首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Many viruses gain access to the cell via the endosomal route and require low endosomal pH for infectivity. The GTPase dynamin is essential for clathrin-dependent endocytosis, and in HeLa cells overexpressing the nonfunctional dynaminK44A mutant the formation of clathrin-coated vesicles is halted. HRV2, a human minor group rhinovirus, is internalized by members of the low-density lipoprotein receptor family in a clathrin-independent manner. The low endosomal pH then leads to conversion of the capsid to C-antigen, which is required for release (uncoating) and transfer of the viral RNA into the cytosol and de novo synthesis of infectious virus. We here demonstrate that overexpression of dynaminK44A reduces this antigenic conversion and results in diminished viral synthesis. In contrast, lysosomal degradation is unaffected. The kinetics of the formation of C-antigen in vitro and in vivo suggest that the pH in endosomes is elevated by about 0.4 units upon overexpression of dynaminK44A. As a consequence, HRV2 uncoating is diminished early after internalization but attains control levels upon prolonged internalization. Thus, overexpression of dynaminK44A, in addition to trafficking defects, results in an elevated endosomal pH and thereby affects virus infection and most likely endosomal sorting and processing.  相似文献   

2.
Bafilomycin A1 (baf), a specific inhibitor of vacuolar proton ATPases, is commonly employed to demonstrate the requirement of low endosomal pH for viral uncoating. However, in certain cell types baf also affects the transport of endocytosed material from early to late endocytic compartments. To characterize the endocytic route in HeLa cells that are frequently used to study early events in viral infection, we used 35S-labeled human rhinovirus serotype 2 (HRV2) together with various fluid-phase markers. These virions are taken up via receptor-mediated endocytosis and undergo a conformational change to C-antigenic particles at a pH of <5.6, resulting in release of the genomic RNA and ultimately in infection (E. Prchla, E. Kuechler, D. Blaas, and R. Fuchs, J. Virol. 68:3713–3723, 1994). As revealed by fluorescence microscopy and subcellular fractionation of microsomes by free-flow electrophoresis (FFE), baf arrests the transport of all markers in early endosomes. In contrast, the microtubule-disrupting agent nocodazole was found to inhibit transport by accumulating marker in endosomal carrier vesicles (ECV), a compartment intermediate between early and late endosomes. Accordingly, lysosomal degradation of HRV2 was suppressed, whereas its conformational change and infectivity remained unaffected by this drug. Analysis of the subcellular distribution of HRV2 and fluid-phase markers in the presence of nocodazole by FFE revealed no difference from the control incubation in the absence of nocodazole. ECV and late endosomes thus have identical electrophoretic mobilities, and intraluminal pHs of <5.6 and allow uncoating of HRV2. As bafilomycin not only dissipates the low endosomal pH but also blocks transport from early to late endosomes in HeLa cells, its inhibitory effect on viral infection could in part also be attributed to trapping of virus in early endosomes which might lack components essential for uncoating. Consequently, inhibition of viral uncoating by bafilomycin cannot be taken to indicate a low pH requirement only.  相似文献   

3.
Human rhinovirus 2 (HRV2) is internalized by members of the low-density lipoprotein receptor family into early endosomes (pH 6.2-6.0) where it dissociates from its receptors. After transfer into late endosomes, the virus undergoes a conformational change and RNA uncoating solely induced by pH < 5.6. Finally, virus capsids are degraded in lysosomes. To investigate the role of phosphatidylinositol 3-kinases (PI3K) in the HRV2 entry route, we used the inhibitor wortmannin. Although virus internalization was not altered by wortmannin, virus accumulated in enlarged early endosomes. Furthermore, the drug delayed HRV2 degradation and viral protein synthesis. Consequently, wortmannin-sensitive PI3K are involved in HRV2 transport from early to late compartments. However, wortmannin had no effect on the titer of infectious virus produced. Our data therefore suggest that virus retained in early endosomes for prolonged time periods can undergo the conformational change that otherwise occurs at pH < or = 5.6 in late endosomes.  相似文献   

4.
HeLa cells were stably transfected with a cDNA clone encoding the B1 isoform of the mouse FcgammaRII receptor (hereafter referred to as HeLa-FcRII cells). The receptor was expressed at high level at the plasma membrane in about 90% of the cells. These cells bound and internalized mouse monoclonal virus-neutralizing antibodies 8F5 and 3B10 of the subtype immunoglobulin G2a (IgG2a) and IgG1, respectively. Binding of the minor-group human rhinovirus type 2 (HRV2) to its natural receptors, members of the low-density lipoprotein receptor family, is dependent on the presence of Ca(2+) ions. Thus, chelating Ca(2+) ions with EDTA prevented HRV2 binding, entry, and infection. However, upon complex formation of (35)S-labeled HRV2 with 8F5 or 3B10, virus was bound, internalized, and degraded in HeLa-FcRII cells. Furthermore, challenge of these cells with HRV2-8F5 or HRV2-3B10 complexes resulted in de novo synthesis of viral proteins, as shown by indirect immunofluorescence microscopy. These data demonstrate that minor-group receptors can be replaced by surrogate receptors to mediate HRV2 cell entry, delivery into endosomal compartments, and productive uncoating. Consequently, the conformational change and uncoating of HRV2 appears to be solely triggered by the low-pH (pH 相似文献   

5.
Intercellular adhesion molecule 1 and the low-density lipoprotein receptor are used for cell entry by major and minor receptor group human rhinoviruses (HRVs), respectively. Whereas minor-group viruses, exemplified by HRV2, transfer their genomic RNA to the cytoplasm through a pore in the endosomal membrane (E. Prchla, C. Plank, E. Wagner, D. Blaas, and R. Fuchs, J. Cell Biol. 131:111–123, 1995), the mechanism of in vivo uncoating of major-group HRVs has not been elucidated so far. Using free-flow electrophoresis, we performed a comparative analysis of cell entry by HRV2 and the major group rhinovirus HRV14. Here we demonstrate that this technique allows the separation of free viral particles from those associated with early endosomes, late endosomes, and plasma membranes. Upon free-flow electrophoretic separation of microsomes, HRV14 was recovered from endosomes under conditions which prevent uncoating, whereas the proportion of free viral particles increased with time under conditions which promote uncoating. The remaining virus eluted within numerous fractions corresponding to membraneous material, with no clear endosomal peaks being discernible. This suggests that uncoating of HRV14 results in lysis of the endosomal membrane and release of subviral 135S and 80S particles into the cytoplasm.  相似文献   

6.
Minor group human rhinoviruses (exemplified by human rhinovirus serotype 2 (HRV2)) use members of the low density lipoprotein receptor family for cell entry; all these receptors possess clathrin-coated pit localization signals. Viral infection should thus be inhibited under conditions of impaired clathrin-mediated endocytosis. However, Madshus et al. reported an increase in the cytopathic effect of HRV2 infection in HEp-2 cells upon suppression of clathrin-dependent endocytosis by hypotonic shock and potassium depletion (Madshus, I. H., Sandvig, K., Olsnes, S., and van Deurs, B. (1987) J. Cell. Physiol. 131, 14-22.) To resolve this apparent contradiction, we investigated the binding, internalization, conformational changes, and productive uncoating of HRV2 in HeLa cells subjected to hypotonic shock and potassium depletion. This treatment led to an increase in HRV2 binding, with internalization being barely affected. The generation of C-antigenic particles requiring pH 相似文献   

7.
Viral receptors serve both to target viruses to specific cell types and to actively promote the entry of bound virus into cells. Human rhinoviruses (HRVs) can form complexes in vitro with a truncated soluble form of the HRV cell surface receptor, ICAM-1. These complexes appear to be stoichiometric, with approximately 60 ICAM molecules bound per virion or 1 ICAM-1 molecule per icosahedral face of the capsid. The complex can have two fates, either dissociating to yield free virus and free ICAM-1 or uncoating to break down to an 80S empty capsid which has released VP4, viral RNA, and ICAM-1. This uncoating in vitro mimics the uncoating of virus during infection of cells. The stability of the virus-receptor complex is dependent on temperature and the rhinovirus serotype. HRV serotype 14 (HRV14)-ICAM-1 complexes rapidly uncoat, HRV16 forms a stable virus-ICAM complex which does not uncoat detectably at 34 degrees C, and HRV3 has an intermediate phenotype. Rhinovirus can also uncoat after exposure to mildly acidic pH. The sensitivities of individual rhinovirus serotypes to ICAM-1-mediated virus uncoating do not correlate with uncoating promoted by incubation at low pH, suggesting that these two means of virus destabilization occur by different mechanisms. Soluble ICAM-1 and low pH do not act synergistically to promote uncoating. The rate of uncoating does appear to be inversely related to virus affinity for its receptor.  相似文献   

8.
The effect of virus uncoating on endosome integrity during the early steps in viral infection was investigated. Using fluid-phase uptake of 10- and 70-kDa dextrans labeled with a pH-dependent fluorophore (fluorescein isothiocyanate [FITC]) and a pH-independent fluorophore (cyanine 5 [Cy5]), we determined the pHs of labeled compartments in intact HeLa cells by fluorescence-activated cell sorting analysis. Subsequently, the number and pH of fluorescent endosomes in cell homogenates were determined by single-organelle flow analysis. Cointernalization of adenovirus and 70-kDa FITC- and Cy5-labeled dextran (FITC/Cy5-dextran) led to virus-induced endosomal rupture, resulting in the release of the marker from the low-pH environment into the neutral cytosol. Consequently, in the presence of adenovirus, the number of fluorescent endosomes was reduced by 40% compared to that in the control. When human rhinovirus serotype 2 (HRV2) was cointernalized with 10-and 70-kDa FITC/Cy5-dextrans, the 10-kDa dextran was released, whereas the 70-kDa dextran remained within the endosomes, which also maintained their low pH. These data demonstrate that pores are generated in the membrane during HRV2 uncoating and RNA penetration into the cytosol without gross damage of the endosomes; 10-kDa dextran can access the cytosol through these pores. Whereas rhinovirus-mediated pore formation was prevented by the vacuolar ATPase inhibitor bafilomycin A1, adenovirus-mediated endosomal rupture also occurred in the presence of the inhibitor. This finding is in keeping with the low-pH requirement of HRV2 infection; for adenovirus, no pH dependence for endosomal escape was found with this drug.  相似文献   

9.
Uncoating of human rhinovirus serotype 2 from late endosomes.   总被引:14,自引:11,他引:3       下载免费PDF全文
E Prchla  E Kuechler  D Blaas    R Fuchs 《Journal of virology》1994,68(6):3713-3723
The internalization pathway and mechanism of uncoating of human rhinovirus serotype 2 (HRV2), a minor-group human rhinovirus, were investigated. Kinetic analysis revealed a late endosomal compartment as the site of capsid modification from D to C antigenicity. The conformational change as well as the infection was prevented by the specific V-ATPase inhibitor bafilomycin A1. A requirement for ATP was also demonstrated with purified endosomes in vitro. Capsid modifications occurred at a pH of 5.5 regardless of whether the virus was entrapped in isolated endosomes or free in solution. These findings suggest that the receptor is not directly involved in the structural modification of HRV2. Viral particles found in purified endosomes of infected cells were mostly devoid of RNA. This supports the hypothesis that uncoating of HRV2 occurs in intact endosomes rather than by a mechanism involving endosomal disruption with subsequent release of the RNA into the cytoplasm.  相似文献   

10.
Endosomal penetration by nonenveloped viruses might be accomplished by either local breakdown of the endosomal membrane (e.g., adenovirus) or formation of a membrane-spanning pore by capsid proteins. Uncoating of the nonenveloped virus human rhinovirus serotype 2 (HRV2) has been shown to occur from late endosomes and to be entirely dependent on the acidic pH in this compartment (Prchla, E., E. Kuechler, D. Blaas, and R. Fuchs. 1994. J. Virol. 68: 3713-3723). To investigate further the mechanism of uncoating of HRV2, an in vitro assay was established to test viruses or virus-derived peptides for their capacity to release cointernalized biotin-dextran of different molecular mass (10 and 70 kD) from isolated endosomes. The suitability of the assay was demonstrated by use of a fusogenic peptide derived from influenza virus hemagglutinin (GALA-INF3). Whereas adenovirus induced a low pH- dependent release of up to 46% of the internalized biotin-dextran and did not show any significant size selectivity (as expected for endosome disruption), HRV2 mediated release of 27% of the 10 kD dextran and only traces of the 70-kD dextran. Similarly, GALA-INF3-induced release of biotin-dextran was also size dependent. The potential role of the capsid protein VP1 in HRV2 uncoating in vivo was also substantiated in our in vitro system using an amphipathic, NH2-terminal peptide of VP1. Taken together, these data favor the model of a specific pore-forming mechanism for HRV2 uncoating which is in contrast to the membrane- disrupting mechanism of adenovirus.  相似文献   

11.
Receptor priming of low-pH-triggered virus entry has been described for an enveloped virus (15). Here we show with major group human rhinoviruses (HRV) and its intercellular adhesion molecule-1 receptor that nonenveloped viruses follow this novel cell entry principle. In vitro the receptor primed HRV for efficient uncoating at mild low pH (5.5 to 6.0). Agents preventing endosomal acidification reduced or blocked rhinovirus cell infection, while nocodazole had no effect on infection of any serotype tested. The entry inhibitory effect of lysosomotropic agents was overcome by exposing cell-internalized HRV to mild low pH (5.5 to 6.0). We therefore conclude that receptor priming of major group HRV must occur in vivo as well. Cooperation of a cellular receptor and low pH in virus uncoating will polarize the exit of the genome to the receptor-bound, membrane-proximal region of the virus particle during acidification of endosomes. This process must be required for efficient penetration of the cellular membrane by viruses.  相似文献   

12.
Intercellular adhesion molecule 1 (ICAM-1) functions as the cellular receptor for the major group of human rhinoviruses, being not only the target of viral attachment but also the mediator of viral uncoating. The configurations of HRV3-ICAM-1 complexes prepared both at 4 degrees C and physiological temperature (37 degrees C) were analyzed by cryoelectron microscopy and image reconstruction. The particle diameters of two complexes (with and without RNA) representing uncoating intermediates generated at 37 degrees C were each 4% larger than that of those prepared at 4 degrees C. The larger virus particle arose by an expansive movement of the capsid pentamers along the fivefold axis, which loosens interprotomer contacts, particularly at the canyon region where the ICAM-1 receptor bound. Particle expansion required receptor binding and preceded the egress of the viral RNA. These observations suggest that receptor-mediated uncoating could be a consequence of restrained capsid motion, where the bound receptors maintain the viral capsid in an expanded open state for subsequent genome release.  相似文献   

13.
Plasma membranes isolated from HeLa cells on discontinuous sucrose gradients were assayed for their capacity to elute and uncoat coxsackievirus B3 at 37 C. Because the viral receptors are limited to the surface of HeLa cells, the addition of radioactively labeled virus to the cells prior to cell homogenization provided a useful marker for locating the plasma membranes during the fractionation procedure. Four bands were formed on the discontinuous sucrose gradients with approximately 70% or more of the membrane-associated viral label being recovered in the most dense bands, designated as bands 3 and 4. Bands 3 and 4 also possessed the plasma membrane marker enzymes, Na+, K+ adenosine triphosphatase and 5'-nucleotidase and revealed typical structures characteristic of plasma membranes as revealed by electron microscopy. Pelleted and washed membranes from band 3 both eluted and uncoated B3 32P-labeled virus, whereas membranes from band 4 eluted virus but failed to uncoat it. The membranes from band 4 were shown to inhibit the viral uncoating activity when mixed with membranes of band 3. Characteristically, unfractionated homogenates of cell membranes eluted but did not uncoat virus. The finding of a naturally occurring inhibitor of virus uncoating provides for the first time a way to distinguish between the membrane activities of virus elution and virus uncoating. The inhibitor remains to be characterized.  相似文献   

14.
Viral particle binding to plasma membrane receptors elicits virus motions, recruits signaling proteins, and triggers membrane bending and fission, finally resulting in endocytic virus uptake. Here we analyze how human adenovirus engages its receptor coxsackievirus adenovirus receptor (CAR) and coreceptor αv integrin to move on the plasma membrane. Virus binding to CAR through fiber knobs gave rise to diffusive motions and actomyosin-2-dependent drifts, while integrin-targeted viruses were spatially more confined. Diffusions, drifts, and confined motions were specifically observed with viral particles that were subsequently internalized. CAR-mediated drifts together with integrin binding supported fiber shedding from adenovirus particles, leading to?exposure of the membrane-lytic internal virion protein VI and enhanced viral escape from endosomes. Our results show that adenovirus uncoating is initiated at the plasma membrane by CAR drifting motion and binding to immobile integrins.  相似文献   

15.
Upon endocytosis in its cellular host, influenza A virus transits via early to late endosomes. To efficiently release its genome, the composite viral shell must undergo significant structural rearrangement, but the exact sequence of events leading to viral uncoating remains largely speculative. In addition, no change in viral structure has ever been identified at the level of early endosomes, raising a question about their role. We performed AFM indentation on single viruses in conjunction with cellular assays under conditions that mimicked gradual acidification from early to late endosomes. We found that the release of the influenza genome requires sequential exposure to the pH of both early and late endosomes, with each step corresponding to changes in the virus mechanical response. Step 1 (pH 7.5–6) involves a modification of both hemagglutinin and the viral lumen and is reversible, whereas Step 2 (pH <6.0) involves M1 dissociation and major hemagglutinin conformational changes and is irreversible. Bypassing the early-endosomal pH step or blocking the envelope proton channel M2 precludes proper genome release and efficient infection, illustrating the importance of viral lumen acidification during the early endosomal residence for influenza virus infection.  相似文献   

16.
Upon endocytosis in its cellular host, influenza A virus transits via early to late endosomes. To efficiently release its genome, the composite viral shell must undergo significant structural rearrangement, but the exact sequence of events leading to viral uncoating remains largely speculative. In addition, no change in viral structure has ever been identified at the level of early endosomes, raising a question about their role. We performed AFM indentation on single viruses in conjunction with cellular assays under conditions that mimicked gradual acidification from early to late endosomes. We found that the release of the influenza genome requires sequential exposure to the pH of both early and late endosomes, with each step corresponding to changes in the virus mechanical response. Step 1 (pH 7.5–6) involves a modification of both hemagglutinin and the viral lumen and is reversible, whereas Step 2 (pH <6.0) involves M1 dissociation and major hemagglutinin conformational changes and is irreversible. Bypassing the early-endosomal pH step or blocking the envelope proton channel M2 precludes proper genome release and efficient infection, illustrating the importance of viral lumen acidification during the early endosomal residence for influenza virus infection.  相似文献   

17.
Major receptor group common cold virus HRV89 was adapted to grow in HEp-2 cells, which are permissive for minor group human rhinoviruses (HRVs) but which only marginally support growth of major-group viruses. After 32 blind passages in these cells, each alternating with boosts of the recovered virus in HeLa cells, HRV89 acquired the capacity to effectively replicate in HEp-2 cells, attaining virus titers comparable to those in HeLa cells although no cytopathic effect was observed. Several clones were isolated and shown to replicate in HeLa cells whose ICAM-1 was blocked with monoclonal antibody R6.5 and in COS-7 cells, which are devoid of ICAM-1. Blocking experiments with recombinant very-low-density lipoprotein receptor fragments and enzyme-linked immunosorbent assays indicated that the mutants bound a receptor different from that used by minor-group viruses. Determination of the genomic RNA sequence encoding the capsid protein region revealed no changes in amino acid residues at positions equivalent to those involved in the interaction of HRV14 or HRV16 with ICAM-1. One mutation was within the footprint of a very-low-density lipoprotein receptor fragment bound to minor-group virus HRV2. Since ICAM-1 not only functions as a vehicle for cell entry but has also a "catalytic" function in uncoating, the use of other receptors must have important consequences for the entry pathway and demonstrates the plasticity of these viruses.  相似文献   

18.
Hewat EA  Blaas D 《Journal of virology》2004,78(6):2935-2942
Release of the human rhinovirus (HRV) genome into the cytoplasm of the cell involves a concerted structural modification of the viral capsid. The intracellular adhesion molecule 1 (ICAM-1) cellular receptor of the major-group HRVs and the low-density lipoprotein (LDL) receptor of the minor-group HRVs have different nonoverlapping binding sites. While ICAM-1 binding catalyzes uncoating, LDL receptor binding does not. Uncoating of minor-group HRVs is initiated by the low pH of late endosomes. We have studied the conformational changes concomitant with uncoating in the major-group HRV14 and compared them with previous results for the minor-group HRV2. The structure of empty HRV14 was determined by cryoelectron microscopy, and the atomic structure of native HRV14 was used to examine the conformational changes of the capsid and its constituent viral proteins. For both HRV2 and HRV14, the transformation from full to empty capsid involves an overall 4% expansion and an iris type of movement of viral protein VP1 to open up a 10-A-diameter channel on the fivefold axis to allow exit of the RNA genome. The beta-cylinders formed by the N termini of the VP3 molecules inside the capsid on the fivefold axis all open up in HRV2, but we propose that only one opens up in HRV14. The release of VP4 is less efficient in HRV14 than in HRV2, and the N termini of VP1 may exit at different points. The N-terminal loop of VP2 is modified in both viruses, probably to detach the RNA, but it bends only inwards in HRV2.  相似文献   

19.
Penetration of Semliki Forest virus from acidic prelysosomal vacuoles   总被引:37,自引:0,他引:37  
M Marsh  E Bolzau  A Helenius 《Cell》1983,32(3):931-940
To identify and characterize the intracellular site from which the penetration of Semliki Forest virus (SFV) to the cytosolic compartment of the host cell occurs, we determined the time course and temperature dependence of nucleocapsid uncoating and infection in BHK-21 cells. At 37 degrees C the genome release to the cytosol was detected within 5-7 min after virus endocytosis, whereas delivery of the virus particles to secondary lysosomes occurred within 15-20 min. At temperatures of 15 degrees -20 degrees C virus particles were internalized by endocytosis, but they were not delivered to the secondary lysosomes. Nevertheless, at 20 degrees C nucleocapsid uncoating and infection occurred, indicating that secondary lysosomes are not required for SFV penetration. We conclude that the penetration reaction occurs in prelysosomal endocytic vacuoles (endosomes). As SFV penetration by membrane fusion requires a pH less than 6 and the presence of cholesterol in the target membrane, the data indicate that endosomes are acidic and contain cholesterol.  相似文献   

20.
Uncoating of influenza virus in endosomes   总被引:7,自引:12,他引:7       下载免费PDF全文
The intracellular uncoating site of influenza virus was studied by measuring the fluorescence intensity of probes conjugated to the virus or the isolated hemagglutinin and also by assaying virus replication under various incubation conditions. Acidification of the viral environment was monitored by the decrease in the fluorescence intensity of fluorescein isothiocyanate, and transport of the virus particles into secondary lysosomes was assayed by the increase in the fluorescence intensity of fluorescein isothiocyanate diphosphate. The intracellular pH was estimated by the ratio of fluorescence intensities excited at two different wavelengths. It was found that the viral environment became acidified to a pH value of 5.1 to 5.2 within 10 min at 37 degrees C or 1 h at 20 degrees C after endocytosis. Addition of ammonium chloride to the medium rapidly raised the pH to 6.7. Transport of the virus particles into the secondary lysosomes was slower and negligibly low during those incubation periods. Virus replication occurred when the cells were incubated for 10 min at 37 degrees C or for 1 h at 20 degrees C, followed by incubation in the presence of ammonium chloride for a total of 12 h. These results indicate the uncoating of influenza virus in endosomes before reaching the secondary lysosomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号