首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It previously has been proposed that the Escherichia coli SecB protein promotes the export of the maltose-binding protein (MBP) from the cytoplasm by preventing the folding of the precursor MBP (preMBP) into a translocation-incompetent conformation. The export of wild-type MBP is only partially blocked in SecB- cells. In contrast, the export of MBP16-1, an MBP species with a defective signal peptide, is totally dependent on SecB; hence, SecB- cells that synthesize MBP16-1 are unable to utilize maltose as a sole carbon source. The selection of Mal+ revertants primarily yielded mutants with alterations in the MBP16-1 signal peptide that permitted SecB-independent MBP export to the periplasm to various extents. Although each of these alterations increased the overall hydrophobicity of the signal peptide, it was not possible to strictly equate changes in hydrophobicity with the degree of SecB-independent export. Somewhat unexpectedly, two mutants were obtained in which MBP export in SecB- cells was markedly superior to that of the wild-type MBP. Although wild-type MBP is not cotranslationally translocated in SecB- cells, the two mutant proteins designated MBP172 and MBP173 exhibited significant cotranslational export in the absence of SecB. Thus, the role of SecB was partially supplanted by a signal peptide that promoted more rapid movement of MBP through the export pathway. When preMBP included the MBP172 signal peptide as well as an alteration in the mature moiety that slows folding, the SecB requirement for maximal MBP export efficiency was almost totally eliminated. These results provide additional strong support for the proposed antifolding role of SecB in MBP export.  相似文献   

2.
The export of the maltose-binding protein (MBP), themalE gene product, to the periplasm ofEschericha coli cells has been extensively investigated. The isolation of strains synthesizing MalE-LacZ hybrid proteins led to a novel genetic selection for mutants that accumulate export-defective precursor MBP (preMBP) in the cytoplasm. The export defects were subsequently shown to result from alterations in the MBP signal peptide. Analysis of these and a variety of mutants obtained in other ways has provided considerable insight into the requirements for an optimally functional MBP signal peptide. This structure has been shown to have multiple roles in the export process, including promoting entry of preMBP into the export pathway and initiating MBP translocation across the cytoplasmic membrane. The latter has been shown to be a late event relative to synthesis and can occur entirely posttranslationally, even many minutes after the completion of synthesis. Translocation requires that the MBP polypeptide exist in an export-competent conformation that most likely represents an unfolded state that is not inhibitory to membrane transit. The signal peptide contributes to the export competence of preMBP by slowing the rate at which the attached mature moiety folds. In addition, preMBP folding is thought to be further retarded by the binding of a cytoplasmic protein, SecB, to the mature moiety of nascent preMBP. In cells lacking this antifolding factor, MBP export represents a race between delivery of newly synthesized, export-competent preMBP to the translocation machinery in the cytoplasmic membrane and folding of preMBP into an export-incompetent conformation. SecB is one of threeE. coli proteins classified as molecular chaperones by their ability to stabilize precursor proteins for membrane translocation.  相似文献   

3.
The efficient export of the Escherichia coli maltose-binding protein (MBP) is known to be SecB dependent, whereas ribose-binding protein (RBP) export is SecB independent. When the MBP and RBP signal peptides were exchanged precisely at the signal peptidase processing sites, the resultant RBP-MBP and MBP-RBP hybrid proteins both were efficiently exported in SecB+ cells. However, only MBP-RBP was efficiently exported in SecB- cells; RBP-MBP exhibited a significant export defect, a finding that was consistent with previous proposals that SecB specifically interacts with the mature moiety of precursor MBP to promote export. The relatively slow, totally posttranslational export mode exhibited by certain mutant RBP and MBP-RBP species in SecB+ cells was not affected by the loss of SecB. In contrast, MBP and RBP-MBP species with similarly altered signal peptides were totally export defective in SecB- cells. Both export-defective MBP and RBP-MBP interfered with SecB-mediated protein export by depleting cells of functional SecB. In contrast, neither export-defective RBP nor MBP-RBP elicited such an interference effect. These and other data indicated that SecB is unable to interact with precursor RBP or that any interaction between these two proteins is considerably weaker than that of SecB with precursor MBP. In addition, no correlation could be established between a SecB requirement for export and PrlA-mediated suppression of signal peptide export defects. Finally, previous studies have established that wild-type MBP export can be accomplished cotranslationally, whereas wild-type RBP export is strictly a posttranslational process. In this study, cotranslational export was not detected for either MBP-RBP or RBP-MBP. This indicates that the export mode exhibited by a given precursor protein (cotranslational versus posttranslational) is determined by properties of both the signal peptide and the mature moiety.  相似文献   

4.
Protein translocation in Escherichia coli is mediated by the translocase that, in its minimal form, comprises a protein-conducting pore (SecYEG) and a motor protein (SecA). The SecYEG complex forms a narrow channel in the membrane that allows passage of secretory proteins (preproteins) in an unfolded state only. It has been suggested that the SecA requirement for translocation depends on the folding stability of the mature preprotein domain. Here we studied the effects of the signal sequence and SecB on the folding and translocation of folding stabilizing and destabilizing mutants of the mature maltose binding protein (MBP). Although the mutations affect the folding of the precursor form of MBP, these are drastically overruled by the combined unfolding stabilization of the signal sequence and SecB. Consequently, the translocation kinetics, the energetics and the SecA and SecB dependence of the folding mutants are indistinguishable from those of wild-type preMBP. These data indicate that unfolding of the mature domain of preMBP is likely not a rate-determining step in translocation when the protein is targeted to the translocase via SecB.  相似文献   

5.
In Escherichia coli, the cytosolic chaperone SecB is responsible for the selective entry of a subset of precursor proteins into the Sec pathway. In vitro, SecB binds to a variety of unfolded substrates without apparent sequence specificity, but not native proteins. Selectivity has therefore been suggested to occur by kinetic partitioning of substrates between protein folding and SecB association. Evidence for kinetic partitioning is based on earlier observations that SecB blocks the refolding of the precursor form of maltose-binding protein (preMBP)5 and slow-folding maltose-binding protein (MBP) mutants, but not faster-folding mature wild-type MBP. In order to quantitatively validate the kinetic partitioning model, we have independently measured each of the rate constants involved in the interaction of SecB with refolding preMBP (a physiological substrate of SecB) and mature MBP. The measured rate constants correctly predict substrate folding kinetics over a wide range of SecB, MBP, and preMBP concentrations. Analysis of the data reveals that, for many substrates, kinetic partitioning is unlikely to be responsible for SecB-mediated protein export. Instead, the ability of SecB-bound substrates to continue folding while bound to SecB and their ability to interact with other components of the secretory machinery such as SecA may be key opposing determinants that inhibit and promote protein export, respectively.  相似文献   

6.
While the role of the signal sequence in targeting proteins to specific subcellular compartments is well characterized, there are fewer studies that characterize its effects on the stability and folding kinetics of the protein. We report a detailed characterization of the folding kinetics and thermodynamic stabilities of maltose binding protein (MBP) and its precursor form, preMBP. Isothermal GdmCl and urea denaturation as a function of temperature and thermal denaturation studies have been carried out to compare stabilities of the two proteins. preMBP was found to be destabilized by about 2-6 kcal/mol (20-40%) with respect to MBP. Rapid cleavage of the signal peptide by various proteases shows that the signal peptide is accessible in the native form of preMBP. The observed rate constant of the major slow phase in folding was decreased 5-fold in preMBP relative to MBP. The rate constants of unfolding were similar at 25 degrees C, but preMBP also exhibited a large burst phase change in unfolding that was absent in MBP. At 10 degrees C, preMBP exhibited a higher unfolding rate than MBP as well as a large burst phase. The appreciable destabilization of MBP by signal peptide is functionally relevant, because it enhances the likelihood of finding the protein in an unfolded translocation-competent form and may influence the interactions of the protein with the translocation machinery. Destabilization is likely to result from favorable interactions between the hydrophobic signal peptide and other hydrophobic regions that are exposed in the unfolded state.  相似文献   

7.
Less than 20% of the Escherichia coli maltose-binding protein (MBP) synthesized in Bacillus subtilis is exported. However, a portion of the secreted MBP was processed cotranslationally. Coexpression of SecB, a secretion-related chaperone of E. coli, stimulated posttranslational export of MBP in B. subtilis but inhibited its cotranslational processing. Export of a SecB-independent MBP-ribose-binding protein hybrid precursor was not enhanced by SecB. A slowly folding MBP derivative (MBP-Y283D) was more efficiently secreted than wild-type MBP, suggesting that the antifolding activity of SecB promotes posttranslational secretion of MBP in B. subtilis.  相似文献   

8.
Evidence is presented that the E. coli secB gene encodes a soluble protein that interacts with the mature region of the precursor maltose-binding protein (MBP), and promotes MBP export by preventing premature folding of the newly synthesized polypeptide into an export-incompetent form. The interaction of SecB with MBP was indicated by the finding that synthesis of various export-defective MBP species interfered with normal protein export by limiting SecB availability. The antifolding activity of SecB was demonstrated by the following: the defect in MBP export in SecB- cells was suppressed by mutational alterations affecting MBP folding; export of a mutant MBP that is accomplished in a strictly posttranslational mode was totally blocked in SecB- cells; and the rate of folding of wild-type MBP synthesized in vitro was found to be accelerated when SecB was absent and greatly retarded when excess SecB was present.  相似文献   

9.
In Escherichia coli, the efficient export of maltose-binding protein (MBP) is dependent on the chaperone SecB, whereas export of ribose-binding protein (RBP) is SecB independent. To localize the regions of MBP involved in interaction with SecB, hybrids between MBP and RBP in SecB mutant cells were constructed and analyzed. One hybrid consisted of the signal peptide and first third of the mature moiety of MBP, followed by the C-terminal two-thirds of RBP (MBP-RBP112). This hybrid was dependent upon SecB for its efficient export and exhibited a strong export defect in secA mutant cells. A hybrid between RBP and MBP with the same fusion point was also constructed (RBP-MBP116). The RBP-MBP116 hybrid remained SecB independent and only exhibited a partial export defect in secA mutant cells. In addition, MBP species with specific alterations in the early mature region were less dependent on SecB for their efficient export. The export of these altered MBP species was also less affected in secA mutant cells and in cells treated with sodium azide. These results present additional evidence for the targeting role of SecB.  相似文献   

10.
An in vitro system has been utilized to study the translocation of newly synthesized Escherichia coli maltose-binding protein (MBP) into inverted membrane vesicles. Approximately 40% of precursor MBP (pMBP) synthesized with a wild-type signal peptide was imported into vesicles. However, MBP species with even minor alterations in the signal peptide hydrophobic core were imported into vesicles with an efficiency much lower than predicted from in vivo studies. Posttranslational import of wild-type pMBP into vesicles could be demonstrated if membranes were added after the termination of protein synthesis. However, if vesicles were present throughout the synthesis reaction, most pMBP import occurred either cotranslationally or very soon after completion of synthesis. The wild-type pMBP rapidly became incompetent for posttranslational translocation upon continued incubation in the absence of membranes, whereas pMBP species with altered folding properties remained competent for significantly longer periods. The rate of in vitro pMBP folding was affected by the nature of the signal peptide. The evidence suggests that one or more soluble factors may interact with the newly synthesized pMBP to help maintain it in a translocation-competent state and to promote its entrance into the export pathway.  相似文献   

11.
In the accompanying paper (Altman, E., Bankaitis, V.A., and Emr, S.D. (1990) J. Biol. Chem. 265, 18148-18153) a putative SecB binding site was identified in the mature LamB protein. The export of wild-type LamB was unperturbed when this region was removed, however, suggesting the presence of a second site of interaction between SecB and LamB. In this paper we show that the interference caused by export-defective LamB proteins is influenced by the amount of signal sequence that is present. If a large portion of the signal sequence is deleted then the interference levels are significantly reduced. This result suggests that a region of the signal sequence contributes to the interaction of SecB with the LamB protein. Using anti-SecB affinity chromatography, we demonstrated directly that the association of SecB protein with precursor LamB is dependent on the presence of both the LamB signal sequence and the interfering region which maps to amino acids 320-380 of mature LamB. Although the interfering region is not necessary for the export of wild-type LamB under normal conditions, when the signal sequence is mutationally altered the interfering region is required to promote the efficient export of LamB protein. Also, deletion of the interfering region eliminates the ability of wild-type LamB precursor to be maintained in an export competent conformation in vivo. Collectively, our results indicate that efficient export of the LamB protein is achieved by an interaction with SecB that involves both the LamB signal sequence and the interfering region in mature LamB.  相似文献   

12.
The Escherichia coli export chaperone SecB binds nascent precursors of certain periplasmic and outer membrane proteins and prevents them from folding or aggregating in the cytoplasm. In this study, we demonstrate that the C-terminal 13 residues of SecB were highly mobile using (1)H NMR spectroscopy. A protein lacking the C-terminal 13 amino acids of wild-type SecB was found to retain the ability to bind unfolded maltose-binding protein (MBP) in vitro but to interfere with the normal kinetics of pre-MBP export when overexpressed in vivo. The defect in export was reversed by overproduction of the peripheral membrane ATPase SecA. Therefore, deletion of the mobile region of SecB may alter the interactions of SecB with SecA.  相似文献   

13.
M Watanabe  G Blobel 《Cell》1989,58(4):695-705
A purified 64 kd protein, consisting of four identical subunits of the 16 kd SecB, binds to the signal sequence of preproteins prior to their translocation across inverted vesicles (INV) derived from the E. coli plasma membrane. The purified SecB tetramer competes with canine signal recognition particle (SRP) in signal sequence binding and thus behaves as a prokaryotic equivalent of SRP. As shown by cell fractionation and immunoblot analysis with anti-SecB antibodies, SecB is a cytosolic protein. An E. coli supernatant depleted of SecB after passage through an anti-SecB Sepharose column retains full translation activity but is unable to support translocation into added INV. Translocation into INV is fully restored by readdition of purified SecB.  相似文献   

14.
An early step in the export of maltose-binding protein to the periplasm is interaction with the molecular chaperone SecB. We demonstrate that binding to SecB in vivo is determined by a kinetic partitioning between the folding of maltose-binding protein to its native state and its association with SecB. A complex of SecB and a species of maltose-binding protein that folds slowly is shown to be longer-lived than a complex of the wild-type maltose-binding protein and SecB. In addition, we show that incomplete nascent chains, which are unable to fold, remain complexed with SecB.  相似文献   

15.
Efficient in vivo translocation of the precursor of Escherichia coli outer membrane protein PhoE across the inner membrane is shown to depend on SecB protein. A set of mutants, carrying internal deletions in the phoE gene, was used to locate a possible SecB-binding site and/or a site that makes the protein dependent on SecB for export. Except for two small mutant PhoE proteins, the in vivo and in vitro translocation of all mutant proteins was more efficient in the presence of SecB. The interaction of SecB protein with wild-type and mutant PhoE proteins, synthesized in vitro, was further studied in co-immunoprecipitation experiments with anti-SecB protein serum. The efficiencies of co-immunoprecipitation of precursor and mature PhoE were very similar, indicating the absence of a SecB-binding site in the signal sequence. Moreover, all mutant proteins with deletions in the mature moiety of the PhoE protein were co-immunoprecipitated in these assays, albeit mostly with reduced efficiency. Taken together, these results indicate the existence of multiple SecB-binding sites in the mature portion of the PhoE protein.  相似文献   

16.
Protein folding and unfolding are complex phenomena, and it is accepted that multidomain proteins generally follow multiple pathways. Maltose-binding protein (MBP) is a large (a two-domain, 370-amino acid residue) bacterial periplasmic protein involved in maltose uptake. Despite the large size, it has been shown to exhibit an apparent two-state equilibrium unfolding in bulk experiments. Single-molecule studies can uncover rare events that are masked by averaging in bulk studies. Here, we use single-molecule force spectroscopy to study the mechanical unfolding pathways of MBP and its precursor protein (preMBP) in the presence and absence of ligands. Our results show that MBP exhibits kinetic partitioning on mechanical stretching and unfolds via two parallel pathways: one of them involves a mechanically stable intermediate (path I) whereas the other is devoid of it (path II). The apoMBP unfolds via path I in 62% of the mechanical unfolding events, and the remaining 38% follow path II. In the case of maltose-bound MBP, the protein unfolds via the intermediate in 79% of the cases, the remaining 21% via path II. Similarly, on binding to maltotriose, a ligand whose binding strength with the polyprotein is similar to that of maltose, the occurrence of the intermediate is comparable (82% via path I) with that of maltose. The precursor protein preMBP also shows a similar behavior upon mechanical unfolding. The percentages of molecules unfolding via path I are 53% in the apo form and 68% and 72% upon binding to maltose and maltotriose, respectively, for preMBP. These observations demonstrate that ligand binding can modulate the mechanical unfolding pathways of proteins by a kinetic partitioning mechanism. This could be a general mechanism in the unfolding of other large two-domain ligand-binding proteins of the bacterial periplasmic space.  相似文献   

17.
SecB-binding does not maintain the translocation-competent state of prePhoE   总被引:6,自引:0,他引:6  
The role of SecB protein in the export of the precursor of outer membrane protein PhoE and mutant forms of this precursor was studied in vitro. When synthesized in the absence of SecB, translocation-competent prePhoE was observed post-translationally, but addition of SecB was required for efficient translocation into inner membrane vesicles. The translocation competency of in vitro synthesized prePhoE diminished with a similar half-life during incubations in the presence or absence of SecB. The loss of translocation competency of prePhoE, synthesized in the presence of SecB, was not due to dissociation of prePhoE-SecB complexes as could be demonstrated in co-immunoprecipitation experiments with anti-SecB serum. Apparently, SecB does not maintain the translocation-competent conformation of prePhoE, but is mainly required for efficient targeting of this precursor to the export apparatus.  相似文献   

18.
The structural complexity of a ligand in association with the molecular chaperones SecB and SecA was investigated using three species of precursor maltose-binding protein, which differ in their stability as a result of an amino acid substitution in each that affects the rate of folding of the polypeptide. In the presence of high concentrations of both SecB and SecA, the precursors were translocated in vitro with indistinguishable kinetics. However, when SecA was limiting, the translocation was more rapid for precursor species, which had lower stability in the native state relative to the stability of the wild-type precursor. We propose that, when in complex with SecB, precursors can form an element of tertiary structure and that these tertiary contacts are blocked when SecA is bound.  相似文献   

19.
The rate of folding of the precursor of beta-lactamase is not influenced by the presence of SecB under conditions in which GroEL/ES retards the folding. Wild-type beta-lactamase and several mutants in the signal or the mature protein, affecting either transport or enzyme kinetics and probably folding, were examined for total expression, total enzymatic activity, and transported beta-lactamase (in vivo resistance) in secB- and secB+ strains. We conclude that there is no indication of any relevant interaction between SecB and pre-beta-lactamase in vitro, nor did the secB- mutation affect the transport of wild-type beta-lactamase or any of the mutant in vivo. Thus, putative Escherichia coli "folding modulators' must be of limited specificity.  相似文献   

20.
Folding of the nascent peptide chain into a biologically active protein   总被引:10,自引:0,他引:10  
C L Tsou 《Biochemistry》1988,27(6):1809-1812
The refolding of denatured proteins with complete sequences may not be fast enough to account for the in vivo folding of growing peptide chains during biosynthesis. As some peptide fragments have secondary structures not unlike those of the corresponding segments in the intact molecules and native disulfide bonds of some proteins can form cotranslationally, it is suggested that the folding of the nascent chain begins early during synthesis. However, further adjustments may be necessary during chain elongation and after posttranslational modifications of the completed peptide chain to generate the native conformation of a biologically active protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号