首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
RNA-mediated gene silencing in the phytopathogenic fungus Bipolaris oryzae   总被引:1,自引:0,他引:1  
The Ascomycetous fungus Bipolaris oryzae is the causal agent of brown leaf spot disease in rice and is a model for studying photomorphogenetic responses by near-UV radiation. Targeted gene disruption (knockout) for functional analysis of photomorphogenesis-related genes in B. oryzae can be achieved by homologous recombination with low efficiency. Here, the applicability of RNA silencing (knockdown) as a tool for targeting endogenous genes in B. oryzae is reported. A polyketide synthase gene (PKS1), involved in fungal DHN melanin biosynthesis pathways, was targeted by gene silencing as a marker. The silencing vector encoding hairpin RNA of the PKS1 fragment was constructed in a two-step PCR-based cloning, and introduced into the B. oryzae genomic DNA. Silencing of the PKS1 gene resulted in albino phenotypes and reduction of PKS1 mRNA expression. These results demonstrate the applicability of targeted gene silencing as a useful reverse-genetics approach in B. oryzae.  相似文献   

5.
The biological role of a secretory catalase of the rice blast fungus Magnaporthe oryzae was studied. The internal amino acid sequences of the partially purified catalase in the culture filtrate enabled us to identify its encoding gene as a catalase-peroxidase gene, CPXB, among four putative genes for catalase or catalase-peroxidase in M. oryzae. Knockout of the gene drastically reduced the level of catalase activity in the culture filtrate and supernatant of conidial suspension (SCS), and increased the sensitivity to exogenously added H?O? compared with control strains, suggesting that CPXB is the major gene encoding the secretory catalase and confers resistance to H?O? in hyphae. In the mutant, the rate of appressoria that induced accumulation of H?O? in epidermal cells of the leaf sheath increased and infection at early stages was delayed; however, the formation of lesions in the leaf blade was not affected compared with the control strain. These phenotypes were complimented by reintroducing the putative coding regions of CPXB driven by a constitutive promoter. These results suggest that CPXB plays a role in fungal defense against H?O? accumulated in epidermal cells of rice at the early stage of infection but not in pathogenicity of M. oryzae.  相似文献   

6.
The avirulence (AVR) gene AVR-Pita in Magnaporthe oryzae prevents the fungus from infecting rice cultivars containing the resistance gene Pi-ta. A survey of isolates of the M. grisea species complex from diverse hosts showed that AVR-Pita is a member of a gene family, which led us to rename it to AVR-Pita1. Avirulence function, distribution, and genomic context of two other members, named AVR-Pita2 and AVR-Pita3, were characterized. AVR-Pita2, but not AVR-Pita3, was functional as an AVR gene corresponding to Pi-ta. The AVR-Pita1 and AVR-Pita2 genes were present in isolates of both M. oryzae and M. grisea, whereas the AVR-Pita3 gene was present only in isolates of M. oryzae. Orthologues of members of the AVR-Pita family could not be found in any fungal species sequenced to date, suggesting that the gene family may be unique to the M. grisea species complex. The genomic context of its members was analyzed in eight strains. The AVR-Pita1 and AVR-Pita2 genes in some isolates appeared to be located near telomeres and flanked by diverse repetitive DNA elements, suggesting that frequent deletion or amplification of these genes within the M. grisea species complex might have resulted from recombination mediated by repetitive DNA elements.  相似文献   

7.
We developed an RNA-silencing vector, pSilent-Dual1 (pSD1), with a convergent dual promoter system that provides a high-throughput platform for functional genomics research in filamentous fungi. In the pSD1 system, the target gene was designed to be transcribed as a chimeric RNA with enhanced green fluorescent protein (eGFP) RNA. This enabled us to efficiently screen the resulting transformants using GFP fluorescence as an indicator of gene silencing. A model study with the eGFP gene showed that pSD1-based vectors induced gene silencing via the RNAi pathway with slightly lower efficiency than did hairpin eGFP RNA-expressing vectors. To demonstrate the applicability of the pSD1 system for elucidating gene function in the rice-blast fungus Magnaporthe oryzae , 37 calcium signalling-related genes that include almost all known calcium-signalling proteins in the genome were targeted for gene silencing by the vector. Phenotypic analyses of the silenced transformants showed that at least 26, 35 and 15 of the 37 genes examined were involved in hyphal growth, sporulation and pathogenicity, respectively, in M. oryzae. These included several novel findings such as that Pmc1 -, Spf1 - and Neo1 -like Ca2+ pumps, calreticulin and calpactin heavy chain were essential for fungal pathogenicity.  相似文献   

8.
9.
10.
11.
Guo J  Dai X  Xu JR  Wang Y  Bai P  Liu F  Duan Y  Zhang H  Huang L  Kang Z 《PloS one》2011,6(7):e21895
Puccinia striiformis f. sp. tritici (Pst) is an obligate biotrophic fungus that causes the destructive wheat stripe rust disease worldwide. Due to the lack of reliable transformation and gene disruption method, knowledge about the function of Pst genes involved in pathogenesis is limited. Mitogen-activated protein kinase (MAPK) genes have been shown in a number of plant pathogenic fungi to play critical roles in regulating various infection processes. In the present study, we identified and characterized the first MAPK gene PsMAPK1 in Pst. Phylogenetic analysis indicated that PsMAPK1 is a YERK1 MAP kinase belonging to the Fus3/Kss1 class. Single nucleotide polymerphisms (SNPs) and insertion/deletion were detected in the coding region of PsMAPK1 among six Pst isolates. Real-time RT-PCR analyses revealed that PsMAPK1 expression was induced at early infection stages and peaked during haustorium formation. When expressed in Fusarium graminearum, PsMAPK1 partially rescued the map1 mutant in vegetative growth and pathogenicity. It also partially complemented the defects of the Magnaporthe oryzae pmk1 mutant in appressorium formation and plant infection. These results suggest that F. graminearum and M. oryzae can be used as surrogate systems for functional analysis of well-conserved Pst genes and PsMAPK1 may play a role in the regulation of plant penetration and infectious growth in Pst.  相似文献   

12.
Couch BC  Kohn LM 《Mycologia》2002,94(4):683-693
Magnaporthe oryzae is described as a new species distinct from M. grisea. Gene trees were inferred for Magnaporthe species using portions of three genes: actin, beta-tubulin, and calmodulin. These gene trees were found to be concordant and distinguished two distinct clades within M. grisea. One clade is associated with the grass genus Digitaria and is therefore nomenclaturally tied to M. grisea. The other clade is associated with Oryza sativa and other cultivated grasses and is described as a new species, M. oryzae. While no morphological characters as yet distinguish them, M. oryzae is distinguished from M. grisea by several base substitutions in each of three loci as well as results from laboratory matings; M.oryzae and M. grisea are not interfertile. Given that M. oryzae is the scientifically correct name for isolates associated with rice blast and grey leaf spot, continued use of M. grisea for such isolates would require formal nomenclatural conservation.  相似文献   

13.
14.
Somatic embryogenesis receptor kinase (SERK) proteins play pivotal roles in regulation of plant development and immunity. The rice genome contains two SERK genes, OsSerk1 and OsSerk2. We previously demonstrated that OsSerk2 is required for rice Xa21-mediated resistance to Xanthomonas oryzae pv. oryzae (Xoo) and for normal development. Here we report the molecular characterization of OsSerk1. Overexpression of OsSerk1 results in a semi-dwarf phenotype whereas silencing of OsSerk1 results in a reduced angle of the lamina joint. OsSerk1 is not required for rice resistance to Xoo or Magnaporthe oryzae. Overexpression of OsSerk1 in OsSerk2-silenced lines complements phenotypes associated with brassinosteroid (BR) signaling defects, but not the disease resistance phenotype mediated by Xa21. In yeast, OsSERK1 interacts with itself forming homodimers, and also interacts with the kinase domains of OsSERK2 and BRI1, respectively. OsSERK1 is a functional protein kinase capable of auto-phosphorylation in vitro. We conclude that, whereas OsSERK2 regulates both rice development and immunity, OsSERK1 functions in rice development but not immunity to Xoo and M. oryzae.  相似文献   

15.
16.
17.
18.
19.
20.
2 .2 0mmol/L的硝酸镍处理水稻幼苗后第 3天用稻白叶枯菌 (Xanthomonasoryzaepv .oryzae)挑战接种 ,硝酸镍处理的稻苗病情比对照明显减轻 ,并且叶片中过氧化物酶 (POD)活性上升 ,过氧化氢酶 (CAT)和抗坏血酸过氧化物酶 (APX)活性明显下降 ,H2 O2 和丙二醛 (MDA)含量显著增加。这些结果表明 ,H2 O2 积累与镍诱导的抗病作用密切有关  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号