首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Dynamical behavior of epidemiological models with nonlinear incidence rates   总被引:13,自引:0,他引:13  
Epidemiological models with nonlinear incidence rates I pSqshow a much wider range of dynamical behaviors than do those with bilinear incidence rates IS. These behaviors are determined mainly by p and , and secondarily by q. For such models, there may exist multiple attractive basins in phase space; thus whether or not the disease will eventually die out may depend not only upon the parameters, but also upon the initial conditions. In some cases, periodic solutions may appear by Hopf bifurcation at critical parameter values.  相似文献   

2.
Some epidemiological models with nonlinear incidence   总被引:20,自引:0,他引:20  
Epidemiological models with nonlinear incidence rates can have very different dynamic behaviors than those with the usual bilinear incidence rate. The first model considered here includes vital dynamics and a disease process where susceptibles become exposed, then infectious, then removed with temporary immunity and then susceptible again. When the equilibria and stability are investigated, it is found that multiple equilibria exist for some parameter values and periodic solutions can arise by Hopf bifurcation from the larger endemic equilibrium. Many results analogous to those in the first model are obtained for the second model which has a delay in the removed class but no exposed class.Research supported in part by Centers for Disease Control Contract 200-87-0515. Support services provided at University House Research Center at the University of IowaResearch supported in part by NSERC A-8965 and the University of Victoria President's Committee on Faculty Research and Travel  相似文献   

3.
In this paper, we derive and study the classical SIR, SIS, SEIR and SEI models of epidemiological dynamics with time delays and a general incidence rate. By constructing Lyapunov functionals, the global asymptotic stability of the disease-free equilibrium and the endemic equilibrium is shown. This analysis extends and develops further our previous results and can be applied to the other biological dynamics, including such as single species population delay models and chemostat models with delay response.  相似文献   

4.
When the traditional assumption that the incidence rate is proportional to the product of the numbers of infectives and susceptibles is dropped, the SIRS model can exhibit qualitatively different dynamical behaviors, including Hopf bifurcations, saddle-node bifurcations, and homoclinic loop bifurcations. These may be important epidemiologically in that they demonstrate the possibility of infection outbreak and collapse, or autonomous periodic coexistence of disease and host. The possible mechanisms leading to nonlinear incidence rates are discussed. Finally, a modified general criterion for supercritical or subcritical Hopf bifurcation of 2-dimensional systems is presented.  相似文献   

5.
An epidemiological model with a delay and a nonlinear incidence rate   总被引:5,自引:0,他引:5  
An epidemiological model with both a time delay in the removed class and a nonlinear incidence rate is analysed to determine the equilibria and their stability. This model is for diseases where individuals are first susceptible, then infected, then removed with temporary immunity and then susceptible again when they lose their immunity. There are multiple equilibria for some parameter values, and, for certain of these, periodic solutions arise by Hopf bifurcation from the large nontrivial equilibrium state.Research supported in parts by Centers for Disease Control Contract 200-87-0515Research supported in part by NSERC A-8965  相似文献   

6.
This paper deals with the nonlinear dynamics of a susceptible-infectious-recovered (SIR) epidemic model with nonlinear incidence rate, vertical transmission, vaccination for the newborns of susceptible and recovered individuals, and the capacity of treatment. It is assumed that the treatment rate is proportional to the number of infectives when it is below the capacity and constant when the number of infectives reaches the capacity. Under some conditions, it is shown that there exists a backward bifurcation from an endemic equilibrium, which implies that the disease-free equilibrium coexists with an endemic equilibrium. In such a case, reducing the basic reproduction number less than unity is not enough to control and eradicate the disease, extra measures are needed to ensure that the solutions approach the disease-free equilibrium. When the basic reproduction number is greater than unity, the model can have multiple endemic equilibria due to the effect of treatment, vaccination and other parameters. The existence and stability of the endemic equilibria of the model are analyzed and sufficient conditions on the existence and stability of a limit cycle are obtained. Numerical simulations are presented to illustrate the analytical results.  相似文献   

7.
Phylodynamics - the field aiming to quantitatively integrate the ecological and evolutionary dynamics of rapidly evolving populations like those of RNA viruses - increasingly relies upon coalescent approaches to infer past population dynamics from reconstructed genealogies. As sequence data have become more abundant, these approaches are beginning to be used on populations undergoing rapid and rather complex dynamics. In such cases, the simple demographic models that current phylodynamic methods employ can be limiting. First, these models are not ideal for yielding biological insight into the processes that drive the dynamics of the populations of interest. Second, these models differ in form from mechanistic and often stochastic population dynamic models that are currently widely used when fitting models to time series data. As such, their use does not allow for both genealogical data and time series data to be considered in tandem when conducting inference. Here, we present a flexible statistical framework for phylodynamic inference that goes beyond these current limitations. The framework we present employs a recently developed method known as particle MCMC to fit stochastic, nonlinear mechanistic models for complex population dynamics to gene genealogies and time series data in a Bayesian framework. We demonstrate our approach using a nonlinear Susceptible-Infected-Recovered (SIR) model for the transmission dynamics of an infectious disease and show through simulations that it provides accurate estimates of past disease dynamics and key epidemiological parameters from genealogies with or without accompanying time series data.  相似文献   

8.
Population size dependent incidence in models for diseases without immunity   总被引:4,自引:0,他引:4  
Epidemiological models of SIS type are analyzed to determine the thresholds, equilibria, and stability. The incidence term in these models has a contact rate which depends on the total population size. The demographic structures considered are recruitment-death, generalized logistic, decay and growth. The persistence of the disease combined with disease-related deaths and reduced reproduction of infectives can greatly affect the population dynamics. For example, it can cause the population size to decrease to zero or to a new size below its carrying capacity or it can decrease the exponential growth rate constant of the population.  相似文献   

9.
A three-component model consisting on one-prey and two-predator populations is considered with a Holling type II response function incorporating a constant proportion of prey refuge. We also consider the competition among predators for their food (prey) and shelter. The essential mathematical features of the model have been analyzed thoroughly in terms of stability and bifurcations arising in some selected situations. Threshold values for some parameters indicating the feasibility and stability conditions of some equilibria are determined. The range of significant parameters under which the system admits different types of bifurcations is investigated. Numerical illustrations are performed in order to validate the applicability of the model under consideration.  相似文献   

10.
Can we express biophysical neuronal models as integrate-and-fire (IF) models with leakage coefficients which are no longer constant, as in the conventional leaky IF model, but functions of membrane potential and other biophysical variables? We illustrate the answer to this question using the FitzHugh-Nagumo (FHN) model as an example. A novel IF type model, the IF-FHN model, which approximates to the FHN model, is obtained. The leakage coefficient derived in the IF-FHN model has nonmonotonic relationship with membrane potential, revealing at least in part the intrinsic mechanisms underlying the FHN models. The IF-FHN model correspondingly exhibits more complex behaviour than the standard IF model. For example, in some parameter regions, the IF-FHN model has a coefficient of variation of the output interspike interval which is independent of the number of inhibitory inputs, being close to unity over the whole range, comparable to the FHN model as we noted previously (Brown et al., 1999).  相似文献   

11.
Population dynamics methodology now powerfully combines discrete time models (with constant parameters, density dependence, random environment, and/or demographic stochasticity) and capture-recapture models for estimating demographic parameters. Vertebrate population dynamics has strongly benefited from this progress: survival estimates have been revised upwards, trade-offs between life history traits have been demonstrated, analyses of population viability and management are more and more realistic. Promising developments concern random effects, multistate and integrated models. Some biological questions (density dependence, links between individual and population levels, and diversification of life histories) can now be efficiently attacked.  相似文献   

12.
In stochastic modelling of infectious spread, it is often assumed that infection confers permanent immunity, a susceptible-infective-removed (SIR) model. We show how results concerning long-term (endemic) behaviour may be extended to a susceptible-infective-removed-susceptible (SIRS) model, in which immunity is temporary. Since the full SIRS model with demography is rather intractable, we also consider two simpler models: the susceptible-infective-susceptible (SIS) model with demography, in which there is no immunity; and the SIRS model in a closed population. For each model, we first analyse a deterministic model, then approximate the quasi-stationary distribution (equilibrium distribution conditional upon non-extinction of infection) using a moment closure technique. We look in particular at the effect of the immune period upon infection prevalence and upon time to fade-out of infection. Our main findings are that a shorter average immune period leads to higher infection prevalence in quasi-stationarity, and to longer persistence of infection in the population.  相似文献   

13.
Control of our movements is apparently facilitated by an adaptive internal model in the cerebellum. It was long thought that this internal model implemented an adaptive inverse model and generated motor commands, but recently many reject that idea in favor of a forward model hypothesis. In theory, the forward model predicts upcoming state during reaching movements so the motor cortex can generate appropriate motor commands. Recent computational models of this process rely on the optimal feedback control (OFC) framework of control theory. OFC is a powerful tool for describing motor control, it does not describe adaptation. Some assume that adaptation of the forward model alone could explain motor adaptation, but this is widely understood to be overly simplistic. However, an adaptive optimal controller is difficult to implement. A reasonable alternative is to allow forward model adaptation to ‘re-tune’ the controller. Our simulations show that, as expected, forward model adaptation alone does not produce optimal trajectories during reaching movements perturbed by force fields. However, they also show that re-optimizing the controller from the forward model can be sub-optimal. This is because, in a system with state correlations or redundancies, accurate prediction requires different information than optimal control. We find that adding noise to the movements that matches noise found in human data is enough to overcome this problem. However, since the state space for control of real movements is far more complex than in our simple simulations, the effects of correlations on re-adaptation of the controller from the forward model cannot be overlooked.  相似文献   

14.
Consistent with human gambling behaviour but contrary to optimal foraging theory, pigeons showed maladaptive choice behaviour in experiment 1 by choosing an alternative that provided on average two food pellets over an alternative that provided a certain three food pellets. On 20 per cent of the trials, choice of the two-pellet alternative resulted in a stimulus that always predicted ten food pellets; on the remaining 80 per cent of the trials, the two-pellet alternative resulted in a different stimulus that always predicted zero food pellets. Choice of the three-pellet alternative always resulted in three food pellets. This choice behaviour mimics human monetary gambling in which the infrequent occurrence of a stimulus signalling the winning event (10 pellets) is overemphasized and the more frequent occurrence of a stimulus signalling the losing event (zero pellets) is underemphasized, compared with the certain outcome associated with not gambling (the signal for three pellets). In experiment 2, choice of the two-pellet alternative resulted in ten pellets with a probability of 20 per cent following presentation of either stimulus. Choice of the three-pellet alternative continued to result in three food pellets. In this case, the pigeons reliably chose the alternative that provided a certain three pellets over the alternative that provided an average of two pellets. Thus, in experiment 1, the pigeons were responding to obtain the discriminative stimuli signalling reinforcement and the absence of reinforcement, rather than to obtain the variability in reinforcement.  相似文献   

15.
J. V. Greenman  T. G. Benton 《Oikos》2001,93(2):343-351
Environmental variation is ubiquitous, but its effects on nonlinear population dynamics are poorly understood. Using simple (unstructured) nonlinear models we investigate the effects of correlated noise on the dynamics of two otherwise independent populations (the Moran effect), i.e. we focus on noise rather than dispersion or trophic interaction as the cause of population synchrony. We find that below the bifurcation threshold for periodic behaviour (1) synchrony between populations is strongly dependent on the shape of the noise distribution but largely insensitive to which model is studied, (2) there is, in general, a loss of synchrony as the noise is filtered by the model, (3) for specially structured noise distributions this loss can be effectively eliminated over a restricted range of distribution parameter values even though the model might be nonlinear, (4) for unstructured models there is no evidence of correlation enhancement, a mechanism suggested by Moran, but above the bifurcation threshold enhancement is possible for weak noise through phase-locking, (5) rapid desynchronisation occurs as the chaotic regime is approached. To carry out the investigation the stochastic models are (a) reformulated in terms of their joint asymptotic probability distributions and (b) simulated to analyse temporal patterns.  相似文献   

16.
The aim of this short note is to illustrate how an abstract result by Fonda about persistence in dynamical systems can be easily applied to some epidemiological models.  相似文献   

17.
Many disease pathogens stimulate immunity in their hosts, which then wanes over time. To better understand the impact of this immunity on epidemiological dynamics, we propose an epidemic model structured according to immunity level that can be applied in many different settings. Under biologically realistic hypotheses, we find that immunity alone never creates a backward bifurcation of the disease-free steady state. This does not rule out the possibility of multiple stable equilibria, but we provide two sufficient conditions for the uniqueness of the endemic equilibrium, and show that these conditions ensure uniqueness in several common special cases. Our results indicate that the within-host dynamics of immunity can, in principle, have important consequences for population-level dynamics, but also suggest that this would require strong non-monotone effects in the immune response to infection. Neutralizing antibody titer data for measles are used to demonstrate the biological application of our theory.  相似文献   

18.
19.
Summary In dealing with pollutant transport and diffusion, we need to develop numerical models to reduce the complexity of the phenomena. This paper briefly presents the main characteristics of the different approaches used, attempting to define their field of applicability.  相似文献   

20.
This paper studies the dynamical behavior of classical 2-dimensional models of continuously and discretely reproducing diploid populations with two alleles at one locus. The phase variables are allele frequency and population density. The genotype fitnesses are not assumed to be monotonically decreasing functions of density. Hence the mean fitness curve is more complicated than in the monotonic case. If genotype fitnesses are only density dependent, results concerning equilibrium stability are obtained similar to those for the monotonic case, and periodic solutions are precluded in the differential equation model. An example with one-hump genotype fitnesses is presented and analyzed.Research supported by funds provided by the USDA-Forest Service, Southeastern Forest Experiment Station, Pioneering (Population Genetics of Forest Trees) Research Unit, Raleigh, North Carolina  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号