首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Fasting is a common procedure for animals in experiments. Although fasting may be necessary for scientific reasons, it should be minimized. In the current study, jugular-catheterized male Sprague-Dawley rats in metabolism cages were fasted for 0 to 24 h before measurement of various physiologic markers (serum chemistry, CBC analysis, serum corticosterone). When controlled for cohort, rats fasted for 6 and 16 h had significantly lower serum glucose than did nonfasted rats. Other values did not differ from controls. Only rats fasted for 24 h had elevated serum corticosterone levels. Therefore, fasting for as long as 16 h has fewer effects on rats that does fasting for 24 h. Fasting for 24 h or more therefore should receive appropriate consideration by both scientists and the IACUC in the experimental design and the animal-use protocol.  相似文献   

2.
We investigated the interactions of the peripheral satiety peptide cholecystokinin and the brain orexin-A system in the control of food intake. The effect of an intraperitoneal (i.p.) injection of sulfated cholecystokinin octapeptide (in this article called CCK) (5 microg/kg, 4.4 nmol/kg) or of phosphate-buffered saline (PBS, vehicle control) on 48 h fasting-induced feeding and on orexin-A peptide content was analyzed in diverse brain regions innervated by orexin neurons and involved in the control of food intake. Administration of CCK after a 48 h fast reduced fasting-induced hyperphagia (P<0.05). I.p. CCK increased the orexin-A content in the posterior brainstem of 48 h fasted rats by 35% (P<0.05). Fed animals receiving CCK had 48% higher orexin-A levels in the posterior brainstem than fasted rats (P<0.05). In the lateral hypothalamus, fasting decreased orexin-A levels by 50% as compared to fed rats (P<0.05). In the septal nuclei, the combination of fasting and CCK administration reduced orexin-A contents compared to fed PBS and CCK animals by 13% and 17%, respectively (P<0.05). These results suggest a convergence of pathways activated by peripheral CCK and by fasting on the level of orexin-A released in the posterior brainstem and provide evidence for a novel interaction between peripheral satiety signaling and a brain orexigen in the control of food intake.  相似文献   

3.
Although fasting and refeeding reveal the existence of age-related changes in carbohydrate and lipid metabolism, the effects of aging on mineral metabolism in refed animals are unknown. We therefore investigated hormonal regulation of calcium metabolism in young (4 months) and old (26 months) male rats fasted for 48 hours and then refed for 4 or 24 hours. Serum concentrations of total and ionized calcium and parathormone were similar in control young and old rats. Serum calcitonin level was higher, and the concentrations of albumin and inorganic phosphate and alkaline phosphatase activity were lower in fed old rats. In young fasted rats, the serum ionized and total calcium was decreased, and phosphate concentration was increased. In old rats, fasting resulted in the increase of serum parathormone level. Fasting reduced serum alkaline phosphatase activity to a similar extent in both age groups. In young rats, refeeding for 24h normalized serum calcium and phosphate levels and alkaline phosphatase activity, and decreased serum concentrations of PTH and calcitonin. In old refed rats, serum calcitonin concentration was raised by 77% compared to fed or fasted animals, whereas parathormone levels were normalized. Our results indicate that old fasted or refed rats maintain normal serum calcium concentration in a different way than young animals, possibly through the increase in serum levels of parathormone and/or calcitonin. Thus, dietary manipulations such as fasting and refeeding constitute an interesting model for the investigation of the effects of aging on the hormonal regulation of serum calcium level.  相似文献   

4.
Palatable food is rich in fat and/or sucrose. In this study we examined the long-term effects of such diets on food intake, body weight, adiposity and circulating levels of the satiety peptide leptin and the hunger peptide ghrelin. The experiments involved rats and mice and lasted 5 weeks. In rats, we examined the effect of diets rich in fat and/or sucrose and in mice the effect of a high fat diet with or without sucrose in the drinking water. Animals fed with the palatable diets had a larger intake of calories, gained more weight and became more adipose than animals fed standard rat chow. Fasted animals are known to have low serum leptin and high serum ghrelin and to display elevated serum leptin and lowered serum ghrelin postprandially. With time, a sucrose-rich diet was found to raise the fasting level of leptin and to lower the fasting level of ghrelin in rats. A fat-rich diet suppressed serum ghrelin without affecting serum leptin; high sucrose and high fat in combination greatly reduced serum ghrelin and raised serum leptin in the fasted state. The mRNA expression of leptin in the rat stomach was up-regulated by sucrose-rich (but not by fat-rich) diets, whereas the expression of ghrelin seemed not to be affected by the palatable diets. Mice responded to sucrose in the drinking water with elevated serum leptin (fasted state) and to all palatable diets with low serum ghrelin. The expression of both leptin and ghrelin mRNA in the stomach was suppressed in fasted mice that had received a high fat diet for 5 weeks. We conclude that the expression of leptin mRNA in stomach and the concentration of leptin in serum were elevated in response to sucrose-rich rather than fat-rich diets, linking leptin with sucrose metabolism. In contrast, the expression of ghrelin and the serum ghrelin concentration were suppressed by all palatable diets, sucrose and fat alike. In view of the increased body weight and adiposity neither elevated leptin nor suppressed ghrelin were able to control/restrain the overeating that is associated with palatable diets.  相似文献   

5.
Leptin is an adipocyte-derived peptide hormone that acts on the brain and regulates food intake and energy balance. Several previous reports have suggested that overwintering raccoon dogs Nyctereutes procyonoides are able to control their adiposity efficiently, but the contribution of leptin to weight regulation in these animals remains unclear. To study the seasonality of overwintering raccoon dogs as well as the effects of fasting on them, serum leptin levels were investigated using a newly established canine leptin-specific enzyme-linked immunosorbent assay (ELISA) kit. Of the nine animals studied, five were fed and four were fasted (deprived of food for 2 months in winter). Blood samples and body fat weights were monitored once a month throughout the experimental period (July 2007-March 2008). Leptin concentrations obtained by ELISA were significantly higher than and had a positive correlation with those obtained by previously used multispecies radioimmunoassay (RIA) kits. Moreover, ELISA showed a clearer correlation between the body fat weight and leptin levels compared with RIA, suggesting the efficacy of canine leptin-specific ELISA kit for leptin estimation in raccoon dogs. Autumnal fattening was observed in both groups of animals, but the wintertime loss of adipose tissue was more obvious in the fasted group. Serum leptin concentrations determined by ELISA showed seasonal changes without significant differences between the fed and fasted animals. Therefore, high levels of leptin may be responsible for the suppression of feeding behavior in raccoon dogs before winter.  相似文献   

6.
Adult male Wistar rats adapted to a 12:12 h light:dark regimen, fed or after a 24- or 48-h fast, were decapitated at 3-h intervals during a single day. They were deprived of food at day-time intervals ensuring that on decapitation they had fasted for the same length of time, i.e. 24 or 48 h. Thyroid hormones, insulin and glucose concentrations were determined in their serum. Fasting did not significantly affect circadian thyroxine, triiodothyronine and reverse triiodothyronine rhythms compared with the findings in fed animals; 24, but not 48 hours' fasting led to a shift in the acrophase of circadian insulin and glucose oscillations compared with fed rats. The maintenance of original circadian thyroid hormones and insulin rhythm in rats which fasted for short lengths of time testifies to a dependence of the stimulus on the time of day.  相似文献   

7.
During fasting or aging of animals there is a decreased content of skin glycosaminoglycans (GAGs). It has been found that the skin of adult rats contains about 60% of GAGs found in the skin of young animals. Fasting of both groups of animals (young and adult) resulted in decrease of GAG content. However, GAG content in the skin of fasted young rats decreased by 30% and in fasted adult rats by 15% only, compared to fed animals, respectively. The mechanism for the phenomena is not known. We considered insulin-like growth factor-I (IGF-I) as a potential candidate involved in regulation of GAG biosynthesis in both experimental models of animals. Adult rat sera were found to contain about 75% of IGF-I recovered from young rat sera. Fasting of both groups of animals resulted in dramatic decrease in serum IGF-I levels to about 50% of initial values. Since IGF-I activity and IGF-I serum half-life depends on the level of specific IGF-binding proteins (IGFBPs) we determined (i) relationship between main groups of IGFBPs, namely high molecular weight binding proteins (HMWBPs) and low molecular weight binding proteins (LMWBPs) and (ii) the amounts of IGF-I bound to respective proteins in the sera of all experimental animals. Control young rat serum was found to contain about 90% of HMWBPs and about 10% of LMWBPs as determined by ligand binding assay. In contrast, control adult rat serum contained about 60% of HMWBPs and about 40% of LMWBPs. Fasting of both groups of animals resulted in significant increase in serum levels of LMWBPs. Control young rat serum was found to contain about 8% IGF-I bound to LMWBPs while serum of control adult rats contained 18% IGF-I bound to these proteins. In sera of fasted young animals however, about 75% of the bound IGF-I was recovered from LMWBPs (about 60% of total serum IGF-I) while in sera of fasted adult animals only about 56% of the bound IGF-I was recovered from LMWBPs (about 50% of total serum IGF-I). Evidence was provided that during fasting of both groups of animals there is a significant decrease in serum BP-3 and dramatic increase in serum BP-1 concentrations, compared to respective controls. However, the concentration of BP-1 in serum of fasted young rats was increased by about 60 fold while in serum of fasted adult rats only by about 10 fold, compared to respective control animals. Negative correlation between skin GAG content and LMWBPs derived IGF-I during fasting of young (r = - 0.943, p < 0.001) and adult ( r = - 0.571, p < 0.01) rats was found.The data presented suggest that the effects of aging and fasting on decreased skin GAG content may be due to induction of LMWBPs that are known to (i) inhibit IGF-I dependent function and (ii) increase clearance of IGF-I from circulation. However, the effects of fasting are distinct in respect to young and adult rats suggesting that mechanisms involved in regulation of IGF-I bioactivity during aging are more complex that during fasting.  相似文献   

8.
Neuropeptide Y (NPY) inhibits TRH neurons in fed state, and hypothalamic NPY higher expression during fasting has been proposed to be involved in fasting-induced suppression of the hypothalamus-pituitary-thyroid (HPT) axis. We investigated the role of central Y5 receptors in the control of thyrotropin (TSH) and thyroid hormone (TH) secretion. Fed and fasting rats received twice daily central injections (3rd ventricle) of Y5 receptor antagonist (CGP71683; 15nmol/rat) for 72h. Fasted rats also received a single central injection of CGP71683 (15nmol/rat) at the end of 72h of fasting. In fed rats, Y5 receptor blockade reduced total food intake by 32% and body mass by almost 10% (p<0.01), corroborating the role of this receptor in food intake control. 72h-fasted rats exhibited a 4-fold increase in serum TSH (p<0.001), 1h after a single injection of Y5 antagonist. Also with multiple injections during 72h of fasting, Y5 blockade resulted in activation of thyroid axis, as demonstrated by a 3-times rise in serum T4 (p<0.001), accompanied by unchanged TSH and T3. In fed rats, the chronic central administration of CGP71683 resulted in reduced total serum T4 without changes in free T4 and TSH. Serum leptin and PYY were not altered by the NPY central blockade in both fed and fasted rats, suggesting no role of these hormones in the alterations observed. Therefore, the inhibition of central Y5 neurotransmission resulted in activation of thyroid axis during fasting suggesting that NPY-Y5 receptors contribute to fasting-induced TSH and TH suppression.  相似文献   

9.
Young adult male rats were fasted for 3 days, then fed a glucose-rich diet, ad libitum. At the end of the fasting period, the specific activity of liver glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase was decreased to 60% of control (nonfasted) levels. After 24 to 72 h of refeeding, the specific activity of glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase increased seven- and twofold, respectively. During the fasting period, the liver lysosome fragility increased, as judged by increased release of bound acid phosphatase and β-N-acetylglucosammidase activity during standard homogenization. Three hours after feeding a carbohydrate-rich diet, a further increase in liver lysosomal fragility was observed that returned to control values prior to the induction of the dehydrogenases. Similarly, the susceptibility of liver lysosomes from fasted rats to increased fragility by the intraperitoneal injection of glucose or galactose was also observed. Prior starvation was not a requisite for labilization of lysosomal membranes by injected glucose, but induction of the pentose phosphate shunt dehydrogenase was not observed.In a group of 6-week old male rats fed a commercial pellet diet throughout, the injection of insulin caused no change in liver lysosomal fragility, though hypoglycemia resulted. Similar animals made diabetic by treatment with Streptozotocin and diabetic rats given insulin, showed no change in liver lysosmal fragility based on the percentage of free to total activities of β-N-acetylglucosaminidase, β-glucuronidase, β-galactosidase, and Cathespin D. However, when adult female rats were fasted for 24 h, then injected with sufficient insulin to produce hypoglycemia, liver lysosomal fragility, based on the release of β-N-acetylglucosaminidase during homogenization, increased nearly threefold. These studies demonstrate that stimulated lysosomal fragility can be initiated by refeeding fasted animals a carbohydrate-rich diet, by intraperitoneal injections of fasted rats with glucose or galactose, or by administering insulin alone to fasted rats. However, hyperglycemia induced by diabetogenic doses of Streptozotocin, or hypoglycemia induced in well-fed animals by insulin injection failed to elicit an enhanced liver lysosomal fragility. Whether induction of the enzymes of lipogenesis by rat liver is dependent upon a prior lysosomal membrane labilization remains to be determined.  相似文献   

10.
Although the physiologic function of the gastrointestinal hormone motilin remains uncertain, plasma levels of this peptide vary with migrating myoelectric complexes (MMCs) in the small intestine. In the fed state, both MMCs and plasma motilin are suppressed. During fasting, cyclical peaks of motilin in plasma occur at the same time as Phase III of the MMC cycle occurs in the duodenum. This dependence of motilin concentrations in plasma on the feeding state of the animal prompted an investigation of the effects of motilin on feeding behavior. Intraperitoneal injection of motilin into fasted, but not fed, rats stimulated eating in a dose dependent manner. A significant stimulation of feeding was seen at doses of 5 and 10 μg/kg. Sated rats did not eat whether injected with motilin or vehicle. The feeding response to motilin was blocked by prior injection of the rats with naloxone, naltrexone, or pentagastrin. The dose response suppression of food intake by naloxone was similar in fasted animals treated with motilin or vehicle. Motilin may function as a hunger hormone during periods of fasting.  相似文献   

11.
Effects of somatostatin on food intake in rats   总被引:1,自引:0,他引:1  
G Aponte  P Leung  D Gross  T Yamada 《Life sciences》1984,35(7):741-746
We examined the possibility that somatostatin, a tetradecapeptide distributed in the gut and the central nervous system, may influence food intake and behavior in rats. Although intravenously infused somatostatin did not alter food intake in 8 hour fasted rats, intracerebroventricularly infused somatostatin resulted in a biphasic response, first increasing then decreasing food intake. We also observed that the effects of somatostatin vary depending upon whether animals are fed or fasted. In fed rats, food intake was decreased, while in fasted rats food intake was increased. These results suggest that somatostatin can act in the central nervous system to stimulate appetite; but that other factors, possibly related to gut motility or clearance, may inhibit further feeding once the stomach is full.  相似文献   

12.
Rats fasted for 48-96h before exposure were shown to have a longer survival time at groups 33,500 ft (1 ft = 0.305 m) simulated altitude than nonfasted controls. Although both become hypothermic at 33500 ft, colonic temperatures of the fasted rats were not sufficiently lower than those of nonfasted animals to explain the difference in survival time. The injection of glucose and insulin before exposure almost completely eliminated the protection afforded by fasting, whereas glucose alone had no effect on survival. It is therefore suggested that an alteration in carbohydrate metabolism, possibly in combination with other starvation-induced changes, allowed fasted rats to survive at 33500 ft until declining body temperature reduced metabolic rate to a level compatible with oxygen supply.  相似文献   

13.
BACKGROUND: Ghrelin derives from endocrine cells (A-like cells) in the stomach (mainly the oxyntic mucosa). Its concentration in the circulation increases during fasting and decreases upon re-feeding. This has fostered the notion that the absence of food in the upper gastrointestinal (GI) tract stimulates the secretion of ghrelin. The purpose of the present study was to determine the concentration of ghrelin in serum and oxyntic mucosa after replacing food with intravenous (iv) infusion of nutrients for 8 days using the technique known as total parenteral nutrition (TPN) MATERIALS AND METHODS: Male Sprague-Dawley rats (200-250 g) were given nutrients (lipids, glucose, amino acids, minerals and vitamins) by iv infusion for 8 days during which time they were deprived of food and water; another group was deprived of food for 24-48 h (fasted controls), while fed controls had free access to food and water. Serum ghrelin, gastrin and pancreastatin concentrations were measured together with the ghrelin content of the oxyntic mucosa. Plasma insulin and glucose as well as serum lipid concentrations were also determined. RESULTS: Fasted rats had higher serum ghrelin than TPN rats and fed controls. The oxyntic mucosal ghrelin concentration (and content) was lower in TPN rats than in fasted rats or fed controls. The serum gastrin and pancreastatin concentrations were lower in TPN rats and fasted rats than in fed controls. The plasma insulin concentration was 87 pmol/l+/-8 (SEM) in TPN rats compared to 101+/-16 pmol/l in fed controls; it was 26+/-14 pmol/l in fasted rats. The basal plasma glucose level was 11+/-0.6 mmol/l in TPN rats and 12+/-0.8 mmol/l in fed controls; it was 7+/-0.3 mmol/l in fasted rats. In TPN rats, the serum concentrations of free fatty acids, triglycerides and cholesterol were increased by 100%, 50% and 25%, respectively, compared to fed controls. Fasted rats had higher circulating concentrations of free fatty acids (20%) and lower concentrations of triglycerides (-40%) than fed controls; fasted rats did not differ from fed controls with respect to serum cholesterol. CONCLUSION: The circulating ghrelin concentration is high in situations of nutritional deficiency (starvation) and low in situations of nutritional plenty (free access to food or TPN). The actual presence or absence of food in the GI tract seems irrelevant. Circulating insulin and glucose concentrations did not differ much between TPN rats and fed controls; serum lipids, however, were elevated in the TPN rats. We suggest that elevated blood lipid levels contribute to the suppression of circulating ghrelin in rats subjected to TPN for 8 days.  相似文献   

14.
1. In order to evaluate possible non-salivary contributions to the content of salivary-type amylase in the circulation, parotid glands--the only salivary source of amylase in rats--have been totally removed and the effects on serum amylase have been assessed, after fasting and at different times after feeding. 2. Despite the parotidectomy the resting level of salivary-type amylase remained the same and an increase was still found to occur on feeding. 3. Isoelectric focusing has identified additional isoforms of amylase in serum and liver distinct from those occurring in parotid saliva. 4. The liver therefore may be contributing to the fasting levels of serum amylase and to the increases that occur on feeding, in rats.  相似文献   

15.
Protein turnover in adipose tissue from fasted or diabetic rats   总被引:1,自引:0,他引:1  
M E Tischler  A H Ost  J Coffman 《Life sciences》1986,39(16):1447-1452
Protein synthesis and degradation in vitro were compared in epididymal fat pads from animals deprived of food for 48 h or treated 6 or 12 days prior with streptozotocin to induce diabetes. Although both fasting and diabetes led to depressed (-24% to -57%) protein synthesis, the diminution in protein degradation (-63% to -72%) was even greater, so that net in vitro protein balance improved dramatically. Insulin failed to inhibit protein degradation in fat pads of these rats as it does for fed animals. Although insulin stimulated protein synthesis in fat pads of fasted and 12 day diabetic rats, the absolute change was much smaller than that seen in the fed state. The inhibition of protein degradation by leucine also seems to be less in fasted animals, probably because leucine catabolism is slower in fasting. These results show that fasting and diabetes may improve protein balance in adipose tissue but diminish the regulatory effects of insulin.  相似文献   

16.
The effect of fasting on energy utilization during running or swimming was studied in adult male Wistar rats. Compared with fed rats, fasted animals displayed a decreased contribution of carbohydrates in energy supply, with decreased liver and muscle glycogen contents and decreased rate of glycogen breakdown. This was compensated by an enhanced rate of beta-oxidation. In addition, fasting induced an exaggerated sympathoadrenal response during exercise, reflected by a greater epinephrine plasma level and a higher norepinephrine turnover rate in both liver and soleus. Nevertheless, endurance capacity was similar in fasted and fed animals. These results contrast with the impairment of endurance observed in fasting humans but also with the improvement of endurance in rats previously reported by Dohm et al. (J. Appl. Physiol. 55: 830-833, 1983). These data suggest that the metabolic responses to exercise subsequent to food deprivation depend not only on the considered species but also, in the same species (rat), on the age of the animals and the duration of the fast. These factors probably determine the hormonal secretion and substrate utilization during prolonged exercise in fasting conditions.  相似文献   

17.
There is a well-documented association between cyclic changes to food intake and the changing ovarian hormone levels of the reproductive cycle in female mammals. Limited research on appetite-controlling gastrointestinal peptides has taken place in females, simply because regular reproductive changes in steroid hormones present additional experimental factors to account for. This study focussed directly on the roles that gastrointestinal-secreted peptides may have in these reported, naturally occurring, changes to food intake during the rodent estrous cycle and aimed to determine whether peripheral changes occurred in the anorexigenic (appetite-reducing) hormones peptide-YY (PYY) and glucagon-like peptide-1 (GLP-1) in female Wistar rats (32–44 weeks of age). Total forms of each peptide were measured in matched fed and fasted plasma and descending colon tissue samples for each animal during the dark (feeding) phase. PYY concentrations did not significantly change between defined cycle stages, in either plasma or tissue samples. GLP-1 concentrations in fed plasma and descending colon tissue were significantly increased during proestrus, just prior to a significant reduction in fasted stomach contents at estrus, suggesting increased satiety and reduced food intake at this stage of the cycle. Increased proestrus GLP-1 concentrations could contribute to the reported reduction in food intake during estrus and may also have biological importance in providing the optimal nutritional and metabolic environment for gametes at the potential point of conception. Additional analysis of the findings demonstrated significant interactions of ovarian cycle stage and fed/fasted status with age on GLP-1, but not PYY plasma concentrations. Slightly older females had reduced fed plasma GLP-1 suggesting that a relaxation of regulatory control of this incretin hormone may also take place with increasing age in reproductively competent females.  相似文献   

18.
To determine the mechanism of meal-regulated synthesis of pancreatic digestive enzymes, we studied the effect of fasting and refeeding on pancreatic protein synthesis, relative mRNA levels of digestive enzymes, and activation of the translational machinery. With the use of the flooding dose technique with L-[3H]phenylalanine, morning protein synthesis in the pancreas of Institute for Cancer Research mice fed ad libitum was 7.9 +/- 0.3 nmol phenylalanine.10 min(-1).mg protein(-1). Prior fasting for 18 h reduced total protein synthesis to 70 +/- 1.4% of this value. Refeeding for 2 h, during which the mice consumed 29% of their daily food intake, increased protein synthesis to 117.3 +/- 4.9% of the control level. Pancreatic mRNA levels of amylase, lipases, trypsins, chymotrypsin, elastases, as well as those for several housekeeping genes tested were not significantly changed after refeeding compared with fasted mice. By contrast, the major translational control pathway involving Akt, mTOR, and S6K was strongly regulated by fasting and refeeding. Fasting for 18 h decreased phosphorylation of ribosomal protein S6 to almost undetectable levels, and refeeding highly increased it. The most highly phosphorylated form of the eIF4E binding protein (4E-BP1) made up the 14.6% of total 4E-BP1 in normally fed animals, was only 2.8% after fasting, and was increased to 21.4% after refeeding. This was correlated with an increase in the formation of the eIF4E-eIF4G complex after refeeding. By contrast, feeding did not affect eIF2B activity. Thus food intake stimulates pancreatic protein synthesis and translational effectors without increasing digestive enzyme mRNA levels.  相似文献   

19.
The present study was designed to assess the effect of fasting on aldosterone secretion in ovariectomized (Ovx) rats. Ovx rats were divided into fed (allowed access to food ad libitum) and fasted (deprived of food for 24 hours) groups. The trunk blood of fed and fasted rats was collected after decapitation. In the in vitro study, adrenal zona glomerulosa (ZG) cells from fed or fasted rats were incubated with angiotensin II (Ang II, 10(-6) M), adrenocorticotropic hormone (ACTH, 10(-9) M), or forskolin (an activator of adenylyl cyclase, 10(-6) M) at 37 degrees C for 30 min. The levels of aldosterone in medium and plasma extracts were measured by radioimmunoassay. Results showed that the levels of plasma aldosterone in fasted rats were lower than those in fed rats. There were no significant differences in basal and Ang II-stimulated aldosterone secretion between fed and fasted groups. The increment of aldosterone induced by ACTH in fasted group was significantly less than that in fed group. Administration of forskolin led to a significant increase in aldosterone secretion in both fed and fasted groups. Fasted group had a decreased aldosterone secretion in response to forskolin as compared with fed group. In summary, these results suggest that fasting decreases aldosterone secretion in Ovx rats through a mechanism in part involving a reduction of aldosterone production in response to ACTH, a decreased activity of adenylyl cyclase, and/or an inhibition of post-cAMP pathway in ZG cells.  相似文献   

20.
The metabolic and hormonal response to short term fasting was studied after endurance exercise training. Rats were kept running on a motor driven rodent treadmill 5 days/wk for periods up to 1 h/day for 6 wk. Trained and untrained rats were then fasted for 24 h and 48 h. Liver and muscle glycogen, blood glucose, lactate, beta OH butyrate, glycerol, plasma insulin, testosterone and corticosterone were measured in fed and fasted trained and untrained rats. 48 h fasted trained rats show a lower level of blood lactate (1.08 +/- 0.05 vs 1.33 +/- 0.08 mmol/l-1 of blood glycerol (1 +/- 0.11 vs 0.84 +/- 0.08 mmol/l-1), and of muscle glycogen. There is a significant increase in plasma corticosterone in 48 h fasted trained rats from fed values. Plasma testosterone decreases during fasting, the values are higher in trained rats. Plasma insulin decreases during fasting without any difference between the two groups. These results show higher lipolysis, and decreased glycogenolysis in trained animals during 48 h fasting. The difference between the groups in steroid hormone response could reduce neoglucogenesis and muscle proteolysis in trained animals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号