首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Stellacyanins are blue (type I) copper glycoproteins that differ from other members of the cupredoxin family in their spectroscopic and electron transfer properties. Until now, stellacyanins have eluded structure determination. Here we report the three-dimensional crystal structure of the 109 amino acid, non-glycosylated copper binding domain of recombinant cucumber stellacyanin refined to 1.6 A resolution. The crystallographic R-value for all 18,488 reflections (sigma > 0) between 50-1.6 A is 0.195. The overall fold is organized in two beta-sheets, both with four beta-stands. Two alpha-helices are found in loop regions between beta-strands. The beta-sheets form a beta-sandwich similar to those found in other cupredoxins, but some features differ from proteins such as plastocyanin and azurin in that the beta-barrel is more flattened, there is an extra N-terminal alpha-helix, and the copper binding site is much more solvent accessible. The presence of a disulfide bond at the copper binding end of the protein confirms that cucumber stellacyanin has a phytocyanin-like fold. The ligands to copper are two histidines, one cysteine, and one glutamine, the latter replacing the methionine typically found in mononuclear blue copper proteins. The Cu-Gln bond is one of the shortest axial ligand bond distances observed to date in structurally characterized type I copper proteins. The characteristic spectroscopic properties and electron transfer reactivity of stellacyanin, which differ significantly from those of other well-characterized cupredoxins, can be explained by its more exposed copper site, its distinctive amino acid ligand composition, and its nearly tetrahedral ligand geometry. Surface features on the cucumber stellacyanin molecule that could be involved in interactions with putative redox partners are discussed.  相似文献   

2.
The cDNAs encoding plantacyanin from spinach were isolated and characterized. In addition, four new cDNA sequences from Arabidopsis ESTs were identified that encode polypeptides resembling phytocyanins, plant-specific proteins constituting a distinct family of mononuclear blue copper proteins. One of them encodes plantacyanin from Arabidopsis, while three others, designated as uclacyanin 1, 2, and 3, encode protein precursors that are closely related to precursors of stellacyanins and a blue copper protein from pea pods. Comparative analyses with known phytocyanins allow further classification of these proteins into three distinct subfamilies designated as uclacyanins, stellacyanins, and plantacyanins. This specification is based on (1) their spectroscopic properties, (2) their glycosylation state, (3) the domain organization of their precursors, and (4) their copper-binding amino acids. The recombinant copper binding domain of Arabidopsis uclacyanin 1 was expressed, purified, and shown to bind a copper atom in a fashion known as "blue" or type 1. The mutant of cucumber stellacyanin in which the glutamine axial ligand was substituted by a methionine (Q99M) was purified and shown to possess spectroscopic properties similar to uclacyanin 1 rather than to plantacyanins. Its redox potential was determined by cyclic voltammetry to be +420 mV, a value that is significantly higher than that determined for the wild-type protein (+260 mV). The available structural data suggest that stellacyanins (and possibly other phytocyanins) might not be diffusible electron-transfer proteins participating in long-range electron-transfer processes. Conceivably, they are involved in redox reactions occurring during primary defense responses in plants and/or in lignin formation.  相似文献   

3.
Experimental data were combined with computational methods in constructing a hypothetical three-dimensional model for the blue single copper protein Rhus stellacyanin (St). The known sequence of stellacyanin and its homology with plastocyanin (Pc) were used together with the results of spectroscopic studies of the protein that yielded the current assignment of two histidines, one cysteine and a disulfide sulfur as copper ligands in stellacyanin. By computer graphics and energy minimization the folding of the protein was predicted. The model structure is somewhat less regular than Pc as judged by surface area and energy comparisons, but it is a stable structure. Besides rotation of one imidazole ring the copper site undergoes no change even in the absence of the copper ion and the model shows that the site can be constructed with the four assumed copper ligands without forming a strained system. The structure also indicates that a carbonyl oxygen atom is near the copper, thus the site may have analogy to the Alcaligenes denitrificans azurin (Az) site, although the amino acid sequence is more homologous to that of Pc. The model indicates that aspartate 49, reductively labeled by Cr(III), is near the copper center and homologous to the site labeled by Cr(III) on Pc. Also homologous to Pc is a tyrosine residue adjacent to the aspartate. This tyrosine has been implicated in Pc electron transfer and thus is probably involved in electron transfer reactivity of St as well. The higher reactivity of St with small-molecule redox reagents compared to Az and Pc, may be due to the proximity of the above-mentioned aspartate 49 to the Cu, or the greater exposure of one of the Cu cysteine ligands, in the predicted structure as compared to that in the known Pc and Az structures.  相似文献   

4.
Stellacyanin is a mucoprotein of molecular weight approximately 20,000 containing one copper atom in a blue or type I site. The metal ion can exist in both the Cu(II) and Cu(I) redox states. The metal binding site in plastocyanin, another blue copper protein, contains one cysteinyl, one methionyl, and two imidazoyl residues (Colman et al. 1978. Nature [Lond.]. 272:319-324.), but an exactly analogous site cannot exist in stellacyanin as it lacks methionine. The copper coordination in stellacyanin has been studied by x-ray edge absorption and extended x-ray absorption fine structure (EXAFS) analysis. A new, very conservative data analysis procedure has been introduced, which suggests that the there are two nitrogen atoms in the first coordination shell of the oxidized [Cu(II)] protein and one in the reduced [Cu(I)] protein; these N atoms have normal Cu--N distances: 1.95-2.05 A. In both redox states there are either one or two sulfur atoms coordinating the copper, the exact number being indeterminable from the present data. In the oxidized state the Cu--S distance is intermediate between the short bond found in plastocyanin and those found in near tetragonal copper model compounds. Above -140 degree C, radiation damage of the protein occurs. At room temperature the oxidized proteins is modified in the x-ray beam at a rate of 0.25%/s.  相似文献   

5.
The axial copper ligand methionine has been replaced by a glutamine in the cupredoxin amicyanin from Paracoccus versutus. Dynamic and structural characteristics of the mutant have been studied in detail using UV/Vis, EPR, NMR, cyclic voltammetry, and isomorphous metal replacement. M99Q amicyanin is a blue copper protein with significant spectral and structural similarities to the other cupredoxins umecyanin, stellacyanin, and M121Q azurin. In addition, the functional properties of M99Q amicyanin, as reflected in the electron self-exchange rate constant and midpoint potential (165 mV), have been assessed and compared to values for M121Q azurin. For the latter protein, the published midpoint potential was corrected to the much lower value of 147 mV at pH 7, I = 0.1 M. These values are very similar to the midpoint potential of stellacyanin, which naturally possesses an axial glutamine ligand and has the lowest reduction potential for a naturally occurring cupredoxin. A remarkable feature of M99Q amicyanin, in the reduced state, is the relatively high pK(a) value of 7.1 for its His96 ligand.  相似文献   

6.
Harrison MD  Dennison C 《Proteins》2004,55(2):426-435
The cupredoxin domain of a putative type 1 blue copper protein (BCB) from Arabidopsis thaliana was overexpressed and purified. A recursive polymerase chain reaction method was used to synthesize an artificial coding region for the cupredoxin domain of horseradish stellacyanin (commonly known as umecyanin), prior to overexpression and purification. The recombinant proteins were refolded from inclusion bodies and reconstituted with copper, and their in vitro characteristics were studied. Recombinant umecyanin, which is nonglycosylated, has identical spectroscopic and redox properties to the native protein. The UV/Vis and EPR spectra of recombinant BCB and umecyanin demonstrate that they have comparable axial type 1 copper binding sites. Paramagnetic (1)H NMR spectroscopy highlights the similarity between the active site architectures of BCB and umecyanin. The reduction potential of recombinant BCB is 252 mV, compared to 293 mV for recombinant umecyanin. Identical pK(a) values of 9.7 are obtained for the alkaline transitions in both proteins. This study demonstrates that BCB is the A. thaliana stellacyanin and the results form the biochemical basis for a discussion of BCB function in the model vascular plant.  相似文献   

7.
The 270-MHz 1H nuclear magnetic resonance spectra of Cu(II), Cu(I), and apo-stellacyanin are reported and compared. The data indicate that little conformational change occurs on reduction of the protein or on removing the copper ion. In the aromatic region of the spectra of the holoprotein, resonances associated with two freely titrating histidines are observed. Two additional sharp resonances are observed in the spectra of the apostellacyanin which are tentatively assigned to additional histidines. This result requires that not more than two histidines can be ligands since there are only four histidines in the whole protein. The absence of methionine has been reported and is one of the possible causes for the difference between stellacyanin and the other copper blue proteins. A comparison of these data with those available for other blue copper proteins, in conjunction with the sequence information, leads to a proposed structure for the copper site in stellacyanin.  相似文献   

8.
The secondary structure of the C-terminal region of all blue copper proteins can be assigned to two beta strands and a connecting segment that contains a potential histidine ligand. A similar assignment is made for the second probable blue (Type 1) site that is located in the middle fragment of ceruloplasmin also. The secondary structure regions for stellacyanin and subunit II of cytochrome oxidase predicted by the Chou-Fasman method are compared to those found in the crystal structures of plastocyanin and azurin.  相似文献   

9.
The crystal structure of amicyanin, a cupredoxin isolated from Paracoccus denitrificans, has been determined by molecular replacement. The structure has been refined at 2.0 A resolution using energy-restrained least-squares procedures to a crystallographic residual of 15.7%. The copper-free protein, apoamicyanin, has also been refined to 1.8 A resolution with residual 15.5%. The protein is found to have a beta-sandwich topology with nine beta-strands forming two mixed beta-sheets. The secondary structure is very similar to that observed in the other classes of cupredoxins, such as plastocyanin and azurin. Amicyanin has approximately 20 residues at the N-terminus that have no equivalents in the other proteins; a portion of these residues forms the first beta-strand of the structure. The copper atom is located in a pocket between the beta-sheets and is found to have four coordinating ligands: two histidine nitrogens, one cysteine sulfur, and, at a longer distance, one methionine sulfur. The geometry of the copper coordination is very similar to that in the plant plastocyanins. Three of the four copper ligands are located in the loop between beta-strands eight and nine. This loop is shorter than that in the other cupredoxins, having only two residues each between the cysteine and histidine and the histidine and methionine ligands. The amicyanin and apoamicyanin structures are very similar; in particular, there is little difference in the positions of the coordinating ligands with or without copper. One of the copper ligands, a histidine, lies close to the protein surface and is surrounded on that surface by seven hydrophobic residues. This hydrophobic patch is thought to be important as an electron transfer site.  相似文献   

10.
The thermodynamic parameters of the conformational transition occurring at low pH (acid transition, AT) in blue copper proteins, involving protonation and detachment from the Cu(I) ion of one histidine ligand, have been determined electrochemically for spinach and cucumber plastocyanins, Rhus vernicifera stellacyanin, cucumber basic protein (CBP), and Paracoccus versutus amicyanin. These data were obtained from direct protein electrochemistry experiments carried out at varying pH and temperature. For all species but CBP, the overall conformational change turns out to be exothermic. The entropy change is remarkably species-dependent. In particular, we found that (i) the balance of bond breaking/formation favors the acid transition in plastocyanins, which show remarkably negative DeltaH degrees '(AT) values, and (ii) the transition enthalpy turns out to be much less negative (or even positive) for the two phytocyanins (stellacyanin and CBP): for these species, the transition turns out to be observable thanks to the favorable (positive) entropy change. Thus, it is apparent that the thermodynamic "driving force" for this transition is enthalpic for the plastocyanins and entropic for the phytocyanins. Amicyanin is an intermediate case in which both enthalpic and entropic terms favor the transition. Under the assumption that the transition entropy originates from solvent reorganization effects, which are known to involve compensative enthalpy and entropy changes, the free energy change of the transition would also correspond to the enthalpy change due to bond breaking/formation in the first coordination sphere of the metal and in its immediate environment. Indeed, this term turns out to be very similar for the proteins investigated, in line with the conservation of the Cu(I)-His bond strengths in these species, except for amicyanin, for which the greater exothermicity of the transition can be ascribed to peculiar features of the active site.  相似文献   

11.
 The reduction potentials of blue copper sites vary between 180 and about 1000 mV. It has been suggested that the reason for this variation is that the proteins constrain the distance between the copper ion and its axial ligands to different values. We have tested this suggestion by performing density functional B3LYP calculations on realistic models of the blue copper proteins, including solvent effects by the polarizable continuum method. Constraining the Cu-SMet bond length to values between 245 and 310 pm (the range encountered in crystal structures) change the reduction potential by less than 70 mV. Similarly, we have studied five typical blue copper proteins spanning the whole range of reduction potentials: stellacyanin, plastocyanin, azurin, rusticyanin, and ceruloplasmin. These studies included the methionine (or glutamine) ligand as well as the back-bone carbonyl oxygen group that is a ligand in azurin and is found at larger distances in the other proteins. The active-site models of these proteins show a variation in the reduction potential of about 140 mV, i.e., only a minor part of the range observed experimentally (800 mV). Consequently, we can conclude that the axial ligands have a small influence on the reduction potentials of the blue copper proteins. Instead, the large variation in the reduction potentials seems to arise mainly from variations in the solvent accessibility of the copper site and in the orientation of protein dipoles around the copper site. Received: 7 April 1999 / Accepted: 26 July 1999  相似文献   

12.
Mavicyanin from zucchini peelings has been characterized by electronic absorption, circular dichroism (CD), magnetic circular dichroism (MCD), resonance Raman (RR), and electron paramagnetic resonance (EPR) spectra. The electronic absorption, CD, MCD, and EPR spectra are appreciably similar to those of stellacyanin from lacquer, in which the tetrahedral Cu center has a donor set composed of four amino acid residues [2 histidine (His), cysteine (Cys), and glutamine (Gln)]. Under neutral conditions, mavicyanin and stellacyanin show intense blue bands at 599 and 604?nm, respectively. However, the RR spectrum of mavicyanin between 300 and 450?cm–1, which is believed to originate from the predominant Cu–S stretching vibration, is remarkably different from that of stellacyanin. This might be due to a slight distortion of the tetrahedral Cu(II) center toward tetragonal geometry in mavicyanin. Moreover, the d–d transition bands of Co(II)-substituted mavicyanin are slightly blue-shifted compared with those of Co(II)-substituted stellacyanin. This finding also suggests a difference in distortion between these tetrahedral Co(II) centers in spite of the same donor sets.  相似文献   

13.
UV/VIS Electron excitation spectra have been computed for large, realistic model systems of the blue copper protein family. Fully quantum-chemical calculations at the density-functional theory level employing polarized triple-ζ basis sets have been performed on systems of over 120 atoms, without symmetry. Different mutants, with the ligating methionine of the wild type Cu center exchanged for histidine (M121?H) and glutamine (M121Q), have been investigated in order to obtain insight about how the influence of the exact surrounding milieu of the Cu-atom affects the computed spectrum. With sufficiently large model sizes, inclusion of the environment by using continuum solvation models do not change the spectra significantly. More direct and rigorous treatments are needed to reliably assess the effect of the surrounding protein on the electronic structure of the active sites.  相似文献   

14.
The complete amino acid sequence of the blue copper protein amicyanin of Thiobacillus versutus, induced when the bacterium is grown on methylamine, has been determined as follows: QDKITVTSEKPVAAADVPADAVVVGIEKMKYLTPEVTIKAGETVYWVNGEVMPHNVA FKKGIVGEDAFRGEMMTKDQAYAITFNEAGSYDYFCTPHPFMRGKVIVE. The four copper ligand residues in this 106-residue-containing polypeptide chain are His54, Cys93, His96, and Met99. The Thiobacillus amicyanin is 52% similar to the amicyanin of Pseudomonas AM1, the only other copper protein known with the same spacing between the second histidine ligand and the methionine ligand. T. versutus amicyanin contains no cysteine bridge and is more closely related to the plant copper protein plastocyanin than to the bacterial copper protein azurin. Alignment of the two known amicyanin sequences with the consensus sequence of the plastocyanins and comparison with the known three-dimensional structure of poplar leaves plastocyanin reveals that the bacterial proteins have the same overall structure with two beta-sheets packed face to face. The major structural differences between the amicyanins and the plastocyanins appear to be located in two of the five loops that connect the six identified beta-strands of the amicyanins. The first of these two loops, connecting strands F and G, contains a ligand histidine and must have a different conformation from the same loop in the plastocyanins because it is shorter by two amino acids. Further differences occur in the loop connecting the strands D and E. This loop contains only 17 residues in amicyanin whereas the corresponding loop of plastocyanin contains 25 residues. Despite these differences the amicyanins appear much closer related to the plastocyanins than to the azurins. The present findings demonstrate that the occurrence of blue copper proteins with clearly plastocyanin-like features is not restricted to photosynthetic redox chains.  相似文献   

15.
A crystallographic model for azurin a 3 A resolution.   总被引:7,自引:0,他引:7  
The structure of the blue copper protein azurin (Mr 14,000) from Pseudomonas aeruginosa has been determined from a 3.0 Å resolution electron density map computed with phases based on a uranyl derivative to 3 Å resolution and a platinum derivative to 3.7 Å. Interpretation of the somewhat noisy map was based on comparison of the density of the four molecules in the asymmetric unit with their averaged density. The polypeptide chain folds into an eight-strand β barrel with an additional flap containing a short helix. The copper atom is bound at one end and on the inside of the barrel, probably to a cysteine, a methionine, and two histidine residues.  相似文献   

16.
Copper K-edge extended X-ray absorption fine structure (EXAFS) spectroscopy and (15)N NMR relaxation studies were performed on samples of a variant azurin in which the surface-exposed histidine ligand of the copper atom (His117) has been replaced by glycine. The experiments were performed to probe the structure of the active site and the protein dynamics. The cavity in the protein structure created by the His-->Gly replacement could be filled by external ligands, which can either restore the spectroscopic properties of the original type-1 copper site or create a new type-2 copper site. The binding of external ligands occurs only when the copper atom is in its oxidised state. In the reduced form, the binding is abolished. From the EXAFS experiments, it is concluded that for the oxidised type-1 copper sites the protein plus external ligand (L) provide an NSS*L donor set deriving from His46, Cys112, Met121 and the external ligand. The type-2 copper site features an S(N/O)(3) donor set in which the S-donor derives from Cys112, one N-donor from His46 and the remaining two N or O donors from one or more external ligands. Upon reduction of the type-1 as well as the type-2 site, the external ligand drops out of the copper site and the coordination reduces to 3-fold with an SS*N donor set deriving from His46, Cys112 and Met121. The Cu-S(delta)(Met) distance is reduced from about 3.2 to 2.3 A. Analysis of the NMR data shows that the hydrophobic patch around His117 has gained fluxionality when compared to wild-type azurin, which may explain why the His117Gly variant is able to accommodate a variety of external ligands of different sizes and with different chelating properties. On the other hand, the structure and dynamics of the beta-sandwich, which comprises the main body of the protein, is only slightly affected by the mutation. The unusually high reduction potential of the His117Gly azurin is discussed in light of the present results.  相似文献   

17.
A method for reconstituting the blue copper protein stellacyanin with the stable copper isotopes 63Cu and 65Cu is reported. Small differences in the e.p.r. spectra of the two isotopic forms of stellacyanin have been used to monitor the electron self-exchange reaction of stellacyanin by rapid-freeze e.p.r. methods. The self-exchange rate constant (k11) for stellacyanin has been determined as 1.2 X 10(5) M-1 X S-1 at 20 degrees C. This value is in close agreement with values obtained from less-direct methods.  相似文献   

18.
The crystal structure of the fully oxidized form of ascorbate oxidase (EC 1.10.3.3) from Zucchini has been refined at 1.90 A (1 A = 0.1 nm) resolution, using an energy-restrained least-squares refinement procedure. The refined model, which includes 8764 protein atoms, 9 copper atoms and 970 solvent molecules, has a crystallographic R-factor of 20.3% for 85,252 reflections between 8 and 1.90 A resolution. The root-mean-square deviation in bond lengths and bond angles from ideal values is 0.011 A and 2.99 degrees, respectively. The subunits of 552 residues (70,000 Mr) are arranged as tetramers with D2 symmetry. One of the dyads is realized by the crystallographic axis parallel to the c-axis giving one dimer in the asymmetric unit. The dimer related about this crystallographic axis is suggested as the dimer present in solution. Asn92 is the attachment site for one of the two N-linked sugar moieties, which has defined electron density for the N-linked N-acetyl-glucosamine ring. Each subunit is built up by three domains arranged sequentially on the polypeptide chain and tightly associated in space. The folding of all three domains is of a similar beta-barrel type and related to plastocyanin and azurin. An analysis of intra- and intertetramer hydrogen bond and van der Waals interactions is presented. Each subunit has four copper atoms bound as mononuclear and trinuclear species. The mononuclear copper has two histidine, a cysteine and a methionine ligand and represents the type-1 copper. It is located in domain 3. The bond lengths of the type-1 copper centre are comparable to the values for oxidized plastocyanin. The trinuclear cluster has eight histidine ligands symmetrically supplied from domain 1 and 3. It may be subdivided into a pair of copper atoms with histidine ligands whose ligating N-atoms (5 NE2 atoms and one ND1 atom) are arranged trigonal prismatic. The pair is the putative type-3 copper. The remaining copper has two histidine ligands and is the putative spectroscopic type-2 copper. Two oxygen atoms are bound to the trinuclear species as OH- or O2- and bridging the putative type-3 copper pair and as OH- or H2O bound to the putative type-2 copper trans to the copper pair. The bond lengths within the trinuclear copper site are similar to comparable binuclear model compounds. The putative binding site for the reducing substrate is close to the type-1 copper.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

19.
S Dahlin  B Reinhammar  J Angstr?m 《Biochemistry》1989,28(18):7224-7233
1H nuclear magnetic resonance (1H NMR) experiments on Co(II)-substituted stellacyanin have been performed. Large paramagnetic hyperfine shifts are observed, the whole spectrum covering a range of 190 ppm. Experiments were mainly performed at 270 MHz from which temperature and pH* dependencies of the out-shifted resonances were reported, as well as determinations of the longitudinal (T1) and transverse (T2) relaxation times. These relaxation times are among other things, dependent on the individual proton-metal distance, and the aim of this work has been to determine these distances, by use of the Solomon-Bloembergen equations modified to include the so-called "Curie spin". The application of this method to a protein has not been reported earlier. Experiments were also performed at 100, 400, and 500 MHz in order to estimate the size of the Curie spin from the field dependence of the line widths. Furthermore, determination of the values for the rotational correlation time, tau r, and the effective magnetic moment, mu eff, was necessary for the present approach. With apostellacyanin, tau r was found to be (6.0 +/- 0.4) X 10-8 s. From the paramagnetic susceptibility of Co(II) stellacyanin, the value (4.53 +/- 0.03)beta was determined for mu eff. The proposed assignments of several paramagnetically out-shifted resonances. the proton-metal distances obtained, and the known peptide sequence of stellacyanin have allowed us to build a three-dimensional model of the metal site and its surrounding structure consistent with all the experimental data. It is revealed that both histidine ligands bind the metal with their 3-nitrogens. Also we find strong indications that a second sulfur atom is actually binding the metal, this being the long-sought-after fourth ligand. The model suggests that this sulfur belongs to Cys-59, which together with Cys-93 constitutes the disulfide bridge known to be present in the structure. A potential fifth ligand, an amide oxygen from Asn-47, is also found.  相似文献   

20.
The frequencies of occurrence of the side chains in proteins in the first, second, third, and fourth positions of a reverse turn in a set of 26 nonredundant protein chains are shown in a table that lists cysteine and cystine side chains separately. This table was used to predict the reverse turns in poplar plastocyanin whose crystal structure is known (75% of the turn residues are correctly predicted but the overall accuracy of the predictions is only 66% in a turn-not-turn two-state model), and in three blue copper proteins whose crystal structures are being determined (cucumber plastocyanin and cucumber basic protein) or contemplated (Rhus vernificera stellacyanin). The copper cores proposed for cucumber basic protein and stellacyanin are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号