首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Experiments were performed on coral species containing clade A (Stylophora pistillata, Montipora aequituberculata) or clade C (Acropora sp., Pavona cactus) zooxanthellae. The photosynthetic efficiency (F(v)/F(m)) of the corals was first assessed during a short-term increase in temperature (from 27 degrees C to 29 degrees C, 32 degrees C, and 34 degrees C) and acute exposure to UV radiation (20.5 W m(-2) UVA and 1.2 W m(-2) UVB) alone or in combination. Increasing temperature to 34 degrees C significantly decreased the F(v)/F(m) in S. pistillata and M. aequituberculata. Increased UV radiation alone significantly decreased the F(v)/F(m) of all coral species, even at 27 degrees C. There was a combined effect of temperature and UV radiation, which reduced F(v)/F(m) in all corals by 25% to 40%. During a long-term exposure to UV radiation (17 days) the F(v)/F(m) was significantly reduced after 3 days' exposure in all species, which did not recover their initial values, even after 17 days. By this time, all corals had synthesized mycosporine-like amino acids (MAAs). The concentration and diversity of MAAs differed among species, being higher for corals containing clade A zooxanthellae. Prolonged exposure to UV radiation at the nonstressful temperature of 27 degrees C conferred protection against independent, thermally induced photoinhibition in all four species.  相似文献   

2.
The bleaching of corals in response to increases in temperature has resulted in significant coral reef degradation in many tropical marine ecosystems. This bleaching has frequently been attributed to photoinhibition of photosynthetic electron transport and the consequent photodamage to photosystem II (PSII) and the production of damaging reactive oxygen species (ROS) in the zooxanthellae (Symbiodinium spp.). However, these events may be because of perturbations of other processes occurring within the zooxanthellae or the host cells, and consequently constitute only secondary responses to temperature increase. The processes involved with the onset of photoinhibition of electron transport, photodamage to PSII and pigment bleaching in coral zooxanthellae are reviewed. Consideration is given to how increases in temperature might lead to perturbations of metabolic processes in the zooxanthellae and/or their host cells, which could trigger events leading to bleaching. It is concluded that production of ROS by the thylakoid photosynthetic apparatus in the zooxanthellae plays a major role in the onset of bleaching resulting from photoinhibition of photosynthesis, although it is not clear which particular ROS are involved. It is suggested that hydrogen peroxide generated in the zooxanthellae may have a signalling role in triggering the mechanisms that result in expulsion of zooxanthellae from corals.  相似文献   

3.
田间大豆叶片成长过程中的光合特性及光破坏防御机制   总被引:9,自引:0,他引:9  
田间大豆叶片在成长进程中光饱和光合速率持续提高,但气孔导度的增加明显滞后.尽管叶片在成长初期就具有较高的最大光化学效率,但是仍略低于发育成熟的叶片.随着叶片的成长,光下叶片光系统Ⅱ实际效率增加;非光化学猝灭下降.幼叶叶黄素总量与叶绿素之比较高,随着叶面积的增加该比值下降,在光下,幼叶的脱环氧化程度较高.因此认为大豆叶片成长初期就能够有效地进行光化学调节;在叶片生长过程中依赖叶黄素循环的热耗散机制迅速建立起来有效抵御强光的破坏.  相似文献   

4.
Exogenous food can increase protein levels of coral host tissue, zooxanthellae densities, chlorophyll (chl) concentrations and rates of photosynthesis and is thought to play an important role in the resilience of bleached corals. There is however no information about the effect of heterotrophy on the bleaching susceptibility of corals under elevated temperature conditions. This study investigates potential interactions between food availability, basal metabolic functions (photosynthesis and respiration), energy status (lipid concentrations), total protein concentrations and the bleaching susceptibility (loss of chl and/or zooxanthellae) of the scleractinian corals Stylophora pistillata (Esper) and Galaxea fascicularis (Linnaeus) in response to elevated temperature (daily temperature rises of 3-4 °C) over 15 days. Feeding experiments were carried out in which the corals were either fed daily with zooplankton or starved. Compared to fed corals, starvation of both species resulted in a significant decrease in daily photosynthetic oxygen evolution over time. Gross (Pg) and net (Pn) photosynthetic production of starved corals of both species between 10:00-11:00 hrs had declined by ~50% at day 15 while there were no marked changes in Pg and Pn of fed corals. After 15 days, starved S. pistillata contained significantly lower zooxanthellae densities, lipid and protein concentrations than fed corals. Starved G. fascicularis also displayed a decrease in zooxantllae densities which was accompanied by a significant decline in algal chl concentrations. Contrary to S. pistillata, feeding treatment had no effect on the lipid concentrations of G. fascicularis. Total protein concentrations however were significantly lower in straved than in fed G. fascicularis. Furthermore, starvation resulted in a significant decrease in respiration of S. pistillata during the last four days of the experiment while treatment had no effect on the respiration rates of G. fascicularis. Overall the oxygen consumption of S. pistillata of both treatments was about 39-67% higher than the respiration of G. fascicularis indicating that low metabolic rates may have allowed starved G. fascicularis to conserve energy reserves over the course of the experiment. The combined results reveal a strong positive relationship between food availability, sustained photosynthetic activity and reduced loss in pigmentation of both species under elevated temperature conditions.  相似文献   

5.
Inhibition of Calvin–Benson cycle (CBC) activity by thermal stress has been hypothesized to cause photoinhibition of photosystem II (PSII) in zooxanthellae of reef-building corals and consequently lead to bleaching. This study tests whether the interruption of CBC by glycolaldehyde (GA) leads to photoinhibition and subsequent coral bleaching in Stylophora pistillata. When S. pistillata was incubated with GA, the O2 evolution rate declined in a dose-dependent manner and the extent of photoinhibition, reflected by a decreased maximum quantum yield of PSII (F v/F m), was enhanced. The effect of GA on photoinhibition was similar to that of chloramphenicol (CAP), an inhibitor of protein synthesis in chloroplasts. When S. pistillata was incubated in weak light following a high-light-induced photoinhibitory treatment, the recovery of PSII from photoinhibition was suppressed in a similar manner to both GA- and CAP-treated samples. After incubation in moderate light at 26°C, S. pistillata showed a bleaching response only in presence of GA. These results suggest that coral bleaching-like responses are caused by interruption of the CBC activity in S. pistillata and are associated with accelerated photoinhibition through suppression of the protein synthesis-dependent repair of PSII but not to an increase in photodamage to PSII.  相似文献   

6.
《农业工程》2014,34(3):165-169
Mutualistic relationship between coral polyps and their symbiotic zooxanthellae living within their tissues are the most essential features of a coral reef ecosystem. In this symbiotic system, the coral polyps provide a protected habitat, carbon dioxide and nutrients needed for photosynthesis to zooxanthellae; in turn, the symbiotic zooxanthellae provide food as products of photosynthesis to coral polyps. The Photosynthesis of zooxanthellae is therefore an important process of this symbiotic system as well as the development of the whole coral reef ecosystem. The recent application of chlorophyll fluorescence technique in the study of the zooxanthellae’s photosynthesis has greatly improved our understanding on the micro-ecology of corals and the symbiotic zooxanthellae. This paper summarizes the recent progress as the following aspects: (1) The ecological characteristics of the photosynthesis of symbiotic zooxanthellae, such as the diurnal and seasonal changes in the photochemical efficiency of the zooxanthellae, and the relationship between zooxanthellae photosynthesis and the world-wide coral bleaching. (2) The mechanism of corals acclimating to the changes of irradiance via spatial and temporal photoacclimations, including the corals’ photobiology; zooxanthella size, pigmentation, location and clade, and the relationship between light extremes and the corals’ metabolism and calcification. (3) The understanding of the response of zooxanthellae to various environmental stresses, such as long-term changes in the chlorophyll fluorescence of bleached and recovering corals; the tolerance of corals to thermal bleaching; the changes to photosystem II of symbiotic zooxanthellae after heat stress and bleaching. Due to the above findings, the chlorophyll fluorescence values of those coral species sensitive to environmental changes have been utilized as indicators of coral health as well as the status of coral reef ecosystems. In summary, the chlorophyll fluorescence technique has great potential in the understanding, monitoring, protecting and managing coral reefs.  相似文献   

7.
This study aimed at investigating changes in feeding rates of three scleractinian coral species (Stylophora pistillata, Turbinaria reniformis and Galaxea fascicularis) between control (26 °C) and short-term stress conditions (31 °C), and to assess the effect of feeding on the photosynthetic efficiency of the corals. Feeding rates varied according to the feeding effort of the corals, itself depending on the environmental conditions. Indeed, S. pistillata significantly decreased its feeding rates at 31 °C, while rates of T. reniformis and G. fascicularis were increased between 26 and 31 °C. Independently of the feeding rates, food supply helped in preventing damage to the photosynthetic apparatus of the zooxanthellae. Indeed, starved corals from the three species showed significant decrease in both the electron transport rates and in the photosynthetic rates, following a loss in the amount of chlorophyll and experiencing photoinhibition of the photosystem II. However, no bleaching was observed in heated fed corals, with no decrease in their photosynthetic efficiency or performance.  相似文献   

8.
Oat (Avena sativa) plants were grown in the field near the urban area of Valencia, Eastern Spain. The data on air quality showed that ozone was the main phytotoxic pollutant present in ambient air reaching a 7-h mean of 46 nl l(-1) and a maximum hourly peak of 322 nl l(-1). The effect of ambient ozone on PSII activity was examined by measurements of chlorophyll (Chl) a fluorescence. In leaves with visible symptoms, the function of PSII was changed at high actinic irradiances. Nonphotochemical quenching (NPQ) was higher and quantum efficiency of PSII (Phi(PSII)), photochemical quenching (q(p)), quantum efficiency of excitation capture and PSII electron flow (F(v)'/F(m)') were lower. An enhanced susceptibility to photoinhibition was observed for symptom-exhibiting leaves compared to leaves that remain free of visible symptoms. Both the lowering of photosynthesis efficiency and the increased sensitivity to photoinhibition probably contribute to reduced crop yield in the field, to different extents, depending on growth conditions. To our knowledge, this is the first report that demonstrates that quantum efficiency of exciton trapping in PSII is associated with foliar injury in oat leaves in response to ambient concentration of ozone.  相似文献   

9.
This study investigated the photo-acclimation capacity of the coral Stylophora pistillata (Esper). Outer branches of coral colonies, taken from 2 m, were subjected to 90, 20, or 3% of incident surface photosynthetic active radiation (PAR(0)), or kept in total darkness. The corals were maintained either in filtered seawater (i.e., under starvation), or in seawater that had daily additions of zooplankton (rotifers). The experiments were maintained for 31 days. Zooxanthellae population densities and chlorophyll concentrations increased in S. pistillata fragments subjected to 20 and 3% PAR(0). The zooxanthellae densities decreased after 6 days in corals kept in total darkness, although chlorophyll concentrations remained higher. Corals that were fed and subjected to 90% PAR(0) showed lower degrading zooxanthellae frequencies, higher photosynthetic and respiration rates, and higher chlorophyll concentrations than corals in the same light regime under starvation. Complete acclimation to dim (20% PAR(0)) and low (3% PAR(0)) light was only apparent for corals fed with zooplankton. Changes in zooxanthellae population densities occurred through differential rates of zooxanthellae division and degradation.  相似文献   

10.
Effects of foliar application of 100 mmol/L glycinebetaine (GB) on PS II photochemistry in wheat (Triticum aestivum) flag leaves under drought stress combined with high irradiance were investigated. The results show that GB-treated plants maintained a higher net photosynthetic rate during drought stress than non-GB treated plants. Exogenous GB can preserve the photochemical activity of PSII, for GB-treated plants maintain higher maximal photochemistry efficiency of PSII (F(v)/F(m)) and recover more rapidly from photoinhibition. In addition, GB-treated plants can maintain higher anti-oxidative enzyme activities and suffer less oxidative stress. Our data suggest that GB may protect the PSII complex from damage through accelerating D1 protein turnover and maintaining anti-oxidative enzyme activities at higher level to alleviate photodamage. Diethyldithiocarbamate as well as streptomycin treatment can impair the protective effect of GB on PSII. In summary, GB can enhance the photoinhibition tolerance of PSII.  相似文献   

11.
Elevated ocean temperatures and agrochemical pollution individually threaten inshore coral reefs, but these pressures are likely to occur simultaneously. Experiments were conducted to evaluate the combined effects of elevated temperature and the photosystem II (PSII) inhibiting herbicide diuron on several types of symbiotic algae (diatom, dinoflagellate or rhodophyte) of benthic foraminifera in hospite. Diuron was shown to evoke a direct effect on photosynthetic efficiency (reduced effective PSII quantum yield ΔF/F'(m)), while elevated temperatures (>30 °C, only 2 °C above current average summer temperatures) were observed to impact photosynthesis more indirectly by causing reductions in maximum PSII quantum yield (F(v)/F(m)), interpreted as photodamage. Additionally, elevated temperatures were shown to cause bleaching through loss of chlorophyll a in foraminifera hosting either diatoms or dinoflagellates. A significant linear correlation was found between reduced F(v)/F(m) and loss of chlorophyll a. In most cases, symbionts within foraminifera proved more sensitive to thermal stress in the presence of diuron (≥ 1 μg L(-1)). The mixture toxicity model of Independent Action (IA) described the combined effects of temperature and diuron on the photosystem of species hosting diatoms or dinoflagellates convincingly and in agreement with probabilistic statistics, so a response additive joint action can be assumed. We thus demonstrate that improving water quality can improve resilience of symbiotic phototrophs to projected increases in ocean temperatures. As IA described the observed combined effects from elevated temperature and diuron stress it may therefore be employed for prediction of untested mixtures and for assessing the efficacy of management measures.  相似文献   

12.
The response of microalgae to photooxidative stress resulting from high light exposure is a well-studied phenomenon. However, direct analyses of photosystem II (PSII) D1 protein (the main target of photoinhibition) in diatoms are scarce. In this study, the response of the diatom model species Phaeodactylum tricornutum to short-term exposure to high light was examined and the levels of D1 protein determined immunochemically. Low light (LL) acclimated cells (40 μmol photons m(-2) s(-1)) subjected to high light (HL, 1,250 μmol photons m(-2) s(-1)) showed rapid induction of non-photochemical quenching (NPQ) and ca. 20-fold increase in diatoxanthin (DT) concentration. This resulted from the conversion of diadinoxanthin (DD) to DT through the activation of the DD-cycle. D1 protein levels under LL decreased about 30% after 1 h of the addition of lincomycin (LINC), a chloroplast protein synthesis inhibitor, showing significant D1 degradation and repair under low irradiance. Exposure to HL lead to a 3.2-fold increase in D1 degradation rate, whereas average D1 repair rate was 1.3-x higher under HL than LL, leading to decreased levels of D1 protein under HL. There were significant effects of both HL and LINC on P. tricornutum maximum quantum yield of PSII (F(v)/F(m)), showing a reduction of active PSII reaction centres. Partial recovery of F(v)/F(m) in the dark demonstrates the photosynthetic resilience of this diatom to changes in the light regime. P. tricornutum showed high allocation of total protein to D1 and an active D1-repair cycle to limit photoinhibition.  相似文献   

13.
Mesembryanthemum crystallinum L. (Aizoaceae) is a facultative annual halophyte and a C(3)-photosynthesis/crassulacean acid metabolism intermediate species currently used as a model plant in stress physiology. Both salinity and high light irradiance stress are known to induce CAM in this species. The present study was performed to provide a diagnosis of alterations at the photosystem II level during salinity and irradiance stress. Plants were subjected for up to 13 days to either 0.4M NaCl salinity or high irradiance of 1000 micromol m(-2)s(-1), as well as to both stress factors combined (LLSA=low light plus salt; HLCO=high light of 1000 micromol m(-2)s(-1), no salt; HLSA=high light plus salt). A control of LLCO=low light of 200 micromol m(-2)s(-1), no salt was used. Parameters of chlorophyll a fluorescence of photosystem II (PSII) were measured with a pulse amplitude modulated fluorometer. HLCO and LLSA conditions induced a weak degree of CAM with day/night changes of malate levels (Deltamalate) of approximately 12mM in the course of the experiment, while HLSA induced stronger CAM of Deltamalate approximately 20 mM. Effective quantum yield of PSII, DeltaF/F'(m), was only slightly affected by LLSA, somewhat reduced during the course of the experiment by HLCO and clearly reduced by HLSA. Potential quantum efficiency of PSII, F(v)/F(m), at predawn times was not affected by any of the conditions, always remaining at 0.8, showing that there was no acute photoinhibition. During the course of the days HL alone (HLCO) also did not elicit photoinhibition; salt alone (LLSA) caused acute photoinhibition which was amplified by the combination of the two stresses (HLSA). Non-photochemical, NPQ, quenching remained low (<0.5) under LLCO, LLSA and HLCO and increased during the course of the experiment under HLSA to 1-2. Maximum apparent photosynthetic electron transport rates, ETR(max), declined during the daily courses and were reduced by LLSA and to a similar extent by HLSA. It is concluded that M. crystallinum expresses effective stress tolerance mechanisms but photosynthetic capacity is reduced by the synergistic effects of salinity and light irradiance stress combined.  相似文献   

14.
Coral species in a similar habitat often show different bleaching susceptibilities. It is not understood which partner of coral-zooxanthellae complexes is responsible for differential stress susceptibility. Stress susceptibilities of in hospite and isolated zooxanthellae from five species of corals collected from shallow water in Okinawa were compared. To estimate stress susceptibility, we measured the maximum quantum yields (Fv/Fm) of in hospite and isolated zooxanthellae after 3-h exposure to either 28 or 34 °C at various light intensities and their recovery after 12 h under dim light at 26 °C. Significant reduction in photochemical efficiency (Fv/Fm) of photosystem II (PSII) was observed in in hospite zooxanthellae exposed to high light intensity (1000 μmol quanta m−2 s−1), while PSII activity of isolated zooxanthellae decreased significantly even at a lower light intensity (70 μmol quanta m−2 s−1). The recovery of the PSII activity after 12 h was incomplete in both in hospite and isolated zooxanthellae, indicating the presence of chronic photoinhibition. The stress susceptibility of isolated zooxanthellae was more variable among species than in hospite zooxanthellae. The order of stress susceptibility among the five coral species was different between in hospite and isolated zooxanthellae. The present results suggest that the host plays a significant role in determining bleaching susceptibility of corals, though zooxanthellae from different host have different stress susceptibilities.  相似文献   

15.
Effects of salinity and drought on physiology and chlorophyll fluorescence were used to evaluate stress in two coastal plants, Myrica cerifera (L.) and Phragmites australis (Cav.) Trin. ex Steud. Drought and salinity stress were induced and measurements of stomatal conductance, photosynthesis, xylem pressure potential (psi) and fluorescence were conducted following treatment. The onset of stress began at 2 g l(-1) for M. cerifera, and 5 g l(-1) for P. australis, as seen by significant decreases in physiological measurements. Despite the physiological effects of salinity, there was no significant difference in dark-adapted fluorescence (F(v)/F(m), where F(m) is the maximal fluorescence in dark-adapted leaves) for either species at any salinity level. Significant decreases in the light-adapted measurement Delta F/F'(m) (F'(m) is maximal fluorescence in light-adapted leaves) occurred at 10 g l(-1) in M. cerifera and P. australis, days before visible stress was evident. The quantum yield of xanthophyll-regulated thermal energy dissipation (Phi(NPQ), where NPQ is non-photochemical quenching of chlorophyll fluorescence) increased with decreasing Delta F/F'(m). Drought studies showed similar results, with significant decreases in physiological measurements occurring by day 2 in M. cerifera and day 4 in P. australis. Differences in Delta F/F'(m) were seen by day 5 for both species, whereas F(v)/F(m) showed no indication of stress, despite apparent visible signs. Xanthophyll-cycle-dependent energy dissipation may be the underlying mechanism in protecting photosystem II from excess energy in salinity- and drought-treated plants.  相似文献   

16.
砂仁不同叶位叶片的光合作用和氧化胁迫   总被引:5,自引:0,他引:5  
衰老时砂仁叶片Pmax降低,这与叶片Gs、Chi含量和可溶性蛋白质含量的降低有关.随着叶片的衰老,NPQ、AQY、F/Fm、φPsIl和qp均降低,热耗散减少,光抑制加剧,衰老后期出现光破坏.但这些参数下降的幅度均小于Pmax下降幅度.光暗反应失衡,活性氧生成增加.衰老初期(老化)叶片MDA含量没有升高,衰老中后期叶片MDA含量显著升高,表明老化叶片能有效地耗散或清除活性氧,衰老叶片则不能,尽管其sOD、APX和POD等抗氧化酶活力显著升高.上述结果表明砂仁叶片老化与氧化胁迫关系不大,衰老与氧化胁迫密切相关.  相似文献   

17.
Exposure of control (non-hardened) Arabidopsis leaves for 2 h at high irradiance at 5 degrees C resulted in a 55% decrease in photosystem II (PSII) photochemical efficiency as indicated by F(v)/F(m). In contrast, cold-acclimated leaves exposed to the same conditions showed only a 22% decrease in F(v)/F(m). Thermoluminescence was used to assess the possible role(s) of PSII recombination events in this differential resistance to photoinhibition. Thermoluminescence measurements of PSII revealed that S(2)Q(A)(-) recombination was shifted to higher temperatures, whereas the characteristic temperature of the S(2)Q(B)(-) recombination was shifted to lower temperatures in cold-acclimated plants. These shifts in recombination temperatures indicate higher activation energy for the S(2)Q(A)(-) redox pair and lower activation energy for the S(2)Q(B)(-) redox pair. This results in an increase in the free-energy gap between P680(+)Q(A)(-) and P680(+)Pheo(-) and a narrowing of the free energy gap between primary and secondary electron-accepting quinones in PSII electron acceptors. We propose that these effects result in an increased population of reduced primary electron-accepting quinone in PSII, facilitating non-radiative P680(+)Q(A)(-) radical pair recombination. Enhanced reaction center quenching was confirmed using in vivo chlorophyll fluorescence-quenching analysis. The enhanced dissipation of excess light energy within the reaction center of PSII, in part, accounts for the observed increase in resistance to high-light stress in cold-acclimated Arabidopsis plants.  相似文献   

18.
The influence of leaf angle on the response of plants to high light was studied in Salvia broussonetii, a species endemic of the Canary Islands that shows hyponastic leaf growth. The response of vertical, naturally oriented leaves was compared with that of horizontal, artificially held leaves for 1, 13, 24 and 29 days in terms of photoinhibition [efficiency of photosystem II (PSII)], photoprotection (by the xanthophyll cycle, alpha-tocopherol and beta-carotene) and progression of leaf senescence. Vertical leaves not only showed a decreased photoprotective demand compared with horizontal leaves but also kept the maximum efficiency of PSII (F(v)/F(m) ratio) constant throughout the experiment, thus reflecting the capacity of naturally oriented leaves to avoid photooxidative stress in the field. By contrast, horizontal leaves, which were exposed to higher light intensities, showed a higher photoprotective demand (reflected by a higher de-epoxidation of the xanthophyll cycle, carotenoid losses and increases in alpha-tocopherol), damage to PSII (as indicated by decreases in the F(v)/F(m) ratio) and accelerated leaf senescence, which was associated with cell death after 24 days of high light exposure. It is concluded that hyponastic leaf growth prevents photoinhibition and decreases the photoprotective demand of leaves by reducing the incident light, which helps maintaining leaf vigor and delaying the progression of leaf senescence in S. broussonetii plants. Hyponastic leaf growth is therefore one of the first photoprotection mechanisms activated in this species to avoid the negative impact of high-light stress in the field.  相似文献   

19.
Using chlorophyll (chl) fluorescence imaging, we studied the effect of mild (MiDS), moderate (MoDS) and severe (SDS) drought stress on photosystem II (PSII) photochemistry of 4-week-old Arabidopsis thaliana. Spatio-temporal heterogeneity in all chl fluorescence parameters was maintained throughout water stress. After exposure to drought stress, maximum quantum yield of PSII photochemistry (F(v)/F(m)) and quantum efficiency of PSII photochemistry (Φ(PSΙΙ)) decreased less in the proximal (base) than in the distal (tip) leaf. The chl fluorescence parameter F(v) /F(m) decreased less after MoDS than MiDS. Under MoDS, the antioxidant mechanism of A. thaliana leaves seemed to be sufficient in scavenging reactive oxygen species, as evident by the decreased lipid peroxidation, the more excitation energy dissipated by non-photochemical quenching (NPQ) and decreased excitation pressure (1-q(p)). Arabidopsis leaves appear to function normally under MoDS, but do not seem to have particular metabolic tolerance mechanisms under MiDS and SDS, as revealed by the level of lipid peroxidation and decreased quantum yield for dissipation after down-regulation in PSII (Φ(NPQ)), indicating that energy dissipation by down-regulation did not function and electron transport (ETR) was depressed. The simultaneous increased quantum yield of non-regulated energy dissipation (Φ(NO)) indicated that both the photochemical energy conversion and protective regulatory mechanism were insufficient. The non-uniform photosynthetic pattern under drought stress may reflect different zones of leaf anatomy and mesophyll development. The data demonstrate that the effect of different degrees of drought stress on A. thaliana leaves show spatio-temporal heterogeneity, implying that common single time point or single point leaf analyses are inadequate.  相似文献   

20.
Photoinhibition in plants depends on the extent of light energy being absorbed in excess of what can be used in photochemistry and is expected to increase as environmental constraints limit CO2 assimilation. Water stress induces the closure of stomata, limiting carbon availability at the carboxylation sites in the chloroplasts and, therefore, resulting in an excessive excitation of the photosynthetic apparatus, particularly photosystem II (PSII). Mechanisms have evolved in plants in order to protect against photoinhibition, such as non-photochemical energy dissipation, chlorophyll concentration changes, chloroplast movements, increases in the capacity for scavenging the active oxygen species, and leaf movement or paraheliotropism, avoiding direct exposure to sun. In beans (Phaseolus vulgaris L.), paraheliotropism seems to be an important feature of the plant to avoid photoinhibition. The extent of the leaf movement is increased as the water potential drops, reducing light interception and maintaining a high proportion of open PSII reaction centres. Photoinhibition in water-stressed beans, measured as the capacity to recover F(v)/F(m), is not higher than in well-watered plants and leaf temperature is maintained below the ambient, despite the closure of stomata. Bean leaves restrained from moving, increase leaf temperature and reduce qP, the content of D1 protein and the capacity to recover F(v)/F(m) after dark adaptation, the extent of such changes being higher in water-stressed plants. Data are presented suggesting that even though protective under water stress, paraheliotropism, by reducing light interception, affects the capacity to maintain high CO2 assimilation rates throughout the day in well-watered plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号