首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
Requejo R  Tena M 《Proteomics》2006,6(Z1):S156-S162
Aerial parts (shoots) of maize seedlings fed hydroponically with 300 muM sodium arsenate [As(V)] or 250 muM sodium arsenite [As(III)] for 24 h were analyzed for differentially expressed proteins by 2-DE and digital image analysis. About 15% of total detected proteins (74 out of 500) were up- or, mainly, down-regulated by arsenic, among which 14 were selected as being those most affected by the metalloid. These proteins were analyzed by MALDI-TOF MS and 7 of them were identified: translation initiation factor eIF-5A, ATP synthase, cysteine synthase, malate dehydrogenase, protein kinase C inhibitor, Tn10 transposase-like protein, and guanine nucleotide binding protein. Each of these proteins was completely repressed by As(V) and/or As(III), except protein kinase C inhibitor, which was newly detected after exposure to As(V).  相似文献   

11.
12.
13.
14.
5-Methyltryptophan-resistant mutants derived from Bacillus subtilis strain 168 synthesize all of the tryptophan biosynthetic enzymes constitutively and excrete tryptophan. These mutants can be divided into three classes: class 1, low enzyme level and low rate of tryptophan excretion; class 2, high enzyme level and intermediate rate of tryptophan excretion; and class 3, high enzyme level and high rate of tryptophan excretion. A bradytrophic requirement for phenylalanine is correlated with the rate of tryptophan excretion. The phenylalanine requirement is relieved when the rate of tryptophan excretion is reduced by either (i) lowering the level of the tryptophan enzymes, (ii) reducing the supply of a tryptophan precursor (chorismate), or (iii) stopping tryptophan synthesis by a mutational block in the pathway. All of the mutants map in a region of the chromosome previously reported as the mtr locus. Our data show that synthesis of the tryptophan enzymes is controlled through the mtr locus but not influenced by precursors of tryptophan.  相似文献   

15.
Ye RW  Tao W  Bedzyk L  Young T  Chen M  Li L 《Journal of bacteriology》2000,182(16):4458-4465
Bacillus subtilis can grow under anaerobic conditions, either with nitrate or nitrite as the electron acceptor or by fermentation. A DNA microarray containing 4,020 genes from this organism was constructed to explore anaerobic gene expression patterns on a genomic scale. When mRNA levels of aerobic and anaerobic cultures during exponential growth were compared, several hundred genes were observed to be induced or repressed under anaerobic conditions. These genes are involved in a variety of cell functions, including carbon metabolism, electron transport, iron uptake, antibiotic production, and stress response. Among the highly induced genes are not only those responsible for nitrate respiration and fermentation but also those of unknown function. Certain groups of genes were specifically regulated during anaerobic growth on nitrite, while others were primarily affected during fermentative growth, indicating a complex regulatory circuitry of anaerobic metabolism.  相似文献   

16.
Global gene expression profiling and cluster analysis in Xenopus laevis   总被引:4,自引:0,他引:4  
We have undertaken a large-scale microarray gene expression analysis using cDNAs corresponding to 21,000 Xenopus laevis ESTs. mRNAs from 37 samples, including embryos and adult organs, were profiled. Cluster analysis of embryos of different stages was carried out and revealed expected affinities between gastrulae and neurulae, as well as between advanced neurulae and tadpoles, while egg and feeding larvae were clearly separated. Cluster analysis of adult organs showed some unexpected tissue-relatedness, e.g. kidney is more related to endodermal than to mesodermal tissues and the brain is separated from other neuroectodermal derivatives. Cluster analysis of genes revealed major phases of co-ordinate gene expression between egg and adult stages. During the maternal-early embryonic phase, genes maintaining a rapidly dividing cell state are predominantly expressed (cell cycle regulators, chromatin proteins). Genes involved in protein biosynthesis are progressively induced from mid-embryogenesis onwards. The larval-adult phase is characterised by expression of genes involved in metabolism and terminal differentiation. Thirteen potential synexpression groups were identified, which encompass components of diverse molecular processes or supra-molecular structures, including chromatin, RNA processing and nucleolar function, cell cycle, respiratory chain/Krebs cycle, protein biosynthesis, endoplasmic reticulum, vesicle transport, synaptic vesicle, microtubule, intermediate filament, epithelial proteins and collagen. Data filtering identified genes with potential stage-, region- and organ-specific expression. The dataset was assembled in the iChip microarray database, , which allows user-defined queries. The study provides insights into the higher order of vertebrate gene expression, identifies synexpression groups and marker genes, and makes predictions for the biological role of numerous uncharacterized genes.  相似文献   

17.
In this paper we have defined proteome signatures of Bacillus subtilis in response to heat, salt, peroxide, and superoxide stress as well as after starvation for ammonium, tryptophan, glucose, and phosphate using the 2-D gel-based approach. In total, 79 stress-induced and 155 starvation-induced marker proteins were identified including 50% that are not expressed in the vegetative proteome. Fused proteome maps and a color coding approach have been used to define stress-specific regulons that are involved in specific adaptative functions (HrcA for heat, PerR and Fur for oxidative stress, RecA for peroxide, CymR and S-box for superoxide stress). In addition, starvation-specific regulons are defined that are involved in the uptake or utilization of alternative nutrient sources (TnrA, sigmaL/BkdR for ammonium; tryptophan-activated RNA-binding attenuation protein for tryptophan; CcpA, CcpN, sigmaL/AcoR for glucose; PhoPR for phosphate starvation). The general stress or starvation proteome signatures include the CtsR, Spx, sigmaL/RocR, sigmaB, sigmaH, CodY, sigmaF, and sigmaE regulons. Among these, the Spx-dependent oxidase NfrA was induced by all stress conditions indicating stress-induced protein damages. Finally, a subset of sigmaH-dependent proteins (sporulation response regulator, YvyD, YtxH, YisK, YuxI, YpiB) and the CodY-dependent aspartyl phosphatase RapA were defined as general starvation proteins that indicate the transition to stationary phase caused by starvation.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号