首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chuman Y  Uren A  Cahill J  Regan C  Wolf V  Kay BK  Rubin JS 《Peptides》2004,25(11):1831-1838
Secreted Frizzled-related proteins (sFRPs) bind Wnts and modulate their activity. To identify putative sFRP-1 binding motifs, we screened an M13 phage displayed combinatorial peptide library. A predominant motif, L/V-VDGRW-L/V, was present in approximately 70% of the phage that bound sFRP-1. Use of peptide/alkaline phosphatase chimeras and alanine scanning confirmed that the conserved motif was important for sFRP-1 recognition. The dissociation constant for a peptide/sFRP-1 complex was 3.9 microM. Additional analysis revealed that DGR was the core of the binding motif. Although Wnt proteins lack this sequence, other proteins possessing the DGR motif may function as novel binding partners for sFRP-1.  相似文献   

2.
Secreted Frizzled-related protein-1 (sFRP-1) contains a cysteine-rich domain homologous to the putative Wnt-binding site of Frizzleds. To facilitate the biochemical and biological analysis of sFRP-1, we developed a mammalian recombinant expression system that yields approximately 3 mg of purified protein/liter of conditioned medium. Using this recombinant protein, we demonstrated that sFRP-1 and Wg (wingless) interact in enzyme-linked immunosorbent and co-precipitation assays. Surprisingly, a derivative lacking the cysteine-rich domain retained the ability to bind Wg. Cross-linking experiments performed with radioiodinated sFRP-1 provided definitive evidence that sFRP-1 and Wg bind directly to each other. Besides detecting a cross-linked complex consistent in size with 1:1 stoichiometry of sFRP-1 and Wg, we also observed a larger complex whose size suggested the presence of a second sFRP-1 molecule. The formation of both complexes was markedly enhanced by an optimal concentration of exogenous heparin, emphasizing the potential importance of heparan-sulfate proteoglycan in Wnt binding and signaling. sFRP-1 exerted a biphasic effect on Wg activity in an armadillo stabilization assay, increasing armadillo level at low concentrations but reducing it at higher concentrations. These results provide new insights about the Wnt binding and biological activity of sFRPs.  相似文献   

3.
Secreted Frizzled-related proteins can regulate metanephric development   总被引:5,自引:0,他引:5  
Wnt-4 signaling plays a critical role in kidney development and is associated with the epithelial conversion of the metanephric mesenchyme. Furthermore, secreted Frizzled-related proteins (sFRPs) that can bind Wnts are normally expressed in the developing metanephros, and function in other systems as modulators of Wnt signaling. sfrp-1 is distributed throughout the medullary and cortical stroma in the metanephros, but is absent from condensed mesenchyme and primitive tubular epithelia of the developing nephron where wnt-4 is highly expressed. In contrast, sfrp-2 is expressed in primitive tubules. To determine their role in kidney development, recombinant sFRP-1, sFRP-2 or combinations of both were applied to cultures of 13-dpc rat metanephroi. Both tubule formation and bud branching were markedly inhibited by sFRP-1, but concurrent sFRP-2 treatment restored some tubular differentiation and bud branching. sFRP-2 itself showed no effect on cultures of metanephroi. In cultures of isolated, induced rat metanephric mesenchymes, sFRP-1 blocked events associated with epithelial conversion (tubulogenesis and expression of lim-1, sfrp-2 and E-cadherin); however, it had no demonstrable effect on early events (compaction of mesenchyme and expression of wt1). As shown herein, sFRP-1 binds Wnt-4 with considerable avidity and inhibits the DNA-binding activity of TCF, an effector of Wnt signaling, while sFRP-2 had no effect on TCF activation. These observations suggest that sFRP-1 and sFRP-2 compete locally to regulate Wnt signaling during renal organogenesis. The antagonistic effect of sFRP-1 may be important either in preventing inappropriate development within differentiated areas of the medulla or in maintaining a population of cortical blastemal cells to facilitate further renal expansion. On the other hand, sFRP-2 might promote tubule formation by permitting Wnt-4 signaling in the presence of sFRP-1.  相似文献   

4.
Wnts are a family of secreted proteins involved in multiple developmental mechanisms during nervous system development, including cell proliferation, cell migration, axon guidance and specification of cell positional information. We report here the expression of sFRP-1 mRNA, encoding a putative inhibitor of Wnt, in the developing mouse neocortex during the entire period when neurons for the neocortex are born. We show that sFRP-1 mRNA expression is spatially restricted to the proliferative zones during the period, when neurons are known to be generated in large numbers for the enlarging cortical plate.  相似文献   

5.
In diabetics, methylglyoxal (MG), a glucose-derived metabolite, plays a noxious role by inducing oxidative stress, which causes and exacerbates a series of complications including low-turnover osteoporosis. In the present study, while MG treatment of mouse bone marrow stroma-derived ST2 cells rapidly suppressed the expression of osteotrophic Wnt-targeted genes, including that of osteoprotegerin (OPG, a decoy receptor of the receptor activator of NF-kappaB ligand (RANKL)), it significantly enhanced that of secreted Frizzled-related protein 4 (sFRP-4, a soluble inhibitor of Wnts). On the assumption that upregulated sFRP-4 is a trigger that downregulates Wnt-related genes, we sought out the molecular mechanism whereby oxidative stress enhanced the sFRP-4 gene. Sodium bisulfite sequencing revealed that the sFRP-4 gene was highly methylated around the sFRP-4 gene basic promoter region, but was not altered by MG treatment. Electrophoretic gel motility shift assay showed that two continuous CpG loci located five bases upstream of the TATA-box were, when methylated, a target of methyl CpG binding protein 2 (MeCP2) that was sequestered upon induction of 8-hydroxy-2-deoxyguanosine, a biomarker of oxidative damage to DNA. These in vitro data suggest that MG-derived oxidative stress (not CpG demethylation) epigenetically and rapidly derepress sFRP-4 gene expression. We speculate that under persistent oxidative stress, as in diabetes and during aging, osteopenia and ultimately low-turnover osteoporosis become evident partly due to osteoblastic inactivation by suppressed Wnt signaling of mainly canonical pathways through the derepression of sFRP-4 gene expression.  相似文献   

6.
The Wnt genes encode a large family of secreted proteins that play a key role in embryonic development and tissue differentiation in many species (Rijsewijk et al., 1987 and Nusse and Varmus, 1992). Genetic and biochemical studies have suggested that the frizzled proteins are cell surface receptors for Wnts (Vinson et al., 1989, Chan et al., 1992, Bhanot et al., 1996 and Wang et al., 1996). In parallel, a number of secreted frizzled-like proteins with a conserved N-terminal frizzled motif have been identified (Finch et al., 1997, Melkonyan et al., 1997 and Rattner et al., 1997). One of these proteins, FrzA, the bovine counterpart of the murine sFRP-1 (93% identity) is involved in vascular cell growth control, binds Wg in vitro and antagonizes Xwnt-8 and hWnt-2 signaling in Xenopus embryos (Xu et al., 1998 and Duplàa et al., 1999). In this study, we report that sFRP-1 is expressed in the heart and in the visceral yolk sac during mouse development, and that sFRP-1 and mWnt-8 display overlapping expression patterns during heart morphogenesis. From 8.5 to 12.5 d.p.c., sFRP-1 is expressed in cardiomyocytes together with mWnt-8 but neither in the pericardium nor in the endocardium; at 17.5 d.p.c., they are no longer present in the heart. In mouse adult tissues, while sFRP-1 is highly detected in the aortic endothelium and media and in cardiomyocytes, mWnt-8 is not detected in these areas. Immunoprecipitation experiments demonstrates that FrzA binds to mWnt-8 in cell culture experiments.  相似文献   

7.
Suppressing Wnt signaling by the hedgehog pathway through sFRP-1   总被引:1,自引:0,他引:1  
  相似文献   

8.
Secreted Frizzled-related protein-1 (sFRP-1), a soluble protein that binds to Wnts and modulates Wnt signaling, contains an N-terminal domain homologous to the putative Wnt-binding site of Frizzled (Fz domain) and a C-terminal heparin-binding domain with weak homology to netrin. Both domains are cysteine-rich, having 10 and 6 cysteines in the Fz and heparin-binding domains, respectively. In this study, the disulfide linkages of recombinant sFRP-1 were determined. Numbering sFRP-1 cysteines sequentially from the N terminus, the five disulfide linkages in the Fz domain are 1-5, 2-4, 3-8, 6-10, and 7-9, consistent with the disulfide pattern determined for homologous domains of several other proteins. The disulfide linkages of the heparin-binding domain are 11-14, 12-15, and 13-16. This latter set of assignments provides experimental verification of one of the disulfide patterns proposed for netrin (NTR) modules and thereby supports the prediction that the C-terminal heparin-binding domain of sFRP-1 is an NTR-type domain. Interestingly, two subsets of sFRPs appear to have alternate disulfide linkage patterns compared with sFRP-1, one of which involves the loss of a disulfide due to deletion of a single cysteine from the NTR module, whereas the remaining cysteine may pair with a new cysteine introduced in the Fz domain of the protein. Analysis of glycosylation sites showed that sFRP-1 contains a relatively large carbohydrate moiety on Asn(172) (approximately 2.8 kDa), whereas Asn(262), the second potential N-linked glycosylation site, is not modified. No O-linked carbohydrate groups were detected. There was evidence of heterogeneous proteolytic processing at both the N and C termini of the recombinant protein. The predominant N terminus was Ser(31), although minor amounts of the protein with Asp(41) and Phe(50) as the N termini were observed. The major C-terminal processing event was removal of the terminal amino acid (Lys(313)) with only a trace amount of unprocessed protein detected.  相似文献   

9.
Wnt glycoproteins play essential roles in the development of metazoan organisms. Many Wnt proteins, such as Wnt1, activate the well-conserved canonical Wnt signaling pathway, which results in accumulation of beta-catenin in the cytosol and nucleus. Other Wnts, such as Wnt5a, activate signaling mechanisms which do not involve beta-catenin and are less well characterized. Dishevelled (Dvl) is a key component of Wnt/beta-catenin signaling and becomes phosphorylated upon activation of this pathway. In addition to Wnt1, we show that several Wnt proteins, including Wnt5a, trigger phosphorylation of mammalian Dvl proteins and that this occurs within 20 to 30 min. Unlike the effects of Wnt1, phosphorylation of Dvl in response to Wnt5a is not concomitant with beta-catenin stabilization, indicating that Dvl phosphorylation is not sufficient to activate canonical Wnt/beta-catenin signaling. Moreover, neither Dickkopf1, which inhibits Wnt/beta-catenin signaling by binding the Wnt coreceptors LRP5 and -6, nor dominant-negative LRP5/6 constructs could block Wnt-mediated Dvl phosphorylation. We conclude that Wnt-induced phosphorylation of Dvl is independent of LRP5/6 receptors and that canonical Wnts can elicit both LRP-dependent (to beta-catenin) and LRP-independent (to Dvl) signals. Our data also present Dvl phosphorylation as a general biochemical assay for Wnt protein function, including those Wnts that do not activate the Wnt/beta-catenin pathway.  相似文献   

10.
Mechanisms controlling human bone formation remain to be fully elucidated. We have used differential display-polymerase chain reaction analysis to characterize osteogenic pathways in conditionally immortalized human osteoblasts (HOBs) representing distinct stages of differentiation. We identified 82 differentially expressed messages and found that the Wnt antagonist secreted frizzled-related protein (sFRP)-1 was the most highly regulated of these. Transient transfection of HOBs with sFRP-1 suppressed canonical Wnt signaling by 70% confirming its antagonistic function in these cells. Basal sFRP-1 mRNA levels increased 24-fold during HOB differentiation from pre-osteoblasts to pre-osteocytes, and then declined in mature osteocytes. This expression pattern correlated with levels of cellular viability such that the pre-osteocytes, which had the highest levels of sFRP-1 mRNA, also had the highest rate of cell death. Basal sFRP-1 mRNA levels also increased 29-fold when primary human mesenchymal stem cells were differentiated to osteoblasts supporting the developmental regulation of the gene. Expression of sFRP-1 mRNA was induced 38-fold following prostaglandin E2 (PGE2) treatment of pre-osteoblasts and mature osteoblasts that had low basal message levels. In contrast, sFRP-1 expression was down-regulated by as much as 80% following transforming growth factor (TGF)-beta1 treatment of pre-osteocytes that had high basal mRNA levels. Consistent with this, treatment of pre-osteoblasts and mature osteoblasts with PGE(2) increased apoptosis threefold, while treatment of pre-osteocytes with TGF-beta1 decreased cell death by 50%. Likewise, over-expression of sFRP-1 in HOBs accelerated the rate of cell death threefold. These results establish sFRP-1 as an important negative regulator of human osteoblast and osteocyte survival.  相似文献   

11.
Secreted frizzled-related protein (sFRP)-1 is a Wnt antagonist that inhibits breast carcinoma cell motility, whereas the secreted glycoprotein thrombospondin-1 stimulates adhesion and motility of the same cells. We examined whether thrombospondin-1 and sFRP-1 interact directly or indirectly to modulate cell behavior. Thrombospondin-1 bound sFRP-1 with an apparent Kd = 48 nM and the related sFRP-2 with a Kd = 95 nM. Thrombospondin-1 did not bind to the more distantly related sFRP-3. The association of thrombospondin-1 and sFRP-1 is primarily mediated by the amino-terminal N-module of thrombospondin-1 and the netrin domain of sFRP-1. sFRP-1 inhibited α3β1 integrin-mediated adhesion of MDA-MB-231 breast carcinoma cells to a surface coated with thrombospondin-1 or recombinant N-module, but not adhesion of the cells on immobilized fibronectin or type I collagen. sFRP-1 also inhibited thrombospondin-1-mediated migration of MDA-MB-231 and MDA-MB-468 breast carcinoma cells. Although sFRP-2 binds similarly to thrombospondin-1, it did not inhibit thrombospondin-1-stimulated adhesion. Thus, sFRP-1 binds to thrombospondin-1 and antagonizes stimulatory effects of thrombospondin-1 on breast carcinoma cell adhesion and motility. These results demonstrate that sFRP-1 can modulate breast cancer cell responses by interacting with thrombospondin-1 in addition to its known effects on Wnt signaling.  相似文献   

12.
Secreted frizzled-related proteins (sFRPs) are glycoproteins that are recognized as Wnt antagonists. To identify the functional domains that are involved in Wnt antagonist function, several sFRP-1 mutants and sFRP-1/sFRP-2 chimeras were generated. These mutants were characterized in an optimized T-cell factor (TCF)-luciferase based assay in U2OS human osteosarcoma cells. Deletions of the sFRP-1 cysteine rich domain (CRD) lead to the complete loss of Wnt antagonist function. A region between amino acids 73-86 within the second loop of the CRD of sFRP-1 was necessary for the optimal Wnt inhibitory function. Within this region, a conserved tyrosine residue played a critical role, and its change to neutral or polar amino acids lead to decreased Wnt inhibitory activity. The sFRP-1/sFRP-2 chimeras with the netrin domain of sFRP-1 replaced by corresponding sFRP-2 sequences showed 40-70% loss of Wnt antagonist function. The sFRP-1/sFRP-2 chimera with the replacement of C-terminal 19 amino acids of sFRP-1 with 11 amino acids of sFRP-2 resulted in 70% loss of activity indicating that carboxyl-terminal region of sFRP-1 is important for its Wnt inhibitory activity. The structure-function analysis studies of sFRP-1 clearly demonstrate the interaction of several functional domains for its optimal Wnt antagonist function.  相似文献   

13.
Wnt-1 belongs to the Wnt family of secreted glycoproteins inducing an intracellular signaling pathway involved in cell proliferation, differentiation, and pattern formation. The canonical branch is one of three known branches. This is also valid in vitro, and Wnts can be considered beneficial for culturing primary cells from organs, provided Wnts are available and applicable even with cells of different species. It was shown here that internally c-myc-tagged murine Wnt-1 produced in the heterologous host Escherichia coli was appropriate for inducing intracellular signaling of the canonical Wnt pathway in eukaryotic cells via stabilization of cytosolic beta-catenin. The pioneering injection of the protein into the blastocoels of Xenopus laevis embryos led to axis duplication and suppression of head formation. Applying the recombinant murine Wnt-1 to metanephric mesenchyme activated the tubulogenic program. The signal-inducing activity of the recombinant protein was also positively demonstrated in the TOP-flash reporter assay. Although Wnts were purified recently from the growth media of stably transfected eukaryotic cell lines, the production of active Wnt proteins in pro- or eukaryotic microorganisms reportedly has never been successful. Here soluble production in E. coli and translocation into the oxidizing environment of the periplasm were achieved. The protein was purified using the internal c-myc tag. The effect on the eukaryotic cells implies that activity was retained. Thus, this approach could make recombinant murine Wnt-1 available as a good starting point for other Wnts needed, for example, for maintaining and differentiating stem cells, organ restoration therapy, and tissue engineering.  相似文献   

14.
Regulated expression of sFRP-1 protein by the GeneSwitch system   总被引:3,自引:0,他引:3  
The GeneSwitch system is a mifepristone-inducible expression system that provides exceptionally low uninduced and high-induced protein expression in mammalian cells. We have developed an adenovirus recombinant containing GeneSwitch protein driven by the GAL4-tk promoter, as well as recombinants containing sFRP-1 and luciferase reporter under the control of the GAL4-E1b promoter. Luciferase activity in A549 cells infected with the GeneSwitch and Luciferase viruses is very low in ethanol-treated cells, while the level of luciferase activity increases 200-fold in cells treated with mifepristone. Conditional expression of functional sFRP-1 is demonstrated in A549, human osteoblast, and CHO cell lines by either the co-infection of cells with sFRP-1 and GeneSwitch viruses or the infection of GeneSwitch expressing cell lines with sFRP-1 virus and subsequent treatment with mifepristone. The expression of sFRP-1 is seen as early as 4 h post-mifepristone treatment, reaching the highest levels at 20 h. The sFRP-1 protein is present in conditioned media, and the protein is functional based upon its ability to inhibit the Wnt-mediated activation of TCF-Luciferase reporter activity. The regulated expression of sFRP-1 utilizing adenovirus vectors provides an opportunity to address the contribution of sFRP-1 in the regulation of stem cell differentiation, maturation, and their function by modulating the Wnt signaling.  相似文献   

15.
Hall AC  Lucas FR  Salinas PC 《Cell》2000,100(5):525-535
Synapse formation requires changes in cell morphology and the upregulation and localization of synaptic proteins. In the cerebellum, mossy fibers undergo extensive remodeling as they contact several granule cells and form complex, multisynaptic glomerular rosettes. Here we show that granule cells secrete factors that induce axon and growth cone remodeling in mossy fibers. This effect is blocked by the WNT antagonist, sFRP-1, and mimicked by WNT-7a, which is expressed by granule cells. WNT-7a also induces synapsin I clustering at remodeled areas of mossy fibers, a preliminary step in synaptogenesis. Wnt-7a mutant mice show a delay in the morphological maturation of glomerular rosettes and in the accumulation of synapsin I. We propose that WNT-7a can function as a synaptogenic factor.  相似文献   

16.
The wingless- and int-related proteins (Wnts) have an important role during embryonic development and limb patterning. To investigate their function during chondrocyte differentiation, we used NIH3T3 cells producing seven members of the Wnt family and secreted frizzled-related protein (sFRP-2) for co-culture experiments with the rat chondrogenic cell line pColl(II)-EGFP-5. Pilot experiments showed a negative effect of Wnt-7a on the proliferation of three rodent chondrogenic cell lines, RCJ3.1(C5.18), CFK-2, and C1. To establish a reporter system for chondrogenic differentiation we then produced a stably transfected chondrogenic cell line based on RCJ3.1(C5.18) for further experiments, which expresses green fluorescence protein (EGFP) under the collagen type II promoter (pColl(II)-EGFP-5). This cell line permits convenient observation of green fluorescence as a marker for differentiation in life cultures. The colony size of this cell line in agarose suspension cultures was reduced to 20-40% of control, when exposed to Wnt-1, 3a, 4, 7a, and 7b for 14 days. Similarly, reporter gene expression and the synthesis of cartilage-specific proteoglycans were inhibited by this group of Wnts. In contrast, pColl(II)-EGFP-5 cells exposed to Wnt-5a and Wnt-11 reached 140% of control, and reporter gene expression and proteoglycan synthesis were stimulated. The effects of Wnt-7a and Wnt-5a were additive in pColl(II)-EGFP-5 cells and some but not all Wnt effects were antagonized by the inhibition of proteoglycan sulfation with chlorate, by sFRP-2, which may modulate Wnt receptor binding, or by inhibitors of protein kinase C. These results suggest two functional Wnt subclasses that differentially regulate proliferation and chondrogenic differentiation in vitro which may have implications for cartilage differentiation in vivo. Since some, but not all Wnt effects were sensitive to inhibitors of proteoglycan synthesis or protein kinase C, multiple modes of signal transduction may be involved.  相似文献   

17.
18.
Plasminogen activator inhibitor type 1 (PAI-1), the fast-acting inhibitor of tissue-type plasminogen activator (t-PA) and urokinase (u-PA), is a member of the serpin superfamily of proteins. Both in plasma and in the growth substratum of cultured endothelial cells, PAI-1 is associated with its binding protein vitronectin, resulting in a stabilization of active PAI-1. Recently, it has been demonstrated that the PAI-1-binding site on vitronectin is adjacent to a heparin-binding site (Preissner et al., 1990). Furthermore, it can be deduced that the amino acid residues, proposed to mediate heparin binding in the serpins antithrombin III and heparin cofactor II, are conserved in PAI-1. Consequently, here we have investigated whether PAI-1 also interacts with heparin. At pH 7.4, PAI-1 quantitatively binds to heparin-Sepharose and can be eluted with increasing [NaCl]. Binding of PAI-1 to heparin-Sepharose can be efficiently competed with heparin in solution (IC50, 7 microM). In the presence of heparin, the protease specificity of PAI-1 toward thrombin is substantially increased. This is shown by (i) quenching of thrombin activity of PAI-1 in the presence of heparin and (ii) induction of the formation of SDS-stable complexes between thrombin and PAI-1 by heparin. In a dose response curve, both effects reached a maximum at approximately 1 unit/mL and then diminished again upon further increasing the heparin concentration, strongly suggesting a template mechanism as an explanation for the observed effect. In contrast to vitronectin, heparin does not stabilize the active conformation of PAI-1.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
A set of conserved molecules guides axons along the metazoan dorsal-ventral axis. Recently, Wnt glycoproteins have been shown to guide axons along the anterior-posterior (A/P) axis of the mammalian spinal cord. Here, we show that, in the nematode Caenorhabditis elegans, multiple Wnts and Frizzled receptors regulate the anterior migrations of neurons and growth cones. Three Wnts are expressed in the tail, and at least one of these, EGL-20, functions as a repellent. We show that the MIG-1 Frizzled receptor acts in the neurons and growth cones to promote their migrations and provide genetic evidence that the Frizzleds MIG-1 and MOM-5 mediate the repulsive effects of EGL-20. While these receptors mediate the effects of EGL-20, we find that the Frizzled receptor LIN-17 can antagonize MIG-1 signaling. Our results indicate that Wnts play a key role in A/P guidance in C. elegans and employ distinct mechanisms to regulate different migrations.  相似文献   

20.
Piperidinyl diphenylsulfonyl sulfonamides are a novel class of molecules that have inhibitory binding affinity for sFRP-1. As a secreted protein sFRP-1 inhibits the function of the secreted Wnt glycoprotein. Therefore, as inhibitors of sFRP-1 these small molecules facilitate the Wnt/β-catenin canonical signaling pathway. Details of the structure–activity relationships and biological activity of this structural class of compounds will be discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号