首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
The preprophase band (PPB) of microtubules is thought to be involved in deciding the future division site. In this study, we investigated the effects of double PPBs on spindle formation and the directional decision of cytokinesis by using transgenic BY-2 cells expressing green fluorescent protein (GFP)-tubulin. At prophase, most of the cells with double PPBs formed multipolar spindles, whereas all cells with single PPBs formed normal bipolar spindles, clearly implicating the PPB in deciding the spindle poles. At metaphase, however, both cell types possessed the bipolar spindles, indicating the existence of correctional mechanism(s) at prometaphase. From prometaphase to metaphase, the spindles in double PPB cells altered their directions to become oblique to the cell-elongating axis, and these orientations were maintained in the phragmoplast and resulted in the oblique division planes. These oblique cell plates decreased when actin microfilaments were disrupted, and double actin-depleted zones (ADZs) appeared where the double PPBs had existed. These results suggest that the information necessary for proper cytokinesis may be transferred from the PPBs to the ADZs, even in the case of the double PPBs.  相似文献   

2.
3.
The microtubule preprophase bands (PPBs) participate in the sequence of events to position cell plates in most plants. However, the mechanism of PPB formation remains to be clarified. In the present study, the organization of PPBs in Arabidopsis suspension cultured cells was investigated by confocal laser scanning microscopy combined with pharmacological treatments of reagents specific for the cytoskeleton elements. Double staining of F-actin and microtubules (MTs) showed that actin filaments were arranged randomly and no colocalization with cortical MTs was observed in the interphase cells. However, cortical actin filaments showed colocalization with MTs during the formation of PPBs. A broad actin band formed with the broad MT band in the initiation of PPB and narrowed down together with the MT band to form the PPB. Nevertheless, broad MT bands were formed but failed to narrow down in cells treated with the F-actin disruptor latrunculin A. In contrast, in the presence of the F-actin stabilizer phalloidin, PPB formation did not exhibit any abnormality. Therefore, the integrity, but not the dynamics, of the actin cytoskeleton is necessary for the formation of normal PPBs. Treatment with 2, 3-butanedine monoxime, a myosin inhibitor, also resulted in the formation of broad MT bands, indicating that actomyosin may be involved in the rearrangement of MTs to form the PPBs. Double staining of MTs and myosin revealed that myosin concentrated on the PPB region during PPB formation. It is suggested that the actin cytoskeleton at the PPB site may serve as a rack to transport cortical MTs by using myosin when the broad MT band narrows down to form the PPB.  相似文献   

4.
MICROTUBULE ORGANIZATION 1 (MOR1) is a plant member of the highly conserved MAP215/Dis1 family of microtubule-associated proteins. Prior studies with the temperature-sensitive mor1 mutants of Arabidopsis (Arabidopsis thaliana), which harbor single amino acid substitutions in an N-terminal HEAT repeat, proved that MOR1 regulates cortical microtubule organization and function. Here we demonstrate by use of live cell imaging and immunolabeling that the mor1-1 mutation generates specific defects in the microtubule arrays of dividing vegetative cells. Unlike the universal cortical microtubule disorganization in elongating mor1-1 cells, disruption of mitotic and cytokinetic microtubule arrays was not detected in all dividing cells. Nevertheless, quantitative analysis identified distinct defects in preprophase bands (PPBs), spindles, and phragmoplasts. In nearly one-half of dividing cells at the restrictive temperature of 30 degrees C, PPBs were not detected prior to spindle formation, and those that did form were often disrupted. mor1-1 spindles and phragmoplasts were short and abnormally organized and persisted for longer times than in wild-type cells. The reduced length of these arrays predicts that the component microtubule lengths are also reduced, suggesting that microtubule length is a critical determinant of spindle and phragmoplast structure, orientation, and function. Microtubule organizational defects led to aberrant chromosomal arrangements, misaligned or incomplete cell plates, and multinucleate cells. Antiserum raised against an N-terminal MOR1 sequence labeled the full length of microtubules in interphase arrays, PPBs, spindles, and phragmoplasts. Continued immunolabeling of the disorganized and short microtubules of mor1-1 at the restrictive temperature demonstrated that the mutant mor1-1(L174F) protein loses function without dissociating from microtubules, providing important insight into the mechanism by which MOR1 may regulate microtubule length.  相似文献   

5.
Summary To date it has been accepted that preprophase bands of microtubules (PPBs) either do not precede cell division or do so inconsistently in suspension cultures, the assumption being that such cultures proliferate in an unorganized state in which placement of cell plates is not regulated by the PPB system that is widespread in organized tissues. Using indirect immunofluorescence microscopy with antitubulin, the relative frequency of occurrence of PPBs in enzymatically separated cells from root tips and suspension cultures of carrot and tobacco, was quantified by taking the ratio of the number of PPBs: phragmoplast. This ratio was termed the PPB index.One carrot suspension culture proliferated in a medium containing 2,4-Dichlorophenoxyacetic acid (2,4-D), and recognizable stages in somatic embryogenesis formed when 2,4-D was removed from the medium. Another carrot suspension culture was nonembryogenic and removal of 2,4-D resulted in a reduction of cell division and increase in cell elongation. The tobacco culture was a cytokinin habituated cell line and also required 2,4-D to maintain cell division. It ceased proliferation, and cell elongation took place if 2,4-D was removed.The PPB index in the root tips from both species, and in both types of carrot suspension culture was approximately the same but was approx. 15-fold lower in the tobacco suspension. PPBs in the tobacco suspension were atypical in structure as well as sparse in numbers. The PPB index allows quantitative comparisons between different tissues to be made. The low PPB index and the irregular PPBs in the tobacco suspension correlates with its inability to undergo organized morphogenesis and generate spatially defined cell lineages upon 2,4-D removal. In contrast, the high PPB index in the carrot suspension cultures correlates with their potential for organized embryo formation, whether or not that potential is realized by withdrawal of 2,4-D. However, their high PPB index is not obligatorily coupled to embryogenesis.  相似文献   

6.
Nuclear DNA replication and the development of preprophase bands (PPBs) are two chronologically close processes during the higher plant cell cycle. However, it is not clear whether occurrence of PPBs is coupled with DNA replication. A soybean protoplast culture with a high frequency of PPBs was used to study the relationship between the two processes when treated with aphidicolin, a potent and specific inhibitor of eukaryotic DNA polymerase-α. When DNA replication was partially inhibited by 10 mg l-1 aphidicolin, both the percentage of cells with PPBs and the mitotic index (MI) decreased in absolute terms, but there were proportionately more PPBs than mitoses. Since PPBs change in appearance as they develop, they were divided into categories of early (interphase associated) and late (prophase associated). The increased PPB/MI ratio was associated with an increased proportion of early stage PPBs relative to late stage PPBs. When DNA replication was completely blocked by 50 mg l-1 aphidicolin, both MI and the percentage of cells with PPBs were close to zero. These results suggest that development of PPBs was to a large extent coupled DNA replication. We propose that the increased PPB/MI ratio at 10 mg l-1 aphidicolin was due to a linkage between the duration of interphase and the time period in which early stage PPBs are visible. The increased duration of early PPBs partially compensates for the reduced number of nuclei reaching the stage of PPB initiation. Furthermore, in cultures containing aphidicolin, the percentage of PPBs with simultaneous perinuclear fluorescence (PNF, accumulation of microtubules on nuclear envelope) was reduced and whenever PNF was prominent and dense on the nuclear envelope the nucleus showed chromatin condensation. These observations indicated that the transition from PPB to PNF and then to the prophase spindle is closely related to the progress of the nuclear cycle.  相似文献   

7.
Continuous suspension cultures of the marsh grass Spartina pectinata grow as either unorganized colonies or files of cells. Immunofluorescence of tubulin revealed microtubule (MT) structures similar to those encountered in meristematic cells, including cortical microtubule (MT) bands in some interphase cells and in all prophase cells. These MT bands were judged to be preprophase bands (PPBs) on the basis of their temporal appearance in the cell cycle and their position and orientation relative to division planes. Although PPBs are widely thought to be associated with organized tissues and polarized divisions, there are reports of PPBs in suspension cultures of four dicot species. This is the first report of a PPB in suspension cultures of a monocot species.  相似文献   

8.
We have studied the timing of preprophase band (PPB) development in the division cycle of onion (Allium cepa L.) root-tip cells by combinations of immunofluorescence microscopy of microtubules, microspectrophotometry of nuclear DNA, and autoradiography of [3H]thymidine incorporation during pulse-chase experiments. In normally grown onion root tips, every cell with a PPB had the G2 level of nuclear DNA. Some were in interphase, prior to chromatin condensation, and some had varying degrees of chromatin condensation, up to the stage of prophase at which the PPB-prophase spindle transition occurs. In addition, autoradiography showed that PPBs can be formed in cells which have just finished their S phase, and microspectrophotometry enabled us to detect a population of cells in G2 which had no PPBs, these presumably including cells which had left the division cycle. The effects of inhibitors of DNA synthesis showed that the formation of PPBs is not fully coupled to events of the nuclear cycle. Although the mitotic index decreased 6-10-fold to less than 0.5% when roots were kept in 20 g·ml-1 aphidicolin for more than 8 h, the percentage of cells containing PPBs did not decrease in proportion: the number of cells in interphase with PPBs increased while the number in prophase decreased. Almost the same phenomena were observed in the presence of 100 g·ml-1 5-aminouracil and 40 g·ml-1 hydroxyurea. In controls, all cells with PPBs were in G2 or prophase, but in the presence of aphidicolin, 5-aminouracil or hydroxyurea, some of the interphase cells with PPBs were in the S phase or even in the G1 phase. We conclude that PPB formation normally occurs in G2 (in at least some cases very early in G2) and that this timing can be experimentally uncoupled from the timing of DNA duplication in the cell-division cycle. The result accords with other evidence indicating that the cytoplasmic events of cytokinesis are controlled in parallel to the nuclear cycle, rather than in an obligatorily coupled sequence.Abbreviations APC aphidicolin - 5-AU 5-aminouracil - DAPI 4, 6-diamidino-2phenylindole - HU hydroxyurea - MI mitotic index - MT microtubule - PMSF phenylmethyl-sulfonyl fluoride - PPB preprophase band - %PPB percentage of cells with PPBs  相似文献   

9.
H. Wang  A. J. Cutler  L. C. Fowke 《Protoplasma》1989,150(2-3):110-116
Summary Multinucleate cells derived from soybean protoplasts were used to investigate the effect of increased nuclear number on the development and frequency of preprophase bands (PPBs) of microtubules (MTs). The results do not support the assumption that one nucleus establishes one PPB because the majority of multinucleate cells had only one large PPB. However, nuclear number or ploidy level has some influence on PPB development since double PPBs occurred more often in multinucleate than uninucleate cells. Double (divergent) PPBs were present at early and late stages of PPB development, suggesting that they are not a transient stage. PPBs in multinucleate cells developed in a similar fashion to those in uninucleate cells. In multinucleate cells, each dividing nucleus had its own spindle and phragmoplast. Subsequent phragmoplast development was frequently uncoupled from PPB distribution. Most multinucleates contained a single large PPB but at telophase, multiple phragmoplasts oriented in different planes.Abbreviations MT microtubule - MtSB microtubule stabilizing buffer - PBS phosphate buffered saline - PNF perinuclear fluorescence - PPB preprophase band  相似文献   

10.
Summary Nuclear and microtubular cycles were studied in large heterophasic multinuclear cells induced in root tips ofTriticum turgidum by caffeine treatment. Multinuclear cells and cells with polyploid nuclei exhibited various configurations of multiple and complex preprophase microtubule (Mt) bands (PPBs), including helical ones. The developmental stages of PPBs in some heterophasic cells did not comply with the cell cycle stages of the associated nuclei, a fact indicating that these events are not directly controlled by the associated nuclei. The heterophasic cells exhibited asynchronous nuclei at different stages of mitosis. In cells displaying prophase and interphase nuclei, the prophase spindle was either absent or developed around both of them or developed around the prophase nuclei earlier than around the interphase ones. During prometaphase-metaphase of the advanced nuclei the lagging interphase nuclei were induced to form prematurely condensed chromosomes (PCCs) along with spindle formation around them. These observations suggest that the mitotic transition in heterophasic cells is delayed but is ultimately achieved due to the effect of the advanced nuclei, which induces a premature mitotic entry of the lagging nuclei. Although kinetochore Mt bundles were found associated with PCCs, their metaphase and anaphase spindles were abnormal resulting in abnormal or abortive anaphases. In some heterophasic cells, metaphase-anaphase transition did not take place simultaneously in different chromosome groups, signifying that the cells do not exit from the mitotic state after anaphase initiation of the advanced nuclei. Asynchronous pace of mitosis of different chromosome groups was also observed during anaphase and telophase. Implications of these observations in understanding plant cell cycle regulation are discussed.Abbreviations cdk cyclin dependent kinase - Mt microtubule - PCC prematurely condensed chromosome - PPB preprophase band  相似文献   

11.
Summary Immunofluorescence methods were developed for examining the distribution of microtubules in freshly isolated and cultured protoplasts and regenerated somatic embryos of white spruce (Picea glauca). Freshly isolated protoplasts consisted of both uniand multinucleate types. Uninucleate protoplasts established parallel cortical microtubules during cell wall formation and cell shaping, divided within 24 h and developed into somatic embryos in culture. Dividing cells were characterized by preprophase bands (PPBs) of microtubules, atypical spindle microtubules focused at the poles and a typical phragmoplast at telophase. Multinucleate protoplasts also established parallel arrays of cortical microtubules during cell wall formation. In addition their nuclei divided synchronously within 4 days, then cell walls formed between the daughter nuclei. Individual multinucleate protoplast-derived colonies subsequently gave rise to elongate suspensor cells thereby forming embryo-like structures by 7 days.  相似文献   

12.
The detectability of preprophase bands (PPBs) by antibody to PSTAIR sequence, which is found in cyclin-dependent kinases and is perfectly conserved in the p34 cdc2 kinase from all known sources, was compared among root tip cells of 12 plant species and cultivars. Although more than 80% of prophase cells in all species examined had PPBs of microtubules (MTs), the detectability of PPBs by anti-PSTAIR varied from 0% to 88% depend on species examined. The detectability of PPBs by the antibody to PSTAIR was as high as that by antibody to tubulin inAllium cepa, A. fistulosum andA. tuberosum. InTriticum andPisum, the detectability varied greatly among cultivars. Only few faint PPBs could be detectable inChrysanthemum, and no PPBs were seen inHibiscus using anti-PSTAIR. The PSTAIR antibody recognized single (Hordeum, Triticum Zea) or multiple (Allium, Hibiscus, Pisum) bands around 34 kDa on protein blots of root tip exracts. PPBs of anti-PSTAIR cross reactive molecules were detectable in one fourth of the prophase cells ofPisum (cv. Snack) by the conventional method. However, the detectability of PPBs inPisum increased to 80% when the method for the PSTAIR-fluorescence was modified, suggesting that the low detectability of PPBs by anti-PSTAIR may not be due to genuine differences between species or cultivars, but may be the result of variable staining.  相似文献   

13.
Organization of microtubules (MTs) in relation to the behavior of nuclei was examined in dividing binucleate cells ofAdiantum capillus-veneris L. To induce binucleate cells, caffeine, an inhibitor of formation of the cell plate, was applied at 4 mM to synchronously dividing protonemal cells during cytokinesis (Murata and Wada 1993). Formation of the preprophase band (PPB) during the next cell cycle was examined in non-centrifuged and centrifuged cells. The two nuclei were separated or associated with one another in both non-centrifuged and centrifuged cells, although the location of the nuclei in the cylindrical protonemal cells was different (Murata and Wada 1993). Irrespective of centrifugation, a single PPB was formed around the nuclei in cells with associated nuclei. Two PPBs were formed in cells with separated nuclei in centrifuged cells. Patterns of mitosis and cytokinesis varied, depending on the location of the PPB and the distribution of the nuclei. The role of the nucleus in formation of the PPB is discussed.  相似文献   

14.
Microtubule arrays in living cells were analysed during Arabidopsis stomatal development in order to more closely define stages in the pathway and contexts where intercellular signalling might operate. Arabidopsis stomata are patterned iteratively via the orientation of an asymmetric division in a cell located next to an existing stoma. It was found that preprophase bands of microtubules (PPBs) were correctly placed away from stomata and from two types of precursor cells. This suggests that all three cell types participate in an intercellular signalling pathway that orients the division site. These and other asymmetric divisions in the pathway were preceded by a polarized cytoplasm, with the PPB around the nucleus at one end, and the vacuole at the other. PPBs before symmetric divisions of guard mother cells (GMCs) were broader than those in asymmetric divisions, and the GMC division site was marked by unusual end-wall thickenings. This work identifies an accessible system for studying cytoskeletal function and provides a foundation for analysing the role of genes involved in stomatal development.  相似文献   

15.
Endosperm is emerging as a system for investigating the genetic control of wall placement and deposition in plant development. Development of endosperm progresses in distinct stages from a wall-less syncytial stage to a cellular stage that is entirely typical of plant meristems where the division plane is predicted by a preprophase band of microtubules (PPB) and cytokinesis is completed by formation of a cell plate in association with a phragmoplast. Four developmentally different types of walls, each associated with a different microtubule system, are sequentially produced: (1) free growing walls deposited in the absence of mitosis and phragmoplasts; (2) walls guided by cytoplasmic phragmoplasts formed adventitiously in the absence of mitosis; (3) walls formed by interzonal phragmoplasts in a cell cycle that lacks PPBs; and (4) wall deposition driven by interzonal phragmoplasts in a cycle that includes PPBs. We are using methods of differential screening to isolate cDNA clones corresponding in temporal and spatial pattern to the types of wall development, and are studying mutants for clues to the genetic controls of wall development.  相似文献   

16.
To investigate the spatial relationship between the nucleus and the cortical division site, epidermal cells were selected in which the separation between these two areas is large. Avoiding enzyme treatment and air drying, Datura stramonium cells were labeled with antitubulin antibodies and the three-dimensional aspect of the cytoskeletons was reconstructed using computer-aided optical sectioning. In vacuolated cells preparing for division, the nucleus migrates into the center of the cell, suspended by transvacuolar strands. These strands are now shown to contain continuous bundles of microtubules which bridge the nucleus to the cortex. These nucleus-radiating microtubules adopt different configurations in cells of different shape. In elongated cells with more or less parallel side walls, oblique strands radiating from the nucleus to the long side walls are presumably unstable, for they are progressively realigned into a transverse disc (the phragmosome) as broad, cortical, preprophase bands (PPBs) become tighter. The phragmosome and the PPB are both known predictors of the division plane and our observations indicate that they align simultaneously in elongated epidermal cells. These observations suggest another hypothesis: that the PPB may contain microtubules polymerized from the nuclear surface. In elongated cells, the majority of the radiating microtubules, therefore, come to anchor the nucleus in the transverse plane, consistent with the observed tendency of such cells to divide perpendicular to the long axis. In nonrectangular isodiametric epidermal cells, which approximate regular hexagons in section, the radial microtubular strands emanating from the nucleus tend to remain associated with the middle of each subtending cell wall. The strands are not reorganized into a single dominant transverse bar, but remain as a starlike array until mitosis. PPBs in these cells are not as tight; they may only be a sparse accumulation of microtubules, even forming along non-diametrical radii. This arrangement is consistent with the irregular division patterns observed in epidermal mosaics of isodiametric D. stramonium cells. The various conformations of the radial strands can be modeled by springs held in two-dimensional hexagonal frames, and by soap bubbles in three-dimensional hexagonal frames, suggesting that the division plane may, by analogy, be selected by minimal path criteria. Such behavior offers a cytoplasmic explanation of long-standing empirically derived "rules" which state that the new cell wall tends to meet the maternal wall at right angles. The radial premitotic strands and their analogues avoid taking the longer path to the vertex of an angle where a cross wall is already present between neighboring cells.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
Microspores of Brassica napus L. cv. Topas, undergo embryogenesis when cultured at 32.5 °C for the first 18–24 h and then at 25 °C. The first division in heat-treated microspores is a symmetric division in contrast to the asymmetric division found after the first pollen mitosis in-planta or in microspores cultured continuously at 25 °C. This asymmetric division is unique in higher plants as it results in daughter cells separated by a non-consolidated wall. The cytoskeleton has an important role in such morphological changes. We examined microtubule (MT) organization during the first 24 h of heat induction in the embryogenic B. napus cv. Topas and the non-embryogenic B. napus breeding line 0025. Preprophase bands (PPBs) of MTs appeared in cv. Topas microspores in late uninucleate microspores and in prophase figures after 4–8 h of heat treatment. However, more than 60% of the PPBs were not continuous bands. In contrast, PPBs were never observed in pollen mitosis; MT strands radiated from the surface of the nuclear envelope throughout microspore maturation to the end of prophase of pollen mitosis I, during in-planta development and in microspores cultured at 25 °C. Following 24 h of heat treatment, over 95% of the microspores appeared to have divided symmetrically as indicated by the similar size of the daughter nuclei, but only 7–16% of the microspores eventually formed embryos. Discontinuous walls were observed in more than 50% of the divisions and it is probable that the discontinuous PPBs gave rise to such wall abnormalities which may then obstruct embryo development. Preprophase bands were not formed in heat-treated microspores of the non-embryogenic line 0025 and the ensuing divisions showed discontinuous walls. It is concluded that the appearance of PPBs in heat-induced microspores marks sporophytic development and that continuous PPBs are required for cell wall consolidation and embryogenesis. It follows that induced structures with two equally condensed nuclei, do not necessarily denote symmetric divisions. Received: 22 October 1998 / Accepted: 28 November 1998  相似文献   

18.
Summary The organization of microtubules during interphase and prophase in embryogenic cultures of black spruce (Picea mariana) was investigated by indirect immunofluorescence. Somatic embryos of black spruce possessed an extensively branched and interconnecting network of fine interphase cortical microtubules. The development of pre-prophase bands (PPBs) in embryogenic black spruce cultures was compared with that in non-embryogenic cell cultures of jack pine (Pinus banksiana). PPBs in both species were initially arranged as a very broad array of microtubules, later (early to mid-prophase) becoming narrower and more intensely fluorescent. The occurrence of pre-prophase bands in relation to the number of phragmoplasts (i.e. PPB index) of black spruce somatic embryos was significantly higher (p<0.01) than that found for jack pine cells.  相似文献   

19.
In Ipomoea hederifolia Linn., stems increase in thickness by forming successive rings of cambia. With the increase in stem diameter, the first ring of cambium also gives rise to thin-walled parenchymatous islands along with thick-walled xylem derivatives to its inner side. The size of these islands increases (both radially and tangentially) gradually with the increase in stem diameter. In pencil-thick stems, that is, before the differentiation of a second ring of cambium, some of the parenchyma cells within these islands differentiate into interxylary phloem. Although all successive cambia forms secondary phloem continuously, simultaneous development of interxylary phloem was observed in the innermost successive ring of xylem. In the mature stems, thick-walled parenchyma cells formed at the beginning of secondary growth underwent dedifferentiation and led to the formation of phloem derivatives. Structurally, sieve tube elements showed both simple sieve plates on transverse to slightly oblique end walls and compound sieve plates on the oblique end walls with poorly developed lateral sieve areas. Isolated or groups of two to three sieve elements were noticed in the rays of secondary phloem. They possessed simple sieve plates with distinct companion cells at their corners. The length of these elements was more or less similar to that of ray parenchyma cells but their diameter was slightly less. Similarly, in the secondary xylem, perforated ray cells were noticed in the innermost xylem ring. They were larger than the adjacent ray cells and possessed oval to circular simple perforation plates. The structures of interxylary phloem, perforated ray cells, and ray sieve elements are described in detail.  相似文献   

20.
Abstract: The cytoskeleton, which mainly consists of microtubules (MTs) and actin microfilaments (MFs), plays various significant roles that are indispensable for eukaryotic viability, including determination of cell shape, cell movement, nuclear division, and cytokinesis. In animal cells, MFs appear to be of more importance than MTs, except for spindle formation in nuclear division. In contrast, higher plants have a rigid cell wall around their cells, and have thus evolved elegant systems of MTs to control the direction of cellulose microfibrils (CMFs) deposited in the cell wall, and to divide centrifugally in a physically limited space. Dynamic changes in MTs during cell cycle progression in higher plant cells have been observed over several decades, including cortical MTs (CMTs) during interphase, preprophase bands (PPBs) from late G2 phase to prophase, spindles from prometaphase to anaphase, and phragmoplasts at telophase. The MFs also show some changes not as obvious as MT dynamics. However, questions regarding the process of formation of these arrays, and the precise mechanisms by which they fulfill their roles, remain unsolved. In this article, we present an outline of the changes in the cytoskeleton based on our studies with highly-synchronized tobacco BY-2 cells. Some candidate molecules that could play roles in cytoskeletal dynamics are discussed. We also hope to draw attention to recent attempts at visualization of cytoskeletons with molecular techniques, and to some examples of genetic approaches in this field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号