首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
In this study, we assessed the genetic integrity of over 400 samples of human multipotent stem cells using gene expression data sets. Our analysis reveals that neural and mesenchymal stem cells acquire characteristic large chromosomal aberrations at a similar, or somewhat lower, frequency to that seen in pluripotent stem cells, sometimes within a few passages in culture. Some of the identified chromosomal abnormalities can also be detected in human tumors of the respective tissues.  相似文献   

2.
Abstract Identification of mesenchymal stem cells (MSCs) derived from alternative sources has provided an exciting prospect for intensive investigation. This work focused on characterizing a new source of MSCs from stromal cells from human eye conjunctiva. In this study, after conjunctiva biopsies and culture of stromal segment of this tissue, fibroblast-like (SH2+, SH3+, CD29+, CD44+, CD166+, CD13+) human stromal cells, which can be differentiated toward the osteogenic, adipogenic, chondrogenic, and neurogenic lineages, were obtained. These cells expressed Oct-4, Nanog, Rex-1 genes, and some lineage-specific markers like cardiac actin and Keratin. Taken together, the results indicate that conjunctiva stromal-derived cells are a new source of multipotent MSCs and despite originating from an adult source, they express undifferentiated stem cell markers.  相似文献   

3.
In order to assess, in a controlled in vitro model, the differentiation potential of adult bone marrow derived stem cells we have developed a coculture procedure using adult rat cardiomyocytes and mesenchymal stem cells (MSCs) from transgenic GFP positive rats. We investigated in the cocultured MSCs the time course of cellular processes that are difficult to monitor in in vivo experiments. Adult rat cardiomyocytes and adult rat MSCs were cocultured for up to 7 days and analyzed by confocal microscopy. Several markers were studied by immunofluorescence technique. The fluorescent ST-BODIPY-Dihydropyridine was used to label calcium channels in living cells. Intracellular calcium was monitored with the fluorescent probe X-Rhod-1. Immunofluorescence experiments showed the presence of connexin-43 between cardiomyocytes and MSCs and between MSCs, while no sarcomeric structures were observed at any time of the coculture. We looked at the expression of calcium channels and development of voltage-dependent calcium signaling in cocultured MSCs. MSCs showed a time-dependent increase of labeling of ST-BODIPY-Dihydropyridine, reaching a relatively strong level after 72 h of coculture. The treatment with a non-fluorescent DHP, Nifedipine, completely abolished ST-BODIPY labeling. We investigated whether depolarization could modulate intracellular calcium. Depolarization-induced calcium transients increased in MSCs in relation to the coculture time. We conclude that MSCs cocultured with adult cardiomyocytes present preliminary evidence of voltage-dependent calcium modulation uncoupled with the development of nascent or adult myofibrils, thus showing a limited lineage specification and a low plasticity to differentiate in a full cardiomyocyte-like phenotype.  相似文献   

4.
Gastrointestinal stromal tumors (GISTs) are the most common mesenchymal tumors of the gastrointestinal tract. Current criteria for the diagnosis of malignant GISTs do not always reliably predict patient outcomes. In order to search for genetic markers with prognostic potential, chromosomal imbalance aberrations (CIAs) were analyzed in 28 subjects with GIST using comparative genomic hybridization and correlated with clinicopathological features. Except for a small rectal tumor, CIAs were identified in all GISTs, including 14 from the stomach, 11 from the small intestine, 1 from the esophagus, and 1 from the rectum. Losses were more common than gains. The median number of CIAs in high-risk GISTs was significantly higher than that in low-risk GISTs (5.60±2.59 vs. 3.38±2.55; p<0.05), especially for losses (4.60±1.84 vs. 2.63±2.13; p<0.01). Loss of 14q was the most common CIA in both low-risk and high-risk GISTs, and can be regarded as an early event of GIST development. Losses of 1p and 15q were also very common, often coexisting, and were slightly more frequent in high-risk GISTs than in low-risk GISTs. Other recurrent CIAs, including losses of 10q, 13q, 15q, 18q, and 22q and gains of 5p, 12q, 17q, and 20q were relatively less common in this series. Among these CIAs, losses of 13q, 10q (with minimal overlapping on q11–q22), and 22q were most likely the chromosomal loci potentially harboring the tumor suppressor gene(s) which may be related to early recurrence and/or metastasis during malignant transformation of GISTs.  相似文献   

5.
BACKGROUND AIMS. Intravenously applied mesenchymal stromal cells (MSC) are under investigation for numerous clinical indications. However, their capacity to activate shear stress-dependent adhesion to endothelial ligands is incompletely characterized. METHODS. Parallel-plate flow chambers were used to induce firm adhesion of MSC to integrin ligand vascular cell adhesion molecule (VCAM)-1. Human MSC were stimulated by chemokine (C-C motif) ligand (CCL15)/macrophage inflammatory protein (MIP-5), CCL19/MIP-3β chemokine (C-X-C motif) ligand (CXCL8)/interleukin (IL)-8, CXCL12/ stromal derived factor (SDF-1) or CXCL13/B lymphocyte chemoattractant (BLC). RESULTS. Two MSC isolates responded to three chemokines (either to CCL15, CCL19 and CXCL13, or to CCL19, CXCL12 and CXCL13), two isolates responded to two chemokines (to CCL15 and CCL19, or to CCL19 and CXCL13), and one isolate responded to CCL19 only. In contrast, all tested MSC isolates responded to selectins (P-selectin and E-selectin) or integrin ligand VCAM-1, as visualized by a velocity reduction under flow. CONCLUSIONS. Inter-individual variability of chemokine-induced integrin activation should be considered when evaluating human MSC as cellular therapies.  相似文献   

6.
Because of their somatic cell origin, human induced pluripotent stem cells (HiPSCs) are assumed to carry a normal diploid genome, and adaptive chromosomal aberrations have not been fully evaluated. Here, we analyzed the chromosomal integrity of 66 HiPSC and 38 human embryonic stem cell (HESC) samples from 18 different studies by global gene expression meta-analysis. We report identification of a substantial number of cell lines carrying full and partial chromosomal aberrations, half of which were validated at the DNA level. Several aberrations resulted from culture adaptation, and others are suspected to originate from the parent somatic cell. Our classification revealed a third type of aneuploidy already evident in early passage HiPSCs, suggesting considerable selective pressure during the reprogramming process. The analysis indicated high incidence of chromosome 12 duplications, resulting in significant enrichment for cell cycle-related genes. Such aneuploidy may limit the differentiation capacity and increase the tumorigenicity of HiPSCs.  相似文献   

7.
Experimental evidence is presented for the involvement of DNA double-strand breaks in the formation of radiation-induced chromosomal aberrations. When X-irradiated cells were post-treated with single-strand specific Neurospora crassa endonuclease (NE), the frequencies of all classes of aberration increased by about a factor 2. Under these conditions, the frequencies of DNA double-strand breaks induced by X-rays (as determined by neutral sucrose-gradient centrifugation), also increased by a factor of 2. The frequency of chromosomal aberrations induced by fast neutrons (which predominantly induce DNA double-strand breaks) was not influenced by post-treatment with NE. Inhibition of poly(ADP-ribose) polymerase, an enzyme that uses DNA with double-strand breaks as an optimal template, by 3-aminobenzamide also increased the frequencies of X-ray-induced chromosomal aberrations, which supports the idea that DNA double-strand breaks are important lesions for the production of chromosomal aberrations induced by ionizing radiation.  相似文献   

8.
Background aimsHuman multipotent mesenchymal stromal cells (hMSC) have become one of the main interests in regenerative medicine because of their ability to differentiate into different lineages. Human amniotic fluid is reported to contain MSC (hAMSC) and therefore may be a useful source of cells for clinical applications. However, our understanding of the behavior of these cells in indefinite in vitro culture conditions is very limited.MethodsWe systematically evaluated and characterized, throughout their whole lifespan, the expansion potential, chromosomal stability, surface and intracellular phenotype and differentiation potential of fibroblastoid hAMSC (F-type hAMSC).ResultsNine F-type hAMSC cultures could be expanded in in vitro culture conditions for 223.25 ± 24.44 days (mean ± SD), during which time 28.96 ± 1.5 passages were made giving rise to 54.95 ± 3.17 population doublings (PD) and an estimated number of accumulated cells of between 1.0 × 1022 and 9.7 × 1023, with no visible alterations in the chromosome during their lifespan. All the cultures showed unchanged percentages of strongly positive expressions of the surface markers CD29, CD44, CD73, CD90, CD95, CD105 and HLA-ABC, as well as the embryonic intracellular markers Nanog and Sox2, during their lifespan, whereas the expression of the embryonic surface markers SSEA3, SSEA4, TRA-1-60 and TRA-1-81 fell until it disappeared with progression of the culture. These cells retained their differentiation capacities to adipogenic, chondrogenic and osteogenic lineages throughout their lifespan.ConclusionsF-type hAMSC exhibit reproducible biologic characteristics, confirming that these cells are ideal candidates for use in regenerative medicine.  相似文献   

9.
Multipotential mesenchymal stromal cells (MMSCs) are the subject of increasing scientific interest due to their key role in physiological renewal and repair. Allogeneic MMSCs interaction with other components of tissue environment, in particular with immune cells, represent one of the most intriguing question of modern cell physiology. MMSCs possess pronounced immunomodulatory capabilities based on their "immmunopriveledge" properties and the ability to suppress immune response. This review is highlighted the current state of art in the field of MMSCs immunomodulatory effects realization and mechanisms. MMSCs and immune cells interaction represents complex multidirectional process governed by both direct cell-to-cell interactions and soluble factors (interferon-gamma, tumor necrosis factor, prostaglandin E2, hepatocyte growth factor, interleukins ets.). The importance of physical environmental factors, primarily oxygen tension, on peculiarities of MMSCs and immune cells interaction is discussed.  相似文献   

10.
11.
The cell surface proteome of human mesenchymal stromal cells   总被引:1,自引:0,他引:1  

Background

Multipotent human mesenchymal stromal cells (hMSCs) are considered as promising biological tools for regenerative medicine. Their antibody-based isolation relies on the identification of reliable cell surface markers.

Methodology/Principal Findings

To obtain a comprehensive view of the cell surface proteome of bone marrow-derived hMSCs, we have developed an analytical pipeline relying on cell surface biotinylation of intact cells using cell impermeable, cleavable sulfo-NHS-SS-biotin to enrich the plasma membrane proteins and mass spectrometry for identification with extremely high confidence. Among the 888 proteins identified, we found ≈200 bona fide plasma membrane proteins including 33 cell adhesion molecules and 26 signaling receptors. In total 41 CD markers including 5 novel ones (CD97, CD112, CD239, CD276, and CD316) were identified. The CD markers are distributed homogenously within plastic-adherent hMSC populations and their expression is modulated during the process of adipogenesis or osteogenesis. Moreover, our in silico analysis revealed a significant difference between the cell surface proteome of hMSCs and that of human embryonic stem cells reported previously.

Conclusions/Significance

Collectively, our analytical methods not only provide a basis for further studies of mechanisms maintaining the multipotency of hMSCs within their niches and triggering their differentiation after signaling, but also a toolbox for a refined antibody-based identification of hMSC populations from different tissues and their isolation for therapeutic intervention.  相似文献   

12.
13.
14.
A survey of the literature suggests that random dispersion of radiation induced aberrations occurs only when uniform fields of predominantly low LET radiations act on cell populations which are homogeneous with regard to cell type, cycle stage and intrinsic radiosensitivity. The in vitro irradiation of unstimulated human lymphocytes with X- or γ-rays is an example of this. Over-dispersion is observed in all other cases where sufficient data have been obtained and where there are a sufficient number of chromosomes per cell to prevent underdispersion through distortion.The observation is made that the sum of two or more Poisson populations with different means gives an over-dispersed population. This is used to make a unified explanation of the various observations of overdispersion of aberrations between cells.  相似文献   

15.
Human mesenchymal stromal cells were isolated from the bone marrow of patients with polycyteamia vera (the myeloproliferative disorder) with the aim to characterize the properties of the mesenchymal stromal cells originating from the pathologically affected bone marrow. Their in vitro growth and potential to differentiate were determined. Isolated mesenchymal stromal cells were able to differentiate into three mesenchymal lineages under appropriate cultivation conditions.  相似文献   

16.
Human mesenchymal stromal cell (hMSC) is a potential target for cell and gene therapy-based approaches against a variety of different diseases. Whilst cationic lipofection has been widely experimented, the Nucleofector technology is a relatively new non-viral transfection method designed for primary cells and hard-to-transfect cell lines. Herein, we compared the efficiency and viability of nucleofection with cationic lipofection, and used the more efficient transfection method, nucleofection, to deliver a construct of minimalistic, immunologically defined gene expression encoding the erythropoietin (MIDGE-EPO) into hMSC. MIDGE construct is relatively safer than the viral and plasmid expression systems as the detrimental eukaryotic and prokaryotic gene and sequences have been eliminated. Using a plasmid encoding the luciferase gene, we demonstrated a high transfection efficiency using the U-23 (21.79 ± 1.09%) and C-17 (5.62 ± 1.09%) pulsing program in nucleofection. The cell viabilities were (44.93 ± 10.10)% and (21.93 ± 5.72)%, respectively 24 h post-nucleofection. On the other hand, lipofection treatment only yielded less than 0.6% efficiencies despite showing higher viabilities. Nucleofection did not affect hMSC renewability, immunophenotype and differentiation potentials. Subsequently, we nucleofected MIDGE-EPO using the U-23 pulsing program into hMSC. The results showed that, despite a low nucleofection efficiency with this construct, the EPO protein was stably expressed in the nucleofected cells up to 55 days when determined by ELISA or immunocytochemical staining. In conclusion, nucleofection is an efficient non-viral transfection approach for hMSC, which when used in conjunction with a MIDGE construct, could result in extended and stable transgene expression in hMSC.  相似文献   

17.
《Cytotherapy》2014,16(10):1371-1383
Background aimsThe purpose of this study was to examine neurotrophic and neuroprotective effects of limbus stroma-derived mesenchymal stromal cells (L-MSCs) on cortical neurons in vitro and in vivo.MethodsCultured L-MSCs were characterized by flow cytometry and immunofluorescence through the use of specific MSC marker antibodies. Conditioned media were collected from normoxia- and hypoxia-treated L-MSCs to assess neurotrophic effects. Neuroprotective potentials were evaluated through the use of in vitro hypoxic cortical neuron culture and in vivo rat focal cerebral ischemia models. Neuronal morphology was confirmed by immunofluorescence with the use of anti-MAP2 antibody. Post-ischemic infarct volume and motor behavior were assayed by means of triphenyltetrazolium chloride staining and open-field testing, respectively. Human growth antibody arrays and enzyme-linked immunoassays were used to analyze trophic/growth factors contained in conditioned media.ResultsIsolated human L-MSCs highly expressed CD29, CD90 and CD105 but not CD34 and CD45. Mesenchymal lineage cell surface expression pattern and differentiation capacity were identical to MSCs derived form human bone marrow and adipose tissue. The L-MSC normoxic and hypoxic conditioned media both promoted neurite outgrowth in cultured cortical neurons. Hypoxic conditioned medium showed superior neurotrophic function and neuroprotective potential with reduced ischemic brain injury and improved functional recovery in rat focal cerebral ischemia models. Human growth factor arrays and enzyme-linked immunoassays measurements showed neuroprotective and growth-associated cytokines (vascular endothelial growth factor [VEGF], VEGFR3, brain-derived neurotrophic factor, insulin-like growth factor -2 and hepatocyte growth factor) contained in conditioned media. Hypoxic exposure caused VEGF and brain-derived neurotrophic factor upregulation, possibly contributing to neurotrophic and neuroprotective effects.ConclusionsL-MSCs can secrete various neurotrophic factors stimulating neurite outgrowth and protecting neurons against brain ischemic injury through paracrine mechanism.  相似文献   

18.
19.
Subsets of mesenchymal stromal cells   总被引:1,自引:0,他引:1  
McNiece I 《Cytotherapy》2007,9(3):301-302
  相似文献   

20.
Human multipotent mesenchymal stromal cells (MMSCs) were cocultured with allogenic blood-born mononuclear cells (MNCs). The MNCs consisted of cells that differed in their maturity or functional state, such as lymphocytes from adult peripheral blood vs. umbilical cord blood (cb) or nonstimulated vs. phytohemagglutinin (PHA)-activated lymphocytes from peripheral blood, respectively. The share of T, B, and natural killer (NK) cells or T cell subsets within the initial MNCs or cbMNCs were within physiological reference range for adult peripheral blood. After coculturing with the MMSCs, the populations of B cells decreased in both MNCs and cbMNCs, whereas the populations of the T and NK cells decreased among cbMNC only (p < 0.05). A decrease in the subset of T-NK cells was observed in the T cells of both MNCs and cbMNCs. In the coculture of MMSCs and PHA-MNCs, we found decrease in the number of CD8+ and HLA-DR+ cells and an increase in the number of CD25+ lymphocytes compared to monocultured PHA-MNCs. Our data show that the interaction with MMSCs did not substantially modify the composition of allogenic lymphocytes independent of their maturation (MNCs vs. cbMNCs) or activation (MNCs vs. PHA-MNCs), and the means were within the physiological limits. Moreover, exposure to the MMSCs did not reduce the viability of lymphocytes and even promoted the survival of cells in case of cbMNCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号