首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Infections caused by human parasites (HPs) affect the poorest 500 million people worldwide but chemotherapy has become expensive, toxic, and/or less effective due to drug resistance. On the other hand, many 3D structures in Protein Data Bank (PDB) remain without function annotation. We need theoretical models to quickly predict biologically relevant Parasite Self Proteins (PSP), which are expressed differentially in a given parasite and are dissimilar to proteins expressed in other parasites and have a high probability to become new vaccines (unique sequence) or drug targets (unique 3D structure). We present herein a model for PSPs in eight different HPs (Ascaris, Entamoeba, Fasciola, Giardia, Leishmania, Plasmodium, Trypanosoma, and Toxoplasma) with 90% accuracy for 15?341 training and validation cases. The model combines protein residue networks, Markov Chain Models (MCM) and Artificial Neural Networks (ANN). The input parameters are the spectral moments of the Markov transition matrix for electrostatic interactions associated with the protein residue complex network calculated with the MARCH-INSIDE software. We implemented this model in a new web-server called MISS-Prot (MARCH-INSIDE Scores for Self-Proteins). MISS-Prot was programmed using PHP/HTML/Python and MARCH-INSIDE routines and is freely available at: . This server is easy to use by non-experts in Bioinformatics who can carry out automatic online upload and prediction with 3D structures deposited at PDB (mode 1). We can also study outcomes of Peptide Mass Fingerprinting (PMFs) and MS/MS for query proteins with unknown 3D structures (mode 2). We illustrated the use of MISS-Prot in experimental and/or theoretical studies of peptides from Fasciola hepatica cathepsin proteases or present on 10 Anisakis simplex allergens (Ani s 1 to Ani s 10). In doing so, we combined electrophoresis (1DE), MALDI-TOF Mass Spectroscopy, and MASCOT to seek sequences, Molecular Mechanics + Molecular Dynamics (MM/MD) to generate 3D structures and MISS-Prot to predict PSP scores. MISS-Prot also allows the prediction of PSP proteins in 16 additional species including parasite hosts, fungi pathogens, disease transmission vectors, and biotechnologically relevant organisms.  相似文献   

2.
We describe the current status of the Java molecular graphics tool, MolSurfer. MolSurfer has been designed to assist the analysis of the structures and physico-chemical properties of macromolecular interfaces. MolSurfer provides a coupled display of two-dimensional (2D) maps of the interfaces generated with the ADS software and a three-dimensional (3D) view of the macromolecular structure in the Java PDB viewer, WebMol. The interfaces are analytically defined and properties such as electrostatic potential or hydrophobicity are projected on to them. MolSurfer has been applied previously to analyze a set of 39 protein-protein complexes, with structures available from the Protein Data Bank (PDB). A new application, described here, is the visualization of 75 interfaces in structures of protein-DNA and protein-RNA complexes. Another new feature is that the MolSurfer web server is now able to compute and map Poisson-Boltzmann electrostatic potentials of macromolecules onto interfaces. The MolSurfer web server is available at http://projects.villa-bosch.de/mcm/software/molsurfer.  相似文献   

3.
The recent accumulation of large amounts of 3D structural data warrants a sensitive and automatic method to compare and classify these structures. We developed a web server for comparing protein 3D structures using the program Matras (http://biunit.aist-nara.ac.jp/matras). An advantage of Matras is its structure similarity score, which is defined as the log-odds of the probabilities, similar to Dayhoff's substitution model of amino acids. This score is designed to detect evolutionarily related (homologous) structural similarities. Our web server has three main services. The first one is a pairwise 3D alignment, which is simply align two structures. A user can assign structures by either inputting PDB codes or by uploading PDB format files in the local machine. The second service is a multiple 3D alignment, which compares several protein structures. This program employs the progressive alignment algorithm, in which pairwise 3D alignments are assembled in the proper order. The third service is a 3D library search, which compares one query structure against a large number of library structures. We hope this server provides useful tools for insights into protein 3D structures.  相似文献   

4.
MOTIVATION: Modeling of protein interactions is often possible from known structures of related complexes. It is often time-consuming to find the most appropriate template. Hypothesized biological units (BUs) often differ from the asymmetric units and it is usually preferable to model from the BUs. RESULTS: ProtBuD is a database of BUs for all structures in the Protein Data Bank (PDB). We use both the PDBs BUs and those from the Protein Quaternary Server. ProtBuD is searchable by PDB entry, the Structural Classification of Proteins (SCOP) designation or pairs of SCOP designations. The database provides the asymmetric and BU contents of related proteins in the PDB as identified in SCOP and Position-Specific Iterated BLAST (PSI-BLAST). The asymmetric unit is different from PDB and/or Protein Quaternary Server (PQS) BUs for 52% of X-ray structures, and the PDB and PQS BUs disagree on 18% of entries. AVAILABILITY: The database is provided as a standalone program and a web server from http://dunbrack.fccc.edu/ProtBuD.php.  相似文献   

5.
The PDBsum web server provides structural analyses of the entries in the Protein Data Bank (PDB). Two recent additions are described here. The first is the detailed analysis of the SARS‐CoV‐2 virus protein structures in the PDB. These include the variants of concern, which are shown both on the sequences and 3D structures of the proteins. The second addition is the inclusion of the available AlphaFold models for human proteins. The pages allow a search of the protein against existing structures in the PDB via the Sequence Annotated by Structure (SAS) server, so one can easily compare the predicted model against experimentally determined structures. The server is freely accessible to all at http://www.ebi.ac.uk/pdbsum.  相似文献   

6.
Numerous studies have been performed for analysis and prediction of β‐turns in a protein. This study focuses on analyzing, predicting, and designing of β‐turns to understand the preference of amino acids in β‐turn formation. We analyzed around 20,000 PDB chains to understand the preference of residues or pair of residues at different positions in β‐turns. Based on the results, a propensity‐based method has been developed for predicting β‐turns with an accuracy of 82%. We introduced a new approach entitled “Turn level prediction method,” which predicts the complete β‐turn rather than focusing on the residues in a β‐turn. Finally, we developed BetaTPred3, a Random forest based method for predicting β‐turns by utilizing various features of four residues present in β‐turns. The BetaTPred3 achieved an accuracy of 79% with 0.51 MCC that is comparable or better than existing methods on BT426 dataset. Additionally, models were developed to predict β‐turn types with better performance than other methods available in the literature. In order to improve the quality of prediction of turns, we developed prediction models on a large and latest dataset of 6376 nonredundant protein chains. Based on this study, a web server has been developed for prediction of β‐turns and their types in proteins. This web server also predicts minimum number of mutations required to initiate or break a β‐turn in a protein at specified location of a protein. Proteins 2015; 83:910–921. © 2015 Wiley Periodicals, Inc.  相似文献   

7.
Analyses of publicly available structural data reveal interesting insights into the impact of the three‐dimensional (3D) structures of protein targets important for discovery of new drugs (e.g., G‐protein‐coupled receptors, voltage‐gated ion channels, ligand‐gated ion channels, transporters, and E3 ubiquitin ligases). The Protein Data Bank (PDB) archive currently holds > 155,000 atomic‐level 3D structures of biomolecules experimentally determined using crystallography, nuclear magnetic resonance spectroscopy, and electron microscopy. The PDB was established in 1971 as the first open‐access, digital‐data resource in biology, and is now managed by the Worldwide PDB partnership (wwPDB; wwPDB.org ). US PDB operations are the responsibility of the Research Collaboratory for Structural Bioinformatics PDB (RCSB PDB). The RCSB PDB serves millions of RCSB.org users worldwide by delivering PDB data integrated with ~40 external biodata resources, providing rich structural views of fundamental biology, biomedicine, and energy sciences. Recently published work showed that the PDB archival holdings facilitated discovery of ~90% of the 210 new drugs approved by the US Food and Drug Administration 2010–2016. We review user‐driven development of RCSB PDB services, examine growth of the PDB archive in terms of size and complexity, and present examples and opportunities for structure‐guided drug discovery for challenging targets (e.g., integral membrane proteins).  相似文献   

8.
SUMMARY: We provide the scientific community with a web server which gives access to SuMo, a bioinformatic system for finding similarities in arbitrary 3D structures or substructures of proteins. SuMo is based on a unique representation of macromolecules using selected triplets of chemical groups having their own geometry and symmetry, regardless of the restrictive notions of main chain and lateral chains of amino acids. The heuristic for extracting similar sites was used to drive two major large-scale approaches. First, searching for ligand binding sites onto a query structure has been made possible by comparing the structure against each of the ligand binding sites found in the Protein Data Bank (PDB). Second, the reciprocal process, i.e. searching for a given 3D site of interest among the structures of the PDB is also possible and helps detect cross-reacting targets in drug design projects. AVAILABILITY: The web server is freely accessible to academia through http://sumo-pbil.ibcp.fr and full support is available from MEDIT (http://www.medit.fr). CONTACT: mjambon@burnham.org.  相似文献   

9.
VADAR (Volume Area Dihedral Angle Reporter) is a comprehensive web server for quantitative protein structure evaluation. It accepts Protein Data Bank (PDB) formatted files or PDB accession numbers as input and calculates, identifies, graphs, reports and/or evaluates a large number (>30) of key structural parameters both for individual residues and for the entire protein. These include excluded volume, accessible surface area, backbone and side chain dihedral angles, secondary structure, hydrogen bonding partners, hydrogen bond energies, steric quality, solvation free energy as well as local and overall fold quality. These derived parameters can be used to rapidly identify both general and residue-specific problems within newly determined protein structures. The VADAR web server is freely accessible at http://redpoll.pharmacy.ualberta.ca/vadar.  相似文献   

10.
Circular dichroism (CD) is a spectroscopic technique commonly used to investigate the structure of proteins. Major secondary structure types, alpha‐helices and beta‐strands, produce distinctive CD spectra. Thus, by comparing the CD spectrum of a protein of interest to a reference set consisting of CD spectra of proteins of known structure, predictive methods can estimate the secondary structure of the protein. Currently available methods, including K2D2, use such experimental CD reference sets, which are very small in size when compared to the number of tertiary structures available in the Protein Data Bank (PDB). Conversely, given a PDB structure, it is possible to predict a theoretical CD spectrum from it. The methodological framework for this calculation was established long ago but only recently a convenient implementation called DichroCalc has been developed. In this study, we set to determine whether theoretically derived spectra could be used as reference set for accurate CD based predictions of secondary structure. We used DichroCalc to calculate the theoretical CD spectra of a nonredundant set of structures representing most proteins in the PDB, and applied a straightforward approach for predicting protein secondary structure content using these theoretical CD spectra as reference set. We show that this method improves the predictions, particularly for the wavelength interval between 200 and 240 nm and for beta‐strand content. We have implemented this method, called K2D3, in a publicly accessible web server at http://www. ogic.ca/projects/k2d3 . Proteins 2012. © 2011 Wiley Periodicals, Inc.  相似文献   

11.
We present the development of a web server, a protein short motif search tool that allows users to simultaneously search for a protein sequence motif and its secondary structure assignments. The web server is able to query very short motifs searches against PDB structural data from the RCSB Protein Databank, with the users defining the type of secondary structures of the amino acids in the sequence motif. The output utilises 3D visualisation ability that highlights the position of the motif in the structure and on the corresponding sequence. Researchers can easily observe the locations and conformation of multiple motifs among the results. Protein short motif search also has an application programming interface (API) for interfacing with other bioinformatics tools. AVAILABILITY: The database is available for free at http://birg3.fbb.utm.my/proteinsms.  相似文献   

12.
For even the best-studied species, there is a large gap in their representation in the protein databank (PDB) compared to within sequence databases. Typically, less than 2% of sequences are represented in the PDB. This is partly due to the considerable experimental challenge and manual inputs required to solve three dimensional structures by methods such as X-ray diffraction and multi-dimensional nuclear magnetic resonance (NMR) spectroscopy in comparison to high-throughput sequencing. This gap is made even wider by the high level of redundancy within the PDB and under-representation of some protein categories such as membrane-associated proteins which comprise approximately 25% of proteins encoded in genomes. A traditional route to closing the sequence-structure gap is offered by homology modelling whereby the sequence of a target protein is modelled on a template represented in the PDB using in silico energy minimisation approaches. More recently, online homology servers have become available which automatically generate models from proffered sequences. However, many online servers give little indication of the structural plausibility of the generated model. In this paper, the online homology server Geno3D will be described. This server uses similar software to that used in modelling structures during structure determination and thus generates data allowing determination of the structural plausibility of models. For illustration, modelling of a chemotaxis protein (CheY) from Pseudomononas entomophila L48 (accession YP_609298) on a template (PDB id. 1mvo), the phosphorylation domain of an outer membrane protein PhoP from Bacillus subtilis, will be described.  相似文献   

13.
TESE is a web server for the generation of test sets of protein sequences and structures fulfilling a number of different criteria. At least three different use cases can be envisaged: (i) benchmarking of novel methods; (ii) test sets tailored for special needs and (iii) extending available datasets. The CATH structure classification is used to control structural/sequence redundancy and a variety of structural quality parameters can be used to interactively select protein subsets with specific characteristics, e.g. all X-ray structures of alpha-helical repeat proteins with more than 120 residues and resolution <2.0 A. The output includes FASTA-formatted sequences, PDB files and a clickable HTML index file containing images of the selected proteins. Multiple subsets for cross-validation are also supported. AVAILABILITY: The TESE server is available for non-commercial use at URL: http://protein.bio.unipd.it/tese/.  相似文献   

14.
Nair R  Rost B 《Nucleic acids research》2003,31(13):3337-3340
LOC3D (http://cubic.bioc.columbia.edu/db/LOC3d/) is both a weekly-updated database and a web server for predictions of sub-cellular localization for eukaryotic proteins of known three-dimensional (3D) structure. Localization is predicted using four different methods: (i) PredictNLS, prediction of nuclear proteins through nuclear localization signals; (ii) LOChom, inferring localization through sequence homology; (iii) LOCkey, inferring localization through automatic text analysis of SWISS-PROT keywords; and (iv) LOC3Dini, ab initio prediction through a system of neural networks and vector support machines. The final prediction is based on the method that predicts localization with the highest confidence. The LOC3D database currently contains predictions for >8700 eukaryotic protein chains taken from the Protein Data Bank (PDB). The web server can be used to predict sub-cellular localization for proteins for which only a predicted structure is available from threading servers. This makes the resource of particular interest to structural genomics initiatives.  相似文献   

15.
Protein mapping distributes many copies of different molecular probes on the surface of a target protein in order to determine binding hot spots, regions that are highly preferable for ligand binding. While mapping of X-ray structures by the FTMap server is inherently static, this limitation can be overcome by the simultaneous analysis of multiple structures of the protein. FTMove is an automated web server that implements this approach. From the input of a target protein, by PDB code, the server identifies all structures of the protein available in the PDB, runs mapping on them, and combines the results to form binding hot spots and binding sites. The user may also upload their own protein structures, bypassing the PDB search for similar structures. Output of the server consists of the consensus binding sites and the individual mapping results for each structure - including the number of probes located in each binding site, for each structure. This level of detail allows the users to investigate how the strength of a binding site relates to the protein conformation, other binding sites, and the presence of ligands or mutations. In addition, the structures are clustered on the basis of their binding properties. The use of FTMove is demonstrated by application to 22 proteins with known allosteric binding sites; the orthosteric and allosteric binding sites were identified in all but one case, and the sites were typically ranked among the top five. The FTMove server is publicly available at https://ftmove.bu.edu.  相似文献   

16.
Predicting the various binding sites of a protein from its structure sheds light on its function and paves the way towards design of interaction inhibitors. Here, we report ScanNet, a freely available web server for prediction of protein–protein, protein - disordered protein and protein - antibody binding sites from structure. ScanNet (Spatio-Chemical Arrangement of Neighbors Network) is an end-to-end, interpretable geometric deep learning model that learns spatio-chemical patterns directly from 3D structures. ScanNet consistently outperforms Machine Learning models based on handcrafted features and comparative modeling approaches. The web server is linked to both the PDB and AlphaFoldDB, and supports user-provided structure files. Predictions can be readily visualized on the website via the Molstar web app and locally via ChimeraX. ScanNet is available at http://bioinfo3d.cs.tau.ac.il/ScanNet/.  相似文献   

17.
18.
Proteins may simultaneously exist at, or move between, two or more different subcellular locations. Proteins with multiple locations or dynamic feature of this kind are particularly interesting because they may have some very special biological functions intriguing to investigators in both basic research and drug discovery. For instance, among the 6408 human protein entries that have experimentally observed subcellular location annotations in the Swiss-Prot database (version 50.7, released 19-Sept-2006), 973 ( approximately 15%) have multiple location sites. The number of total human protein entries (except those annotated with "fragment" or those with less than 50 amino acids) in the same database is 14,370, meaning a gap of (14,370-6408)=7962 entries for which no knowledge is available about their subcellular locations. Although one can use the computational approach to predict the desired information for the gap, so far all the existing methods for predicting human protein subcellular localization are limited in the case of single location site only. To overcome such a barrier, a new ensemble classifier, named Hum-mPLoc, was developed that can be used to deal with the case of multiple location sites as well. Hum-mPLoc is freely accessible to the public as a web server at http://202.120.37.186/bioinf/hum-multi. Meanwhile, for the convenience of people working in the relevant areas, Hum-mPLoc has been used to identify all human protein entries in the Swiss-Prot database that do not have subcellular location annotations or are annotated as being uncertain. The large-scale results thus obtained have been deposited in a downloadable file prepared with Microsoft Excel and named "Tab_Hum-mPLoc.xls". This file is available at the same website and will be updated twice a year to include new entries of human proteins and reflect the continuous development of Hum-mPLoc.  相似文献   

19.
The structural annotation of proteins with no detectable homologs of known 3D structure identified using sequence‐search methods is a major challenge today. We propose an original method that computes the conditional probabilities for the amino‐acid sequence of a protein to fit to known protein 3D structures using a structural alphabet, known as “Protein Blocks” (PBs). PBs constitute a library of 16 local structural prototypes that approximate every part of protein backbone structures. It is used to encode 3D protein structures into 1D PB sequences and to capture sequence to structure relationships. Our method relies on amino acid occurrence matrices, one for each PB, to score global and local threading of query amino acid sequences to protein folds encoded into PB sequences. It does not use any information from residue contacts or sequence‐search methods or explicit incorporation of hydrophobic effect. The performance of the method was assessed with independent test datasets derived from SCOP 1.75A. With a Z‐score cutoff that achieved 95% specificity (i.e., less than 5% false positives), global and local threading showed sensitivity of 64.1% and 34.2%, respectively. We further tested its performance on 57 difficult CASP10 targets that had no known homologs in PDB: 38 compatible templates were identified by our approach and 66% of these hits yielded correctly predicted structures. This method scales‐up well and offers promising perspectives for structural annotations at genomic level. It has been implemented in the form of a web‐server that is freely available at http://www.bo‐protscience.fr/forsa .  相似文献   

20.
Comeau SR  Kozakov D  Brenke R  Shen Y  Beglov D  Vajda S 《Proteins》2007,69(4):781-785
ClusPro is the first fully automated, web-based program for docking protein structures. Users may upload the coordinate files of two protein structures through ClusPro's web interface, or enter the PDB codes of the respective structures. The server performs rigid body docking, energy screening, and clustering to produce models. The program output is a short list of putative complexes ranked according to their clustering properties. ClusPro has been participating in CAPRI since January 2003, submitting predictions within 24 h after a target becomes available. In Rounds 6-11, ClusPro generated acceptable submissions for Targets 22, 25, and 27. In general, acceptable models were obtained for the relatively easy targets without substantial conformational changes upon binding. We also describe the new version of ClusPro that incorporates our recently developed docking program PIPER. PIPER is based on the fast Fourier transform correlation approach, but the method is extended to use pairwise interaction potentials, thereby increasing the number of near-native docked structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号