首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Since the first cloning of P2Y receptor sequences in 1993 it has become apparent that this family of G-protein-coupled receptors is omnipresent. At least 25 individual sequences entered in the GenBank sequence database encode P2Y receptors from a variety of species ranging from the little skate Raja erinacea to man. In man, six receptor subtypes have been cloned and found to be functionally active (P2Y(1), P2Y(2), P2Y(4), P2Y(6), P2Y(11), and P2Y(12)). In this article a review of the P2Y receptor subtypes is presented considering both their sequences and the pharmacological profiles of the encoded receptors expressed in heterologous expression systems.  相似文献   

2.
Extracellular nucleotides may be important regulators of bile ductular secretion, because cholangiocytes express P2Y ATP receptors and nucleotides are found in bile. However, the expression, distribution, and function of specific P2Y receptor subtypes in cholangiocytes are unknown. Thus our aim was to determine the subtypes, distribution, and role in secretion of P2Y receptors expressed by cholangiocytes. The molecular subtypes of P2Y receptors were determined by RT-PCR. Functional studies measuring cytosolic Ca2+ (Ca) signals and bile ductular pH were performed in isolated, microperfused intrahepatic bile duct units (IBDUs). PCR products corresponding to P2Y1, P2Y2, P2Y4, P2Y6, and P2X4 receptor subtypes were identified. Luminal perfusion of ATP into IBDUs induced increases in Ca that were inhibited by apyrase and suramin. Luminal ATP, ADP, 2-methylthioadenosine 5'-triphosphate, UTP, and UDP each increased Ca. Basolateral addition of adenosine 5'-O-(3-thiotriphosphate) (ATP-gamma-S), but not ATP, to the perifusing bath increased Ca. IBDU perfusion with ATP-gamma-S induced net bile ductular alkalization. Cholangiocytes express multiple P2Y receptor subtypes that are expressed at the apical plasma membrane domain. P2Y receptors are also expressed on the basolateral domain, but their activation is attenuated by nucleotide hydrolysis. Activation of ductular P2Y receptors induces net ductular alkalization, suggesting that nucleotide signaling may be an important regulator of bile secretion by the liver.  相似文献   

3.
4.
Nucleotides signal through purinergic receptors such as the P2 receptors, which are subdivided into the ionotropic P2X receptors and the metabotropic P2Y receptors. The diversity of functions within the purinergic receptor family is required for the tissue-specificity of nucleotide signalling. In the present study, hetero-oligomerization between two metabotropic P2Y receptor subtypes is established. These receptors, P2Y1 and P2Y11, were found to associate together when co-expressed in HEK293 cells. This association was detected by co-pull-down, immunoprecipitation and FRET (fluorescence resonance energy transfer) experiments. We found a striking functional consequence of the interaction between the P2Y11 receptor and the P2Y1 receptor where this interaction promotes agonist-induced internalization of the P2Y11 receptor. This is remarkable because the P2Y11 receptor by itself is not able to undergo endocytosis. Co-internalization of these receptors was also seen in 1321N1 astrocytoma cells co-expressing both P2Y11 and P2Y1 receptors, upon stimulation with ATP or the P2Y1 receptor-specific agonist 2-MeS-ADP. 1321N1 astrocytoma cells do not express endogenous P2Y receptors. Moreover, in HEK293 cells, the P2Y11 receptor was found to functionally associate with endogenous P2Y1 receptors. Treatment of HEK293 cells with siRNA (small interfering RNA) directed against the P2Y1 receptor diminished the agonist-induced endocytosis of the heterologously expressed GFP-P2Y11 receptor. Pharmacological characteristics of the P2Y11 receptor expressed in HEK293 cells were determined by recording Ca2+ responses after nucleotide stimulation. This analysis revealed a ligand specificity which was different from the agonist profile established in cells expressing the P2Y11 receptor as the only metabotropic nucleotide receptor. Thus the hetero-oligomerization of the P2Y1 and P2Y11 receptors allows novel functions of the P2Y11 receptor in response to extracellular nucleotides.  相似文献   

5.
克隆的P2受体亚型的药理学研究进展   总被引:3,自引:0,他引:3  
张一红  赵志奇 《生命科学》2001,13(4):170-173,166
细胞外嘌呤(腺苷,ADP,ATP)及嘧啶(UDP,UTP)为重要的信使分子,通过细胞表面P2受体介导产生不同的生物效应,P2嘌吟受体的概念于1978年被提出,随后根据药理学特征又被分为P2X及P2X嘌呤受体,90年代,采用分子生物学手段,一系列配体门控的P2X受体及G蛋白耦联的P2Y受体被克隆及功能表达,迄今为止,已有七型P2X受体亚型(P2X1-7)及六型P2Y受体亚型被克隆(P2Y1,2,4,6,11,12),各型具有不同的分子结构,药理学特征及组织分布,本文还讨论了目前可用于区分各亚型激动剂及拮抗剂。  相似文献   

6.
Under normal and pathological conditions, brain cells release nucleotides that regulate a wide range of cellular responses due to activation of P2 nucleotide receptors. In this study, the effect of extracellular nucleotides on IFN gamma-induced NO release in murine BV-2 microglial cells was investigated. BV-2 cells expressed mRNA for metabotropic P2Y and ionotropic P2X receptors. Among the P2 receptor agonists tested, ATP, ADP, 2',3'-O-(4-benzoylbenzoyl)-ATP (BzATP), and 2-methylthio-ATP (2-MeSATP), but not UTP, enhanced IFN gamma-induced iNOS expression and NO production, suggesting that the uridine nucleotide receptors P2Y2 and P2Y6 are not involved in this response. U0126, an antagonist for MEK1/2, a kinase that phosphorylates the extracellular signal-regulated kinases ERK1/2, decreased IFN gamma-induced NO production. BzATP, a potent P2X7 receptor agonist, was more effective than ATP, ADP, or 2-MeSATP at enhancing IFN gamma-induced ERK1/2 phosphorylation. Consistent with activation of the P2X7 receptor, periodate-oxidized ATP, a P2X7 receptor antagonist, and suramin, a non-specific P2 receptor antagonist, inhibited the effect of ATP or BzATP on IFN gamma-induced NO production, whereas pyridoxal-phosphate-6-azophenyl-2',4'-disulfonic acid (PPADS), an antagonist of several P2X receptor subtypes, was ineffective. These results suggest that activation of P2X7 receptors may contribute to inflammatory responses in microglial cells seen in neurodegenerative diseases.  相似文献   

7.
Molecular determinants of P2Y2 nucleotide receptor function   总被引:5,自引:0,他引:5  
In the mammalian nervous system, P2 nucleotide receptors mediate neurotransmission, release of proinflammatory cytokines, and reactive astrogliosis. Extracellular nucleotides activate multiple P2 receptors in neurons and glial cells, including G protein-coupled P2Y receptors and P2X receptors, which are ligand-gated ion channels. In glial cells, the P2Y2 receptor subtype, distinguished by its ability to be equipotently activated by ATP and UTP, is coupled to pro-inflammatory signaling pathways. In situ hybridization studies with rodent brain slices indicate that P2Y2 receptors are expressed primarily in the hippocampus and cerebellum. Astrocytes express several P2 receptor subtypes, including P2Y2 receptors whose activation stimulates cell proliferation and migration. P2Y2 receptors, via an RGD (Arg-Gly-Asp) motif in their first extracellular loop, bind to alphavbeta3/beta5 integrins, whereupon P2Y2 receptor activation stimulates integrin signaling pathways that regulate cytoskeletal reorganization and cell motility. The C-terminus of the P2Y2 receptor contains two Src-homology-3 (SH3)-binding domains that upon receptor activation, promote association with Src and transactivation of growth factor receptors. Together, our results indicate that P2Y2 receptors complex with both integrins and growth factor receptors to activate multiple signaling pathways. Thus, P2Y2 receptors present novel targets to control reactive astrogliosis in neurodegenerative diseases.  相似文献   

8.
There is increasing evidence that extracellular nucleotides act on bone cells via multiple P2 receptors. The naturally-occurring ligand ATP is a potent agonist at all receptor subtypes, whereas ADP and UTP only act at specific receptor subtypes. We have reported that the formation and resorptive activity of rodent osteoclasts are stimulated powerfully by both extracellular ATP and its first degradation product, ADP, the latter acting at nanomolar concentrations, probably via the P2Y1 receptor subtype. In the present study, we investigated the actions of ATP, ADP, adenosine, and UTP on osteoblastic function. In 16-21 day cultures of primary rat calvarial osteoblasts, ADP and the selective P2Y1 agonist 2-methylthioADP were without effect on bone nodule formation at concentrations between 1 and 125 microM, as was adenosine. However, UTP, a P2Y2 and P2Y4 receptor agonist, known to be without effect on osteoclast function, strongly inhibited bone nodule formation at concentrations >or= 1 microM. ATP was inhibitory at >or= 10 microM. Rat osteoblasts express P2Y2, but not P2Y4 receptor mRNA, as determined by in situ hybridization. Thus, the low-dose effects of extracellular nucleotides on bone formation and bone resorption appear to be mediated via different P2Y receptor subtypes: ADP, signalling through the P2Y1 receptor on both osteoclasts and osteoblasts, is a powerful stimulator of osteoclast formation and activity, whereas UTP, signalling via the P2Y2 receptor on osteoblasts, blocks bone formation by osteoblasts. ATP, the 'universal' agonist, can simultaneously stimulate resorption and inhibit bone formation. These findings suggest that extracellular nucleotides could function locally as important negative modulators of bone metabolism, perhaps contributing to bone loss in a number of pathological states.  相似文献   

9.
Interactions between different selective P2 receptor agonists have been used as tools to identify different P2 receptor subtypes. In the present study, we examined the P2 receptor subtypes and the mechanisms of potentiation of UTP contraction (P2Y contraction) by alpha,beta-methylene ATP [(2-carboxypiperazin-4-yl)propyl-1-phosphanoic acid (CPP), a P2X agonist] using isometric tension in the denuded rabbit basilar artery. We made the following observations: 1). a predominant P2X receptor contraction was observed in the rabbit ear artery by the rank order of CPP > 2-methylthioATP > ATP > UTP; 2). functional P2Y receptors were observed in the rabbit basilar artery by the rank order of UTP > ATP = CPP = 2-methylthioATP; 3). CPP potentiated UTP-, ATP-, and ATPgammaS-induced contractions, possibly by activation of P2Y4 receptors because ATPgammaS does not activate P2Y6 receptors; and 4). ectonucleotidase did not play a predominant role in the potentiative effect of CPP because Evans blue, Ca(2+)-free medium, or divalent cation Ni(2+) did not affect the effect of CPP. Evans blue potentiated the contraction by UTP but not by ATP or ATPgammaS. We conclude that CPP enhanced P2Y4-mediated contraction in the rabbit basilar artery, and the influence by ectonucleotidases on CPP-potentiation remains unclear.  相似文献   

10.
For many years, ATP and adenosine have been implicated in movement regulation of the gastrointestinal tract. They act through three major receptor subtypes: adenosine or P1 receptors, P2X receptors and P2Y receptors. Each of these major receptor types can be subdivided into several different classes and is widely distributed amongst various neurons, muscle types, glia and interstitial cells that regulate intestinal functions. Several key roles for the different receptors and their endogenous ligands have been identified in physiological and pharmacological studies. For example, adenosine acting at A(1) receptors appears to inhibit intestinal motility in various pathological conditions. Similarly, ATP acting at P2Y receptors is an important component of inhibitory neuromuscular transmission, acting as a cotransmitter with nitric oxide. ATP acting at P2X and P2Y(1) receptors is important for synaptic transmission in simple descending excitatory and inhibitory reflex pathways. Some P2Y receptor subtypes prefer uridine nucleotides over purine nucleotides. Thus, roles for UTP and UDP as enteric transmitters in place of ATP cannot be excluded. ATP also appears to be important for sensory transduction, especially in chemosensitive pathways that initiate local inhibitory reflexes. Despite this evidence, data are lacking about the roles of either adenosine or ATP in more complex motility patterns such as segmentation or the interdigestive migrating motor complex. Clarification of roles for purinergic transmission in these common, but understudied, motility patterns will depend on the use of subtype-specific antagonists that in some cases have not yet been developed.  相似文献   

11.
12.
13.
Presynaptic nerve terminals are equipped with a number of presynaptic auto- and heteroreceptors, including ionotropic P2X and metabotropic P2Y receptors. P2 receptors serve as modulation sites of transmitter release by ATP and other nucleotides released by neuronal activity and pathological signals. A wide variety of P2X and P2Y receptors expressed at pre- and postsynaptic sites as well as in glial cells are involved directly or indirectly in the modulation of neurotransmitter release. Nucleotides are released from synaptic and nonsynaptic sites throughout the nervous system and might reach concentrations high enough to activate these receptors. By providing a fine-tuning mechanism these receptors also offer attractive sites for pharmacotherapy in nervous system diseases. Here we review the rapidly emerging data on the modulation of transmitter release by facilitatory and inhibitory P2 receptors and the receptor subtypes involved in these interactions.  相似文献   

14.
The nucleotide receptors P2Y2 and P2Y4 are the most closely related G protein-coupled receptors (GPCRs) of the P2Y receptor (P2YR) family. Both subtypes couple to Gq proteins and are activated by the pyrimidine nucleotide UTP, but only P2Y2R is also activated by the purine nucleotide ATP. Agonists and antagonists of both receptor subtypes have potential as drugs e.g. for neurodegenerative and inflammatory diseases. So far, potent and selective, “drug-like” ligands for both receptors are scarce, but would be required for target validation and as lead structures for drug development. Structural information on the receptors is lacking since no X-ray structures or cryo-electron microscopy images are available. Thus, we performed receptor homology modeling and docking studies combined with mutagenesis experiments on both receptors to address the question how ligand binding selectivity for these closely related P2YR subtypes can be achieved. The orthosteric binding site of P2Y2R appeared to be more spacious than that of P2Y4R. Mutation of Y197 to alanine in P2Y4R resulted in a gain of ATP sensitivity. Anthraquinone-derived antagonists are likely to bind to the orthosteric or an allosteric site depending on their substitution pattern and the nature of the orthosteric binding site of the respective P2YR subtype. These insights into the architecture of P2Y2- and P2Y4Rs and their interactions with structurally diverse agonists and antagonist provide a solid basis for the future design of potent and selective ligands.  相似文献   

15.
Adenosine triphosphate (ATP) is now established as a principle vaso-active mediator in the vasculature. Its actions on arteries are complex, and are mediated by the P2X and P2Y receptor families. It is generally accepted that ATP induces a bi-phasic response in arteries, inducing contraction via the P2X and P2Y receptors on the smooth muscle cells, and vasodilation via the actions of P2Y receptors located on the endothelium. However, a number of recent studies have placed P2X1 receptors on the endothelium of some arteries. The use of a specific P2X1 receptor ligand, alpha, beta methylene ATP has demonstrated that P2X1 receptors also have a bi-functional role. The actions of ATP on P2X1 receptors is therefore dependant on its location, inducing contraction when located on the smooth muscle cells, and dilation when expressed on the endothelium, comparable to that of P2Y receptors.  相似文献   

16.
P2Y receptors and pain transmission   总被引:7,自引:0,他引:7  
It is widely accepted that the most important ATP receptors involved in pain transmission belong to the P2X3 and P2X2/3 subtypes, selectively expressed in small diameter dorsal root ganglion (DRG) neurons. However, several types of the metabotropic ATP (P2Y) receptors have also been found in primary afferent neurons; P2Y1 and P2Y2 receptors are typically expressed in small, nociceptive cells. Here we review the results available on the involvement of P2Y receptors in the modulation of pain transmission.  相似文献   

17.
HL-60 cells are human promyelocytic cells expressing two ATP receptors: the P2Y(2) and P2Y(11) subtypes. Our Northern blotting experiments have shown that P2Y(2) and P2Y(11) messengers were up-regulated in these cells, rapidly and independently of protein synthesis, following treatment with granulocytic differentiating agents such as retinoic acid, dimethylsulfoxide, granulocyte-colony stimulating factor, dibutyryl cyclic AMP and ATP. AR-C67085 and adenosine 5'-O-(3-thiotriphosphate), two potent agonists of the recombinant P2Y(11) receptor, increased intracellular cAMP concentration in HL-60 cells more potently than ATP itself. These observations support the conclusion that the effect of ATP on HL-60 cell differentiation is mediated by the P2Y(11) receptor.  相似文献   

18.
19.
Extracellular ATP and ADP have been shown to exhibit potent angiogenic effects on pulmonary artery adventitial vasa vasorum endothelial cells (VVEC). However, the molecular signaling mechanisms of extracellular nucleotide-mediated angiogenesis remain not fully elucidated. Since elevation of intracellular Ca(2+) concentration ([Ca(2+)](i)) is required for cell proliferation and occurs in response to extracellular nucleotides, this study was undertaken to delineate the purinergic receptor subtypes involved in Ca(2+) signaling and extracellular nucleotide-mediated mitogenic responses in VVEC. Our data indicate that stimulation of VVEC with extracellular ATP resulted in the elevation of [Ca(2+)](i) via Ca(2+) influx through plasma membrane channels as well as Ca(2+) mobilization from intracellular stores. Moreover, extracellular ATP induced simultaneous Ca(2+) responses in both cytosolic and nuclear compartments. An increase in [Ca(2+)](i) was observed in response to a wide range of purinergic receptor agonists, including ATP, ADP, ATPγS, ADPβS, UTP, UDP, 2-methylthio-ATP (MeSATP), 2-methylthio-ADP (MeSADP), and BzATP, but not adenosine, AMP, diadenosine tetraphosphate, αβMeATP, and βγMeATP. Using RT-PCR, we identified mRNA for the P2Y1, P2Y2, P2Y4, P2Y13, P2Y14, P2X2, P2X5, P2X7, A1, A2b, and A3 purinergic receptors in VVEC. Preincubation of VVEC with the P2Y1 selective antagonist MRS2179 and the P2Y13 selective antagonist MRS2211, as well as with pertussis toxin, attenuated at varying degrees agonist-induced intracellular Ca(2+) responses and activation of ERK1/2, Akt, and S6 ribosomal protein, indicating that P2Y1 and P2Y13 receptors play a major role in VVEC growth responses. Considering the broad physiological implications of purinergic signaling in the regulation of angiogenesis and vascular homeostasis, our findings suggest that P2Y1 and P2Y13 receptors may represent novel and specific targets for treatment of pathological vascular remodeling involving vasa vasorum expansion.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号