首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
At the onset of starvation Escherichia coli undergoes a temporally ordered program of starvation gene expression involving 40-80 genes which some four hours later yields cells possessing an enhanced general resistance. Two classes of genes are induced upon carbon starvation: the cst genes, requiring cyclic AMP, and the pex genes, not requiring this nucleotide for induction. The cst genes are not involved in the development of the resistant state and are concerned with escape from starvation, while the pex gene induction appears to be associated with resistance. Many of the latter are induced in response to a variety of starvation conditions. They include heat shock and oxidation resistance genes, and some utilize minor, stationary-phase-specific sigma factors for induction during starvation. The protective role of stress proteins may be due to their ability to rescue misfolded macromolecules. The starvation promoters can be potentially useful for selective expression of desired genes in metabolically sluggish populations, e.g. in high-density industrial fermentations and in situ bioremediation.  相似文献   

3.
The starvation stress response of Salmonella typhimurium encompasses the genetic and physiologic changes that occur when this bacterium is starved for an essential nutrient such as phosphate (P), carbon (C), or nitrogen (N). The responses to the limitation of each of these nutrients involve both unique and overlapping sets of proteins important for starvation survival and virulence. The role of the alternative sigma factor RpoS in the regulation of the starvation survival loci, stiA, stiB, and stiC, has been characterized. RpoS (sigma S) was found to be required for the P, C, and N starvation induction of stiA and stiC. In contrast, RpoS was found to be required for the negative regulation of stiB during P and C starvation-induced stationary phase but not during logarithmic phase. This role was independent of the relA gene (previously found to be needed for stiB induction). The role of RpoS alone and in combination with one or more sti mutations in the starvation survival of the organism was also investigated. The results clearly demonstrate that RpoS is an integral component of the complex interconnected regulatory systems involved in S. typhimurium's response to nutrient deprivation. However, differential responses of various sti genes indicate that additional signals and regulatory proteins are also involved.  相似文献   

4.
5.
6.
7.
In this paper we have defined proteome signatures of Bacillus subtilis in response to heat, salt, peroxide, and superoxide stress as well as after starvation for ammonium, tryptophan, glucose, and phosphate using the 2-D gel-based approach. In total, 79 stress-induced and 155 starvation-induced marker proteins were identified including 50% that are not expressed in the vegetative proteome. Fused proteome maps and a color coding approach have been used to define stress-specific regulons that are involved in specific adaptative functions (HrcA for heat, PerR and Fur for oxidative stress, RecA for peroxide, CymR and S-box for superoxide stress). In addition, starvation-specific regulons are defined that are involved in the uptake or utilization of alternative nutrient sources (TnrA, sigmaL/BkdR for ammonium; tryptophan-activated RNA-binding attenuation protein for tryptophan; CcpA, CcpN, sigmaL/AcoR for glucose; PhoPR for phosphate starvation). The general stress or starvation proteome signatures include the CtsR, Spx, sigmaL/RocR, sigmaB, sigmaH, CodY, sigmaF, and sigmaE regulons. Among these, the Spx-dependent oxidase NfrA was induced by all stress conditions indicating stress-induced protein damages. Finally, a subset of sigmaH-dependent proteins (sporulation response regulator, YvyD, YtxH, YisK, YuxI, YpiB) and the CodY-dependent aspartyl phosphatase RapA were defined as general starvation proteins that indicate the transition to stationary phase caused by starvation.  相似文献   

8.
9.
10.
While the stress-responsive alternative sigma factor sigma(B) has been identified in different species of Bacillus, Listeria, and Staphylococcus, the sigma(B) regulon has been extensively characterized only in B. subtilis. We combined biocomputing and microarray-based strategies to identify sigma(B)-dependent genes in the facultative intracellular pathogen Listeria monocytogenes. Hidden Markov model (HMM)-based searches identified 170 candidate sigma(B)-dependent promoter sequences in the strain EGD-e genome sequence. These data were used to develop a specialized, 208-gene microarray, which included 166 genes downstream of HMM-predicted sigma(B)-dependent promoters as well as selected virulence and stress response genes. RNA for the microarray experiments was isolated from both wild-type and Delta sigB null mutant L. monocytogenes cells grown to stationary phase or exposed to osmotic stress (0.5 M KCl). Microarray analyses identified a total of 55 genes with statistically significant sigma(B)-dependent expression under the conditions used in these experiments, with at least 1.5-fold-higher expression in the wild type over the sigB mutant under either stress condition (51 genes showed at least 2.0-fold-higher expression in the wild type). Of the 55 genes exhibiting sigma(B)-dependent expression, 54 were preceded by a sequence resembling the sigma(B) promoter consensus sequence. Rapid amplification of cDNA ends-PCR was used to confirm the sigma(B)-dependent nature of a subset of eight selected promoter regions. Notably, the sigma(B)-dependent L. monocytogenes genes identified through this HMM/microarray strategy included both stress response genes (e.g., gadB, ctc, and the glutathione reductase gene lmo1433) and virulence genes (e.g., inlA, inlB, and bsh). Our data demonstrate that, in addition to regulating expression of genes important for survival under environmental stress conditions, sigma(B) also contributes to regulation of virulence gene expression in L. monocytogenes. These findings strongly suggest that sigma(B) contributes to L. monocytogenes gene expression during infection.  相似文献   

11.
12.
13.
14.
Myxococcus xanthus is a gram-negative gliding bacterium that exhibits a complex life cycle. Exposure of M. xanthus to chemicals like dimethyl sulfoxide (DMSO) at nondeleterious concentrations or the depletion of nutrients caused several negative responses by the cells. DMSO (> 0.1 M) or nutrient depletion triggered a repellent response: cell swarming was inhibited and FrzCD (a methyl-accepting chemotaxis protein) was demethylated; higher concentrations of DMSO (> 0.3 M) or prolonged starvation induced an additional response which involved cellular morphogenesis: DMSO caused cells to convert from rod-shaped vegetative cells to spherical, environmentally resistant "DMSO spores," and starvation induced myxospore formation in the fruiting bodies. In order to investigate the nature of these responses, we isolated a number of mutants defective in negative chemotaxis and/or sporulation. Characterization of these mutants indicated that negative chemotaxis plays an important role in colony swarming and in developmental aggregation. In addition, the results revealed some of the major interrelationships between the signal transduction pathways which respond to negative stimuli: (i) DMSO exposure and starvation were initially sensed by different systems, the neg system for DMSO and the stv system for starvation; (ii) the repellent response signals triggered by DMSO or starvation were then relayed by the frz signal transduction system; mutants defective in these responses showed altered FrzCD methylation patterns; and (iii) the morphogenesis signals in response to DMSO or starvation utilize a group of genes involved in sporulation (spo).  相似文献   

15.
16.
A mutation in the cell division gene ftsK causes super-induction of sigma(70)-dependent stress defense genes, such as uspA, during entry of cells into stationary phase. In contrast, we report here that stationary phase induction of sigma(S)-dependent genes, uspB and cfa, is attenuated and that sigma(S) accumulates at a lower rate in ftsK1 cells. Ectopic overexpression of rpoS restored induction of the rpoS regulon in the ftsK mutant, as did a deletion in the recA gene. Thus, a mutation in the cell division gene, ftsK, uncouples the otherwise coordinated induction of sigma(S)-dependent genes and the universal stress response gene, uspA, during entry into stationary phase.  相似文献   

17.
The differentiating bacterium Streptomyces coelicolor harbours some 66 sigma factors, which support its complex life cycle. sigma(B), a functional homologue of sigma(S) from Escherichia coli, controls both osmoprotection and differentiation in S. coelicolor A3(2). Microarray analysis revealed sigma(B)-dependent induction of more than 280 genes by 0.2 M KCl. These genes encode several sigma factors, oxidative defence proteins, chaperones, systems to provide osmolytes, cysteine, mycothiol, and gas vesicle. sigma(B) controlled induction of itself and its two paralogues (sigma(L) and sigma(M)) in a hierarchical order of sigma(B)-->sigma(L)-->sigma(M), as revealed by S1 mapping and Western blot analyses. The phenotype of each sigma mutant suggested a sequential action in morphological differentiation; sigma(B) in forming aerial mycelium, sigma(L) in forming spores and sigma(M) for efficient sporulation. sigma(B) was also responsible for the increase in cysteine and mycothiol, the major thiol buffer in actinomycetes, upon osmotic shock, revealing an overlap between protections against osmotic and oxidative stresses. Proteins in sigB mutant were more oxidized (carbonylated) than the wild type. These results support a hypothesis that sigma(B) serves as a master regulator that triggers other related sigma factors in a cascade, and thus regulates differentiation and osmotic and oxidative response in S. coelicolor.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号