首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Villar R  Held AA  Merino J 《Plant physiology》1995,107(2):421-427
Dark respiration in light as well as in dark was estimated for attached leaves of an evergreen (Heteromeles arbutifolia Ait.) and a deciduous (Lepechinia fragans Greene) shrub species using an open gas-exchange system. Dark respiration in light was estimated by the Laisk method. Respiration rates in the dark were always higher than in the light, indicating that light inhibited respiration in both species. The rates of respiration in the dark were higher in the leaves of the deciduous species than in the evergreen species. However, there were no significant differences in respiration rates in light between the species. Thus, the degree of inhibition of respiration by light was greater in the deciduous species (62%) than in the evergreen species (51%). Respiration in both the light and darkness decreased with increasing leaf age. However, because respiration in the light decreased faster with leaf age than respiration in darkness, the degree of inhibition of respiration by light increased with leaf age (from 36% in the youngest leaves to 81% in the mature leaves). This suggests that the rate of dark respiration in the light is related to the rate of biosynthetic processes. Dark respiration in the light decreased with increasing light intensity. Respiration both in the light and in the dark was dependent on leaf temperature. We concluded that respiration in light and respiration in darkness are tightly coupled, with variation in respiration in darkness accounting for more than 60% of the variation in respiration in light. Care must be taken when the relation between respiration in light and respiration in darkness is studied, because the relation varies with species, leaf age, and light intensity.  相似文献   

2.
FARRAR  J. F. 《Annals of botany》1981,48(1):53-63
The respiration rate of roots on intact barley plants grownin 16 h light 8 h dark cycles shows an exponential decay inthe dark, rises on re-illumination and there is a transientfall 12–14 h into the photoperiod Roots of plants placedin the dark for up to 48 h show a continued exponential decay,and a rather small fall in soluble carbohydrate levels The respirationof roots excised from predarkened plants does not rise on additionof sucrose to the medium bathing them Respiration rate, measured10 h into the photoperiod, shows a constant relation to rootweight in plants 8–24 days old, during which time rootcarbohydrate content first falls and later rises It is concludedthat root respiration rate is not a simple function of carbohydratesupply from the shoot The importance of root respiration inthe carbon budget of barley plants is evaluated and the levelsof control operating on root respiration rate are briefly discussed Hordeum distichum (L ) Lam, barley, respiration rate, light, carbohydrate  相似文献   

3.
羊草呼吸作用与温度、光照和土壤水分的关系   总被引:1,自引:0,他引:1       下载免费PDF全文
本文报道了两种土壤水分条件下羊草明呼吸速率与光照和温度的关系,以及暗呼吸速率与温度的关系。结果表明,羊草的明呼吸速率与光强呈非线性函数关系。在低光强下,明呼吸速率随光强升高而有较快的增加;随着光强的增高,其增加速度减慢。在温度低于羊草光合的高温补偿点的条件下,明呼吸速率在一定温度范围内随温度升高而增大;当温度达到一定限度时,有一个下降阶段,而后又回升。羊草的暗呼吸速率随温度增加而升高,且在一定限度内,其升高速度随温度增高而加快。当土壤干旱时,明呼吸速率显著降低,而暗呼吸速率仅略有减小。  相似文献   

4.
本文报道了两种土壤水分条件下羊草明呼吸速率与光照和温度的关系,以及暗呼吸速率与温度的关系。结果表明,羊草的明呼吸速率与光强呈非线性函数关系。在低光强下,明呼吸速率随光强升高而有较快的增加;随着光强的增高,其增加速度减慢。在温度低于羊草光合的高温补偿点的条件下,明呼吸速率在一定温度范围内随温度升高而增大;当温度达到一定限度时,有一个下降阶段,而后又回升,羊草的暗呼吸速率随温度增加而升高,且在一定限度内,其升高速度随温度增高而加快。当土壤干旱时,明呼吸速率显著降低,而暗呼吸速率仅略有减小。  相似文献   

5.
Kutschera U  Niklas KJ 《Protoplasma》2012,249(4):1049-1057
Fifty years ago Max Kleiber described what has become known as the "mouse-to-elephant" curve, i.e., a log-log plot of basal metabolic rate versus body mass. From these data, "Kleiber's 3/4 law" was deduced, which states that metabolic activity scales as the three fourths-power of body mass. However, for reasons unknown so far, no such "universal scaling law" has been discovered for land plants (embryophytes). Here, we report that the metabolic rates of four different organs (cotyledons, cotyledonary hook, hypocotyl, and roots) of developing sunflower (Helianthus annuus L.) seedlings grown in darkness (skotomorphogenesis) and in white light (photomorphogenesis) differ by a factor of 2 to 5 and are largely independent of light treatment. The organ-specific respiration rate (oxygen uptake per minute per gram of fresh mass) of the apical hook, which is composed of cells with densely packaged cytoplasm, is much higher than that of the hypocotyl, an organ that contains vacuolated cells. Data for cell length, cell density, and DNA content reveal that (1) hook opening in white light is caused by a stimulation of cell elongation on the inside of the curved organ, (2) respiration, cell density and DNA content are much higher in the hook than in the stem, and (3) organ-specific respiration rates and the DNA contents of tissues are statistically correlated. We conclude that, due to the heterogeneity of the plant body caused by the vacuolization of the cells, Kleiber's law, which was deduced using mammals as a model system, cannot be applied to embryophytes. In plants, this rule may reflect scaling phenomena at the level of the metabolically active protoplasmic contents of the cells.  相似文献   

6.
Day respiration of illuminated C(3) leaves is not well understood and particularly, the metabolic origin of the day respiratory CO(2) production is poorly known. This issue was addressed in leaves of French bean (Phaseolus vulgaris) using (12)C/(13)C stable isotope techniques on illuminated leaves fed with (13)C-enriched glucose or pyruvate. The (13)CO(2) production in light was measured using the deviation of the photosynthetic carbon isotope discrimination induced by the decarboxylation of the (13)C-enriched compounds. Using different positional (13)C-enrichments, it is shown that the Krebs cycle is reduced by 95% in the light and that the pyruvate dehydrogenase reaction is much less reduced, by 27% or less. Glucose molecules are scarcely metabolized to liberate CO(2) in the light, simply suggesting that they can rarely enter glycolysis. Nuclear magnetic resonance analysis confirmed this view; when leaves are fed with (13)C-glucose, leaf sucrose and glucose represent nearly 90% of the leaf (13)C content, demonstrating that glucose is mainly directed to sucrose synthesis. Taken together, these data indicate that several metabolic down-regulations (glycolysis, Krebs cycle) accompany the light/dark transition and emphasize the decrease of the Krebs cycle decarboxylations as a metabolic basis of the light-dependent inhibition of mitochondrial respiration.  相似文献   

7.
Brix H 《Plant physiology》1968,43(3):389-393
The rate of photorespiration of Douglas-fir seedlings was measured under different light intensities by: (1) extrapolating the curve for CO2 uptake in relation to atmospheric CO2 content to zero CO2 content, and (2) measuring CO2 evolution of the plants into a CO2-free airstream. Different results, obtained from these techniques, were believed to be caused by a severe restriction of the photosynthetic activity when the latter was used. With the first method, CO2 evolution was lower than the dark respiration rate at low light intensity. For all temperatures studied (6°, 20°, 28°) a further increase in light intensity raised the CO2 evolution above dark respiration before it leveled off. The rate of CO2 evolution was stimulated by increase in temperature at all light intensities. With the CO2-free air method, CO2 evolution in the light was less than dark respiration at all light intensities.  相似文献   

8.
The mechanism of carbon isotope fractionation in metabolic paths of autotrophic organisms is considered. The principal features of the mechanism proposed are: 1) the emergence of a one-stage kinetic isotope effect of pyruvate decarboxylation during respiration resulting in the formation of two flows of the carbon substrate with different isotope compositions; 2) the multiplication of the one-stage isotope effect by means of the repeated circulation of a light isotope fraction (C2-fragments) in lipid-carbohydrate metabolism and by the simultaneous removal of a heavy isotope carbon dioxide in the Krebs cycle. On the basis of the above mechanism carbon isotope effects are explained of CO2 assimilation and respiration as well as sequential decrease of 13C content in the series of lipids, carbohydrates and proteins. The cuase of the enrichment of the whole organisms in the light isotope in respect to the carbon dioxide of the environment is discussed.  相似文献   

9.
Myogenesis induces mitochondrial proliferation, a decrease in reactive oxygen species (ROS) production, and an increased reliance upon oxidative phosphorylation. While muscles typically possess 20%-40% excess capacity of cytochrome c oxidase (COX), undifferentiated myoblasts have only 5%-20% of the mitochondrial content of myotubes and muscles. We used two muscle lines (C2C12, Sol8) and 3T3-L1 pre-adipocytes to examine if changes in COX regulation or activity with differentiation cause a shift in metabolic phenotype (i.e., more oxidative, less glycolytic, less ROS). COX activity in vivo can be suppressed by its inhibitor, nitric oxide, or sub-optimal substrate (cytochrome c) concentrations. Inhibition of nitric oxide synthase via L-NAME had no effect on the respiration of adherent undifferentiated cells, although it did stimulate respiration of myoblasts in suspension. While cytochrome c content increased during differentiation, there was no correlation with respiratory rate or reliance on oxidative metabolism. There was no correlation between COX specific activity and oxidative metabolism between cell type or in relation to differentiation. These studies show that, despite the very low activities of COX, undifferentiated myoblasts and pre-adipocytes possess a reserve of COX capacity and changes in COX with differentiation do not trigger the shift in metabolic phenotype.  相似文献   

10.
目的:探讨Orexins对小鼠摄食和能量代谢的影响。方法:将小鼠分为摄食组和代谢组,摄食组通过中枢置管,注射不同剂量(1、3、10 nmol)的orexin-A和orexin-B,观察它们对小鼠摄食以及肝柠檬酸合酶活性的影响。代谢组将小鼠置于代谢笼内,通过中枢注射orexin-A,观察小鼠在光照条件、黑暗条件、禁食条件下呼吸商和代谢率的变化。结果:与对照组相比,1 nmol和10 nmol orexin-A在注射后4小时内可显著刺激小鼠进食(P0.05),而3 nmol orexin-A对摄食量的影响并不明显,但能显著促进柠檬酸合酶活性。任何剂量的orexin-B对小鼠摄食都没有显示出刺激作用(P0.05)。在光照条件下,orexin-A可显著降低呼吸商(RQ),代谢率显著升高(P0.05);而在黑暗条件下,orexin-A对RQ没有任何影响,但代谢率显著升高(P0.05);但是给禁食小鼠中注射orexin-A可诱导RQ的短暂升高,代谢率显著升高(P0.05)。结论:Orexins对小鼠摄食与能量代谢可能有一定的调控作用。  相似文献   

11.
Summary Dark oxygen uptake was measured manometrically for cells of green high-temperature alga, Chlorella 7-11-05, separated from nonsynchronized populations by centrifugation into fractions of predominantly small or large cells. In the presence of exogenous glucose, respiration activity of the smaller (younger) cell fraction was invariably higher than that of the larger (older) cell fraction. In the absence of exogenous substrate, the difference in respiration rates in two fractions of cells was inconsistent from one experiment to another both in size and in sign. The dependence of dark respiration on the amount of available substrate makes the endogenous respiration rate unsuitable as an indicator of the inherent capacity of respiratory mechanisms.In observations on synchronized heterotrophically grown cells, the glucose respiration rate expressed per dry weight of cells gradually declined over the developmental period irrespective of the adequate exogenous supply of glucose or illumination by weak light. Observations on synchronized heterotrophically grown Chlorella cells thus corroborated studies of glucose respiration in cells separated into are groups by centrifugation.The decline in metabolic activity in the course of cell development previously established for growth and photosynthesis extends to include respiration activity. Disagreements among several investigators in regard to the course of respiration during cell development are probably due to the effects of accessory factors such as strong light during the preceding growth period or the scarcity of respiratory substrate during respiration measurements which affect and distort changes in the inherent capacity of metabolic mechanisms in the course of cell development.  相似文献   

12.
H. Greenway  R. G. Hiller 《Planta》1967,75(3):253-274
Summary Chlorella pyrenoidosa was subjected to a range of water potentials and the effects of these treatments on endogenous respiration and on the uptake and respiration of glucose and acetate were measured.For a given water potential the reductions were greatest for glucose, less for acetate, and least for endogenous respiration. At intermediate water potentials of about-10 atm, glucose respiration was depressed strongly at first, but this respiration approached control levels after two to three hours at low water potentials.The reduced respiration of substrates was caused by inhibition of glucose and acetate uptake, as demonstrated by 14C uptake experiments over short periods. These effects on uptake are attributed to low water potentials, rather than to any possible competition between the molecules of the osmotica and the substrates. Evidence for this view includes the equal inhibitions of glucose-induced respiration by osmotica with such diverse molecular structure as mannitol, KCl, and polyethylene glycol 1540. More conclusively, glucose itself was used as an osmotic agent and its inhibition of glucose-induced respiration was very similar to that by mannitol solutions of equal water potentials.Respiratory activity was much less reduced than uptake. This was demonstrated by lowering the water potential of cells which had already absorbed glucose from a control medium. The subsequent respiration was much higher than that for cells continuously exposed to low water potential.The findings are discussed in relation to the reduced transport of ions and sucrose, which is known to occur in vascular plants subjected to a water stress.The results demonstrate the advantages of using a unicellular organism in the study of metabolic effects of water deficits in plants.  相似文献   

13.
The effect of diaphragmatic respiration in broncopneumopathic patients has been investigated. By using a computerized method of analysis, VO2, VCO2, VE, VA and several other respiratory and metabolic parameters have been investigated. The results obtained in these patients, at rest, have shown that particularly in supine position the abdominal respiration improves the CO2 output by increasing VCO2 and reducing VO2. The reduction in the breathing rate, reduces VD and increases VA, in this way the efficiency of ventilation increases accordingly. The increase of CO2 output at the same metabolic rate is discussed in light of the fact that diaphragmatic respiration seems to improve the VA/Q ratio.  相似文献   

14.
Seedlings of spring wheat (Triticum aestivum L.) were used to study the dynamics of leaf respiration, the respiratory pathway ratio, and relation of activities of these pathways to the content of soluble carbohydrates in the leaf during greening of seedlings for 48 h under continuous photosynthetically active light (190 μmol/(m2 s)). Changes in leaf respiration during de-etiolation were closely related to modulation of the alternative respiratory pathway (AP) activity. The rate of cytochrome respiratory pathway (CP) depended directly on the carbohydrate content and growth rate. These relations suggest that the substrate regulation of CP activity during greening is mediated by the energy needs for growth and is effectively regulated by the mechanism of respiratory control. The highest rates of AP were observed after a 6-h exposure of seedlings to light. The proportion of CP/AP at this stage was close to unity. The temporal pattern of AP activity during de-etiolation was independent on the content of soluble carbohydrates. Hence, in addition to substrate regulation of AP, there are other intricate mechanisms of AP involvement. Our results are in accordance to the state that the alternative respiratory pathway participates in maintaining homeostasis in phototrophic cells during development of the photosynthetic function.  相似文献   

15.
叶片暗呼吸是森林碳循环的重要组分,深入分析幼、成树的叶片暗呼吸及其光抑制性的差异,对生态系统总生产力(GPP)的准确估算具有重要意义.本研究以长白山阔叶红松林主要树种(红松和紫椴)的幼树和成树为研究对象,分别测算不同光照下叶片暗呼吸与无光暗呼吸,比较叶片暗呼吸及其光抑制性在幼、成树间的差异,结合幼、成树叶片生理生态参数的对比,对幼、成树叶片暗呼吸及其光抑制性差异的原因进行探讨.结果表明: 两个树种幼树叶片光下暗呼吸的值高于成树,在生长季(6—9月),幼树的值比成树高6.8%~39.6%;两个树种幼树叶片暗呼吸光抑制程度低于成树,幼树叶片暗呼吸光抑制性的值比成树低2.5%~14.1%;红松幼、成树间叶片暗呼吸光抑制性的差异总体高于紫椴幼、成树间叶片暗呼吸光抑制性的差异,差值最高可达18.6%;幼树中较高的光下暗呼吸值和较低的光抑制程度可能与最大净光合速率、比叶面积、气孔导度的变化有关,与叶片氮含量的变化无关.  相似文献   

16.
To investigate the role of plant mitochondria in drought tolerance, the response to water deprivation was compared between Nicotiana sylvestris wild type (WT) plants and the CMSII respiratory complex I mutant, which has low-efficient respiration and photosynthesis, high levels of amino acids and pyridine nucleotides, and increased antioxidant capacity. We show that the delayed decrease in relative water content after water withholding in CMSII, as compared to WT leaves, is due to a lower stomatal conductance. The stomatal index and the abscisic acid (ABA) content were unaffected in well-watered mutant leaves, but the ABA/stomatal conductance relation was altered during drought, indicating that specific factors interact with ABA signalling. Leaf hydraulic conductance was lower in mutant leaves when compared to WT leaves and the role of oxidative aquaporin gating in attaining a maximum stomatal conductance is discussed. In addition, differences in leaf metabolic status between the mutant and the WT might contribute to the low stomatal conductance, as reported for TCA cycle-deficient plants. After withholding watering, TCA cycle derived organic acids declined more in CMSII leaves than in the WT, and ATP content decreased only in the CMSII. Moreover, in contrast to the WT, total free amino acid levels declined whilst soluble protein content increased in CMSII leaves, suggesting an accelerated amino acid remobilisation. We propose that oxidative and metabolic disturbances resulting from remodelled respiration in the absence of Complex I activity could be involved in bringing about the lower stomatal and hydraulic conductances.  相似文献   

17.
BREEZE  V.; ELSTON  J. 《Annals of botany》1983,51(5):611-616
Some of the published evidence used in the synthesis and maintenancemodel of plant respiration is discussed in relation to the effectof temperature. Recalculations from the data of de Vries (1975b) give different results from those claimed by him. The modelis considered in terms of the use of substrate in the dark andits production in the light. It is suggested that starvationestimates of maintenance are not valid. The most reliable methodof observing synthesis respiration in whole plants appears tobe by following a discrete pool of substrate, as is possiblewith labelled carbon. Triticum aestivum L., Zea mays L., Helianthus annuus L., Vicia faba L., carbon dioxide, respiration, temperature, substrate content  相似文献   

18.
19.
Nitrogen addition may alter the decomposition rate for different organic-matter pools in contrasting ways. Using a paired-plot design, we sought to determine the effects of long-term elevated N on the stability of five organic-matter pools: organic horizons (Oe+a), whole mineral soil (WS), mineral soil fractions including the light fraction (LF), heavy fraction (HF), and a physically recombined fraction (RF). These substrates were incubated for 300 days, and respiration, mineralized N, and active microbial biomass were measured. Samples with elevated N gave 15% lower cumulative respiration for all five substrates. Over the 300-day incubation, the Oe+a gave twice the cumulative respiration (gCkg–1 initial C) as the LF, which gave slightly higher respiration than the HF. Respiration was 35% higher for the WS than for the RF. Mineralized N was similar between N treatments and between the LF and HF. Net N mineralized by the LF over the course of the 300-day incubation decreased with higher C:N ratio, due presumably to N immobilization to meet metabolic demands. The pattern was opposite for HF, however, which could be explained by a release of N in excess of metabolic demands due to recalcitrance of the HF organic matter. Mineralized N increased with respiration for the HF but showed no pattern, or perhaps even decreased, for the LF. WS and RF showed decreasing active microbial biomass near the end of the incubation, which corresponded with decreasing respiration and increasing nitrate. Our results show that long-term elevated N stabilized organic matter in whole soil and soil fractions.  相似文献   

20.
Summary Adult rats (Rattus norvegicus) were subjected to continuous light or control conditions (14 hours light/day) for six weeks or longer, and quantitative cytological and metabolic studies were made of the pineal organs. After 11 weeks of continuous light, the pineal parenchymal cell's largest nucleolar eosinophilic mass is significantly reduced in diameter, especially in the medulla of the organ. Evidence of metabolic inhibition includes reduction of pineal glycogen content, succinic dehydrogenase activity, and respiration in the absence of exogenous substrates. Pineal ATP content, P32-phosphate uptake and 5-hydroxy indole acetic acid content did not appear to be affected. Pineal serotonin content and melatonin-forming activity in the continuously lighted animals were measured but could not be interpreted metabolically, due to the diurnal fluctuations of these in control animals. Results provided here and elsewhere suggest that pineal inhibition by continuous light involves primarily the citric acid cycle, the accumulation of metabolites and lipid, and the synthesis of protein.This investigation was supported by grant GM-05219 from the National Institutes of Health, U.S. Public Health Service.I am grateful to Mrs. Virginia Green Bowers, Mrs. Ann Richards, Mr. Peter Charles Baker and Mr. Jorge Antonio Alvarado for laboratory assistance, and to Dr. Richard Strohman and Mr. David Epel, for advice on the determination of ATP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号