crystal structures of glutamate synthase suggested that a conserved glutamyl residue of the synthase domain (E1013 of Synechocystis sp. PCC 6803 ferredoxin-dependent glutamate synthase, FdGltS) may play a key role in activating glutamine binding and hydrolysis and ammonia transfer to the synthase site in this amidotransferase, in response to the ligation and redox state of the synthase site. The E1013D, N, and A, variants of FdGltS were overproduced in Escherichia coli cells, purified, and characterized. The amino acyl substitutions had no effect on the reactivity of the synthase site nor on the interaction with ferredoxin. On the contrary, a dramatic decrease of activity was observed with the D (approximately 100-fold), N and A (approximately 10,000-fold) variants, mainly due to an effect on the maximum velocity of the reaction. The E1013D variant showed coupling between glutamine hydrolysis at the glutaminase site and 2-oxoglutarate-dependent L-glutamate synthesis at the synthase site, but a sigmoid dependence of initial velocity on L-glutamine concentration. The E1013N variant exhibited hyperbolic kinetics, but the velocity of glutamine hydrolysis was twice that of glutamate synthesis from 2-oxoglutarate at the synthase site. These results are consistent with the proposed role of E1013 in signaling the presence of 2-oxoglutarate (and reducing equivalents) at the synthase site to the glutaminase site in order to activate it and to promote ammonia transfer to the synthase site through the ammonia tunnel. The sigmoid dependence of the initial velocity of the glutamate synthase reaction of the E1013D mutant on glutamine concentration provides evidence for a participation of glutamine in the activation of glutamate synthase during the catalytic cycle.  相似文献   

13.
In the absence of crystallographic data, the mechanism of nitrogen transfer from glutamine in asparagine synthetase (AS) remains under active investigation. Surprisingly, the glutamine-dependent AS from Escherichia coli (AsnB) appears to lack a conserved histidine residue, necessary for nitrogen transfer if the reaction proceeds by the accepted pathway in other glutamine amidotransferases, but retains the ability to synthesize asparagine. We propose an alternative mechanism for nitrogen transfer in AsnB which obviates the requirement for participation of histidine in this step. Our hypothesis may also be more generally applicable to other glutamine-dependent amidotransferases.  相似文献   

14.
Escherichia coli asparagine synthetase B (AS-B) catalyzes the formation of asparagine from aspartate in an ATP-dependent reaction for which glutamine is the in vivo nitrogen source. In an effort to reconcile several different kinetic models that have been proposed for glutamine-dependent asparagine synthetases, we have used numerical methods to investigate the kinetic mechanism of AS-B. Our simulations demonstrate that literature proposals cannot reproduce the glutamine dependence of the glutamate/asparagine stoichiometry observed for AS-B, and we have therefore developed a new kinetic model that describes the behavior of AS-B more completely. The key difference between this new model and the literature proposals is the inclusion of an E.ATP.Asp.Gln quaternary complex that can either proceed to form asparagine or release ammonia through nonproductive glutamine hydrolysis. The implication of this model is that the two active sites in AS-B become coordinated only after formation of a beta-aspartyl-AMP intermediate in the synthetase site of the enzyme. The coupling of glutaminase and synthetase activities in AS is therefore different from that observed in all other well-characterized glutamine-dependent amidotransferases.  相似文献   

15.
Reaction of Bacillus subtilis glutamine phosphoribosylpyrophosphate amidotransferase with 6-diazo-5-oxo-L-norleucine resulted in complete loss of its ability to catalyze glutamine-dependent phosphoribosylamine formation and its glutaminase activity, whereas its ability to catalyze ammonia-dependent phosphoribosylamine formation and to hydrolyze phosphoribosylpyrophosphate was increased. The site of reaction with 6-diazo-5-oxo-L-norleucine was the NH2-terminal cysteine residue. The NH2-terminal sequence of the B. subtilis enzyme was homologous with that of the corresponding amidotransferase from Escherichia coli, for which the NH2-terminal cysteine is also essential for glutamine utilization (Tso, J. Y., Hermodson, M. A., and Zalkin, H. (1982) J. Biol. Chem. 257, 3532-3536). The fact that the metal-free E. coli amidotransferase contains a glutamine-utilizing structure that is very similar to that found in B. subtilis amidotransferase, which contains an essential [4Fe-4S] center, indicates that the iron-sulfur center probably plays no role in glutamine utilization.  相似文献   

16.
The mechanism of ammonia assimilation in Methanosarcina barkeri and Methanobacterium thermoautotrophicum was documented by analysis of enzyme activities, 13NH3 incorporation studies, and comparison of growth and enzyme activity levels in continuous culture. Glutamate accounted for 65 and 52% of the total amino acids in the soluble pools of M. barkeri and M. thermoautotrophicum. Both organisms contained significant activities of glutamine synthetase, glutamate synthase, glutamate oxaloacetate transaminase, and glutamate pyruvate transaminase. Hydrogen-reduced deazaflavin-factor 420 or flavin mononucleotide but not NAD, NADP, or ferredoxin was used as the electron donor for glutamate synthase in M. barkeri. Glutamate dehydrogenase activity was not detected in either organism, but alanine dehydrogenase activity was present in M. thermoautotrophicum. The in vivo activity of the glutamine synthetase was verified in M. thermoautotrophicum by analysis of 13NH3 incorporation into glutamine, glutamate, and alanine. Alanine dehydrogenase and glutamine synthetase activity varied in response to [NH4+] when M. thermoautotrophicum was cultured in a chemostat with cysteine as the sulfur source. Alanine dehydrogenase activity and growth yield (grams of cells/mole of methane) were highest when the organism was cultured with excess ammonia, whereas growth yield was lower and glutamine synthetase was maximal when ammonia was limiting.  相似文献   

17.
Cytidine 5'-triphosphate (CTP) synthase catalyzes the ATP-dependent formation of CTP from UTP using either ammonia or l-glutamine as the source of nitrogen. When glutamine is the substrate, GTP is required as a positive allosteric effector to promote catalysis of glutamine hydrolysis. We show that at concentrations exceeding approximately 0.15 mM, GTP actually behaves as a negative allosteric effector of E. coli CTP synthase, inhibiting glutamine-dependent CTP formation. In addition, GTP inhibits NH(3)-dependent CTP formation in a concentration-dependent manner. However, GTP does not inhibit the enzyme's intrinsic glutaminase activity. Although the activation of CTP synthase by GTP does not display cooperative behavior, inhibition of both CTP synthase-catalyzed ammonia- and glutamine-dependent CTP synthesis by GTP do exhibit positive cooperativity. These results suggest that GTP binding affects CTP synthase catalysis in two ways: it activates enzyme-catalyzed glutamine hydrolysis and it inhibits the utilization of NH(3) as a substrate by the synthase domain.  相似文献   

18.
Bacillus megaterium N.C.T.C. no. 10342 exhibits glutamate synthetase (EC 2.6.1.53) and glutamate dehydrogenase (EC 1.4.1.4) activities. Concentrations of glutamate synthase were high when the bacteria were grown on 3mM-NH4Cl and low when they were grown on 100mM-NH4Cl, whereas glutamate dehydrogenase concentrations were higher when the bacteria were grown on 100mM-NH4Cl than on 3mM-NH4Cl. Glutamate synthase and glutamate dehydrogenase were purified to homogeneity from B. megaterium grown in 10mM-glucose/10mM-NH4Cl. The purified enzymes had mol.wts. 840000 and 270000 for glutamate synthase and glutamate dehydrogenase respectively. The Km values for substrates with NADPH and coenzyme were (glutamate synthase activity shown first) 9 micron and 360 micron for 2-oxoglutarate, 7.1 micron and 8.7 micron for NADPH, and 0.2 mM for glutamine and 22 mM for NH4Cl, similar values to those of enzymes from Escherichia coli. Glutamate synthase contained NH3-dependent activity (different from authentic glutamate dehydrogenase), which was enhanced 4-fold during treatment at pH 4.6 NH3-dependent activity was generally about 2% of the glutamine-dependent activity. Amidination of glutamate synthase by the bi-functional cross-linking reagent dimethyl suberimidate inactivated glutamine-dependent glutamate synthase activity, but increased NH3-dependent activity. A cross-linked structure of mol.wt. approx 200000 was the main product formed.  相似文献   

19.
Pig kidney 3,4-dihydroxyphenylalanine (Dopa) decarboxylase is inactivated by iodoacetamide following pseudo-first order reaction kinetics. The apparent first order rate constant for inactivation is proportional to the concentration of iodoacetamide and a second order rate constant of 37 M-1 min-1 is obtained at pH 6.8 and 25 degrees C. Cyanogen bromide fragmentation of iodo(1-14C)acetamide - modified inactivated Dopa decarboxylase followed by trypsin digestion yields a single radioactive peptide. Automated Edman degradation reveals a heptapeptide sequence which contains labeled carboxyamidomethylcysteine. This finding and the results of the incorporation of the label from ido (1-14C)acetamide into the enzyme clearly indicate that the modification of 1 mol of SH per mol of enzyme dimer is responsible for the inactivation process. The labeled peptide, which was located by means of limited proteolysis on the fragment corresponding to the COOH-terminal third of the enzyme, has been aligned with a 7 amino acid stretch of Drosophila enzyme. Although this region appears highly conserved in the Dopa decarboxylase enzymes, the cysteinyl residue is not conserved. This observation together with the spectral binding properties of the iodoacetamide inactivated enzyme argue against a functional role for the modifiable cysteine in the mechanism of action of pig kidney enzyme. It is suggested that the loss of pig kidney decarboxylase activity produced by iodoacetamide modification might be attributable to steric hindrance. This could be due to the presence of the bulky acetamidic group on a cysteine residue at, or near, the active center or in a site of strategic importance to the maintenance of the active site topography.  相似文献   

20.
gamma-Glutamylcysteine synthetase is inactivated by incubation with low concentrations of L-2-amino-4-oxo-5-chloropentanoate. Very low concentrations of magnesium ions or certain other divalent cations are required for inactivation. L-Glutamate, but not D-glutamate or L-glutamine, protected against inactivation and the protective effect of L-glutamate was increased in the presence of ATP or ADP. L-alpha-Aminobutyrate increased the rate of inactivation by the chloroketone. When the chloroketone was added to the dipeptide synthesis system, inhibition was competitive with L-glutamate. Iodoacetamide also inhibited the enzyme; however, this reagent is much less effective than the chloroketone and inhibition by iodoacetamide is less effectively prevented by L-glutamate. Studies with 14C-labeled chloroketone showed that this reagent binds stoichiometrically to the enzyme, and that it binds exclusively to its heavy subunit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号