首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Deficiency in docosahexaenoic acid (DHA) is associated with impaired visual and neurological postnatal development, cognitive decline, macular degeneration, and other neurodegenerative diseases. DHA is an omega-3 polyunsaturated fatty acyl chain concentrated in phospholipids of brain and retina, with photoreceptor cells displaying the highest content of DHA of all cell membranes. The identification and characterization of neuroprotectin D1 (NPD1, 10R, 17S-dihydroxy-docosa-4Z,7Z,11E,13E,15Z,19Z-hexaenoic acid) contributes in understanding the biological significance of DHA. In oxidative stress-challenged human retinal pigment epithelial (RPE) cells, human brain cells, or rat brains undergoing ischemia-reperfusion, NPD1 synthesis is enhanced as a response for sustaining homeostasis. Thus, neurotrophins, Aβ peptide 42 (Aβ42), calcium ionophore A23187, interleukin (IL)-1β, or DHA supply enhances NPD1 synthesis. NPD1, in turn, up-regulates the antiapoptotic proteins of the Bcl-2 family and decreases the expression of proapoptotic Bcl-2 family members. Moreover, NPD1 inhibits IL-1β-stimulated expression of cyclooxygenase-2 (COX-2). Because both RPE and photoreceptors are damaged and then die in retinal degenerations, elucidating how NPD1 signaling contributes to retinal cell survival may lead to a new understanding of disease mechanisms. In human neural cells, DHA attenuates amyloid-β (Aβ) secretion, resulting in concomitant formation of NPD1. NPD1 was found to be reduced in the Alzheimer's disease (AD) cornu ammonis region 1 (CA1) hippocampal region, but not in other areas of the brain. The expression of key enzymes for NPD1 biosynthesis, cytosolic phospholipase A2 (cPLA2), and 15-lipoxygenase (15-LOX) was found altered in the AD hippocampal CA1 region. NPD1 repressed Aβ42-triggered activation of pro-inflammatory genes and upregulated the antiapoptotic genes encoding Bcl-2, Bcl-xl, and Bfl-1(A1) in human brain cells in culture. Overall, these results support the concept that NPD1 promotes brain and retina cell survival via the induction of antiapoptotic and neuroprotective gene-expression programs that suppress Aβ42-induced neurotoxicity and other forms of cell injury, which in turn fosters homeostasis during development in aging, as well as during the initiation and progression of neurodegenerative diseases.  相似文献   

2.
The significance of the selective enrichment in omega-3 essential fatty acids in photoreceptors and synaptic membranes of the nervous system has remained, until recently, incompletely understood. While studying mechanisms of cell survival in neural degeneration, we discovered a docosanoid synthesized from unesterified docosahexaenoic acid (DHA) by a 15-lipoxygenase (15-LOX), which we called neuroprotectin D1 (NPD1; 10R,17S-dihydroxy-docosa-4Z,7Z,11E,13E,15E,19Z hexaenoic acid). This lipid mediator is a docosanoid because it is derived from the 22 carbon (22C) precursor DHA, unlike eicosanoids, which are derived from the 20 carbon (20C) arachidonic acid (AA) family member of essential fatty acids. We discovered that NPD1 is promptly made in response to oxidative stress, as a response to brain ischemia–reperfusion, and in the presence of neurotrophins. NPD1 is neuroprotective in experimental brain damage, in oxidative-stressed retinal pigment epithelial (RPE) cells, and in human brain cells exposed to amyloid-β (Aβ) peptides. We thus envision NPD1 as a protective sentinel, one of the very first defenses activated when cell homeostasis is threatened by imbalances in normal neural function. We provide here, in three sections, recent experimental examples that highlight the specificity and potency of NPD1 spanning beneficial bioactivity during initiation and early progression of neurodegeneration: (1) during retinal signal phototransduction, (2) during brain ischemia–reperfusion, and (3) in Alzheimer's disease (AD) and stressed human brain cell models of AD. From this experimental evidence, we conclude that DHA-derived NPD1 regulation targets upstream events of brain cell apoptosis, as well as neuro-inflammatory signaling, promoting and maintaining cellular homeostasis, and restoring neural and retinal cell integrity.  相似文献   

3.
Alterations in corneal innervations result in impaired corneal sensation, severe dry eye and damage to the epithelium that may in turn lead to corneal ulcers, melting and perforation. These alterations can occur after refractive surgery. We have discovered that pigment epithelium-derived factor (PEDF) plus docosahexaenoic acid (DHA or the docosanoid bioactive neuroprotectin D1 (NPD1)) induces nerve regeneration after corneal surgery that damages the stromal nerves. We found that PEDF is released from corneal epithelial cells after injury, and when DHA is provided to the cells it stimulates the biosynthesis of NPD1 by an autocrine mechanism. The combination of PEDF plus DHA also decreased the production of leukotriene B4 (LTB4), a neutrophil chemotactic factor, thereby decreasing the inflammation induced after corneal damage. These studies suggest that PEDF plus DHA and its derivative NPD1 hold promise as a future treatment to restore a healthy cornea after nerve damage.  相似文献   

4.
Neuroprotectin D1 (NPD1), a docosahexaenoic acid (DHA)-derived lipid mediator, promotes survival in cells exposed to oxidative stress by inducing the activity of anti-inflammatory mediators and suppressing the expression of pro-inflammatory genes. Though retinal pigment epithelial (RPE) cells naturally produce NPD1 from DHA, investigating the mechanisms through which exogenous NPD1 induces cell survival is essential to assess mechanisms of actions and the potential of this lipid mediator for treatment of retinal degenerative diseases. The PI3K/Akt and mTOR/p70S6K pathways are responsible for supporting cell survival upon exposure to oxidative stress. In human ARPE-19 cells pretreated with NPD1 then exposed to varying concentrations of oxidative stress or repeated exposures to oxidative stress, Akt, mTOR, and p70S6K were phosphorylated to a greater extent and for a greater duration than cells not pretreated with NPD1. In addition to increased phosphorylation, a subsequent decreased rate of apoptosis was observed upon NPD1 treatment. Thus NPD1 bioactivity in RPE cells enhances activation of these pathways and promotes cell integrity and survival.  相似文献   

5.
Neuroprotectin D1 (NPD1) is a stereoselective mediator derived from the omega-3 essential fatty acid docosahexaenoic acid (DHA) with potent inflammatory resolving and neuroprotective bioactivity. NPD1 reduces Aβ42 peptide release from aging human brain cells and is severely depleted in Alzheimer's disease (AD) brain. Here we further characterize the mechanism of NPD1's neurogenic actions using 3xTg-AD mouse models and human neuronal-glial (HNG) cells in primary culture, either challenged with Aβ42 oligomeric peptide, or transfected with beta amyloid precursor protein (βAPP)(sw) (Swedish double mutation APP695(sw), K595N-M596L). We also show that NPD1 downregulates Aβ42-triggered expression of the pro-inflammatory enzyme cyclooxygenase-2 (COX-2) and of B-94 (a TNF-α-inducible pro-inflammatory element) and apoptosis in HNG cells. Moreover, NPD1 suppresses Aβ42 peptide shedding by down-regulating β-secretase-1 (BACE1) while activating the α-secretase ADAM10 and up-regulating sAPPα, thus shifting the cleavage of βAPP holoenzyme from an amyloidogenic into the non-amyloidogenic pathway. Use of the thiazolidinedione peroxisome proliferator-activated receptor gamma (PPARγ) agonist rosiglitazone, the irreversible PPARγ antagonist GW9662, and overexpressing PPARγ suggests that the NPD1-mediated down-regulation of BACE1 and Aβ42 peptide release is PPARγ-dependent. In conclusion, NPD1 bioactivity potently down regulates inflammatory signaling, amyloidogenic APP cleavage and apoptosis, underscoring the potential of this lipid mediator to rescue human brain cells in early stages of neurodegenerations.  相似文献   

6.
Neurodegenerative diseases share two common features: enhanced oxidative stress and cellular inability to scavenge structurally damaged abnormal proteins. Pathogenesis of polyglutamine (poly(Q)) diseases involves increased protein misfolding, along with ubiquitin and chaperon protein-containing nuclear aggregates. In spinocerebellar ataxia, the brain and retina undergo degeneration. Neuroprotectin D1 (NPD1) is made on-demand in the nervous system and retinal pigment epithelial (RPE) cells in response to oxidative stress, which activates prosurvival signaling via regulation of gene expression and other processes. We hypothesized that protein misfolding-induced proteotoxic stress triggers NPD1 synthesis. We used ARPE-19 cells as a cellular model to assess stress due to ataxin-1 82Q protein expression and determine whether NPD1 prevents apoptosis. Ectopic ataxin-1 expression induced RPE cell apoptosis, which was abrogated by 100 nm docosahexaenoic acid, 10 ng/ml pigment epithelium-derived factor, or NPD1. Similarly, NPD1 was protective in neurons and primary human RPE cells. Furthermore, when ataxin-1 82Q was expressed in 15-lipoxygenase-1-deficient cells, apoptosis was greatly enhanced, and only NPD1 (50 nm) rescued cells from death. NPD1 reduced misfolded ataxin-1-induced accumulation of proapoptotic Bax in the cytoplasm, suggesting that NPD1 acts by preventing proapoptotic signaling pathways from occurring. Finally, NPD1 signaling interfered with ataxin-1/capicua repression of gene expression and decreased phosphorylated ataxin-1 in an Akt-independent manner, suggesting that NPD1 signaling modulates formation or stabilization of ataxin-1 complexes. These data suggest that 1) NPD1 synthesis is an early response induced by proteotoxic stress due to abnormally folded ataxin-1, and 2) NPD1 promotes cell survival through modulating stabilization of ataxin-1 functional complexes and pro-/antiapoptotic and inflammatory pathways.  相似文献   

7.
Dry eye (DE) is a multifactorial condition that affects the surface of the eye and induces an inflammatory response. Corneal nerves play an important role in the maintenance of a healthy ocular surface. Here we review corneal structure, nerve architecture, DE conditions, and nerve regeneration following corneal surgery and discuss how n-3 fatty acids affect the health of the cornea. Animal studies show that resolvins, compounds derived from eicosapentaenoic acid (EPA), increase tear volume and decrease inflammation induced by DE. After corneal surgery in rabbits, treatment with nerve growth factor (NGF) or pigment epithelial derived factor (PEDF) in conjunction with docosahexaenoic acid (DHA) increase nerve density and corneal epithelial cell proliferation. Increased synthesis of the novel docosanoid, neuroprotectin D1 (NPD1), was found in corneas after the animals were treated with PEDF and DHA. Topical application of these lipids derived from n-3 fatty acids could be useful in treating DE and prevent clinical complications such as cornea erosion and ulcerations.  相似文献   

8.
Docosahexaenoic acid (DHA), an omega-3 fatty acid family member, is obtained by diet or synthesized from dietary essential omega-3 linolenic acid and delivered systemically to the choriocapillaris, from where it is taken up by the retinal pigment epithelium (RPE). DHA is then transported to the inner segments of photoreceptors, where it is incorporated in phospholipids during the biogenesis of outer segment disk and plasma membranes. As apical photoreceptor disks are gradually shed and phagocytized by the RPE, DHA is retrieved and recycled back to photoreceptor inner segments for reassembly into new disks. Under uncompensated oxidative stress, the docosanoid neuroprotectin D1 (NPD1), a potent mediator derived from DHA, is formed by the RPE and displays its bioactivity in an autocrine and paracrine fashion. The purpose of this study was to determine whether photoreceptors have the ability to synthesize NPD1, and whether or not this lipid mediator exerts bioactivity on these cells. For this purpose, 661W cells (mouse-derived photoreceptor cells) were used. First we asked whether these cells have the ability to form NPD1 by incubating cells with deuterium (d4)-labeled DHA exposed to dark and bright light treatments, followed by LC–MS/MS-based lipidomic analysis to identify and quantify d4-NPD1. The second question pertains to the potential bioactivity of these lipids. Therefore, cells were incubated with 9-cis-retinal in the presence of bright light that triggers cell damage and death. Following 9-cis-retinal loading, DHA, NPD1, or vehicle were added to the media and the 661W cells maintained either in darkness or under bright light. DHA and NPD1 were then quantified in cells and media. Regardless of lighting conditions, 661W cells acquired DHA from the media and synthesized 4–9 times as much d4-NPD1 under bright light treatment in the absence and presence of 9-cis-retinal compared to cells in darkness. Viability assays of 9-cis-retinal-treated cells demonstrated that 34 % of the cells survived without DHA or NPD1. However, after bright light exposure, DHA protected 23 % above control levels and NPD1 increased protection by 32 %. In conclusion, the photoreceptor cell line 661W has the capability to synthesize NPD1 from DHA when under stress, and, in turn, can be protected from stress-induced apoptosis by DHA or NPD1, indicating that photoreceptors effectively contribute to endogenous protective signaling mediated by NPD1 under stressful conditions.  相似文献   

9.
Retinal degenerative diseases result in retinal pigment epithelial (RPE) and photoreceptor cell loss. These cells are continuously exposed to the environment (light) and to potentially pro-oxidative conditions, as the retina''s oxygen consumption is very high. There is also a high flux of docosahexaenoic acid (DHA), a PUFA that moves through the blood stream toward photoreceptors and between them and RPE cells. Photoreceptor outer segment shedding and phagocytosis intermittently renews photoreceptor membranes. DHA is converted through 15-lipoxygenase-1 into neuroprotectin D1 (NPD1), a potent mediator that evokes counteracting cell-protective, anti-inflammatory, pro-survival repair signaling, including the induction of anti-apoptotic proteins and inhibition of pro-apoptotic proteins. Thus, NPD1 triggers activation of signaling pathway/s that modulate/s pro-apoptotic signals, promoting cell survival. This review provides an overview of DHA in photoreceptors and describes the ability of RPE cells to synthesize NPD1 from DHA. It also describes the role of neurotrophins as agonists of NPD1 synthesis and how photoreceptor phagocytosis induces refractoriness to oxidative stress in RPE cells, with concomitant NPD1 synthesis.  相似文献   

10.
The harmony and function of the complex brain circuits and synapses are sustained mainly by excitatory and inhibitory neurotransmission, neurotrophins, gene regulation, and factors, many of which are incompletely understood. A common feature of brain circuit components, such as dendrites, synaptic membranes, and other membranes of the nervous system, is that they are richly endowed in docosahexaenoic acid (DHA), the main member of the omega-3 essential fatty acid family. DHA is avidly retained and concentrated in the nervous system and known to play a role in neuroprotection, memory, and vision. Only recently has it become apparent why the surprisingly rapid increases in free (unesterified) DHA pool size take place at the onset of seizures or brain injury. This phenomenon began to be clarified by the discovery of neuroprotectin D1 (NPD1), the first-uncovered bioactive docosanoid formed from free DHA through 15-lipoxygenase-1 (15-LOX-1). NPD1 synthesis includes, as agonists, oxidative stress and neurotrophins. The evolving concept is that DHA-derived docosanoids set in motion endogenous signaling to sustain homeostatic synaptic and circuit integrity. NPD1 is anti-inflammatory, displays inflammatory resolving activities, and induces cell survival, which is in contrast to the pro-inflammatory actions of the many of omega-6 fatty acid family members. We highlight here studies relevant to the ability of DHA to sustain neuronal function and protect synapses and circuits in the context of DHA signalolipidomics. DHA signalolipidomics comprises the integration of the cellular/tissue mechanism of DHA uptake, its distribution among cellular compartments, the organization and function of membrane domains containing DHA phospholipids, and the precise cellular and molecular events revealed by the uncovering of signaling pathways regulated by docosanoids endowed with prohomeostatic and cell survival bioactivity. Therefore, this approach offers emerging targets for prevention, pharmaceutical intervention, and clinical translation involving DHA-mediated signaling.  相似文献   

11.
Omega-3 and omega-6 polyunsaturated fatty acids (PUFAs) are necessary for functional cell integrity. Preconditioning (PC), as we define it, is an acquired protection or resilience by a cell, tissue, or organ to a lethal stimulus enabled by a previous sublethal stressor or stimulus. In this study, we provide evidence that the omega-3 fatty acid docosahexaenoic acid (DHA) and its derivatives, the docosanoids 17-hydroxy docosahexaenoic acid (17-HDHA) and neuroprotectin D1 (NPD1), facilitate cell survival in both in vitro and in vivo models of retinal PC. We also demonstrate that PC requires the enzyme 15-lipoxygenase-1 (15-LOX-1), which synthesizes 17-HDHA and NPD1, and that this is specific to docosanoid signaling despite the concomitant release of the omega-6 arachidonic acid and eicosanoid synthesis. These findings advocate that DHA and docosanoids are protective enablers of PC in photoreceptor and retinal pigment epithelial cells.  相似文献   

12.
Lipid signaling in neural plasticity, brain repair, and neuroprotection   总被引:13,自引:0,他引:13  
The extensive networking of the cells of the nervous system results in large cell membrane surface areas. We now know that neuronal membranes contain phospholipid pools that are the reservoirs for the synthesis of specific lipid messengers on neuronal stimulation or injury. These messengers in turn participate in signaling cascades that can either promote neuronal injury or neuroprotection. Prostaglandins are synthesized as a result of cyclooxygenase activity. In the first step of the arachidonic acid cascade, the short-lived precursor, prostaglandin H2, is synthesized. Additional steps in the cascade result in the synthesis of an array of prostaglandins, which participate in numerous physiological and neurological processes. Our laboratory recently reported that the membrane polyunsaturated fatty acid, docosahexaenoic acid, is the precursor of oxygenation products now known as the docosanoids, some of which are powerful counter-proinflammatory mediators. The mediator 10,17S-docosatriene (neuroprotectin D1, NPD1) counteracts leukocyte infiltration, NF-κ activation, and proinflammatory gene expression in brain ischemia-reperfusion and is an apoptostatic mediator, potently counteracting oxidative stress-triggered apoptotic DNA damage in retinal pigment epithelial cells. NPD1 also upregulates the anti-apoptotic proteins Bcl-2 and Bcl-xL and decreases pro-apoptotic Bax and Bad expression. Another biologically active messenger derived from membrane phospholipids in response to synaptic activity is platelet-activating factor (PAF). The tight regulation of the balance between synthesis (via phospholipases) and degradation (via acetylhydrolases) of PAF modulates the functions of this lipid messenger. Under pathological conditions, this balance is tipped, and PAF becomes a proinflammatory mediator and neurotoxic agent. The newly discovered docosahexaenoic acid signaling pathways, as well as other lipid messengers related to synaptic activation, may lead to the clarification of clinical issues relevant to stroke, age-related macular degeneration, spinal cord injury, Alzheimer’s disease, and other diseases that include neuroinflammatory components.  相似文献   

13.
Mediator lipidomics is a field of study concerned with the characterization, structural elucidation and bioactivity of lipid derivatives actively generated by enzymatic activity. It is well known that omega-3 fatty acids are beneficial for brain function. Docosahexaenoic acid [DHA; 4 22:6(n-3)] is the most abundant essential omega-3 fatty acid present in the brain and it has multiple mechanisms of exerting protective effects after cellular injury. Certain lipid species produced from DHA early during the reperfusion stage of brain ischemia-reperfusion injury are generated in order to help the cell cope as the injury progresses. We explore these newly discovered lipid mediators in order to understand their role in the cell. We have identified one of these potentially protective lipid mediators as a novel stereospecific DHA-derived fatty acid, called neuroprotectin D1 (NPD1; 10R,17S-dihydroxy-docosa-4Z,7Z,11E,15E,19Z hexaenoic acid). DHA also has important roles in pro-survival signaling cascades after ischemia-reperfusion in injury. It has been shown to accelerate AKT translocation and activation and has binding affinity with an important PPAR-γ family of ligand-activated nuclear receptors that have been implicated in various aspects of lipid metabolism and have been shown to have anti-inflammatory actions. Here we present an overview of these mechanisms and discuss the potential of using DHA signaling in the development of treatments for the large population of patients suffering from the devastating consequences of stroke.  相似文献   

14.
Neurodegenerative diseases encompass complex cell signaling disturbances that initially damage neuronal circuits and synapses. Due to multiple protective mechanisms enacted to counteract the onset of neurodegenerative diseases, there is often a prolonged period without noticeable impairments during their initiation. Since severe cognitive deficit or vision loss takes place after that period there is an opportunity to harness endogenous protective mechanisms as potential therapeutic approaches. The activation of the biosynthesis of the docosanoid mediator neuroprotectin D1 (NPD1) is an early response to the upsurge of protein misfolding and other neuroinflammatory events. This overview discusses the potent neuroprotective and inflammation-modulating bioactivity of NPD1. This lipid mediator represents an early response to neurodegenerations, aiming to restore homeostasis.  相似文献   

15.
Neuroprotectin D1 (NPD1), a docosahexaenoic acid-derived autacoid, is an endogenous neuroprotective and anti-inflammatory mediator that is generated in the retina and brain. The effects of exogenous NPD1 on retinal ganglion cell (RGC) apoptosis and the role of 12/15-lipoxygenase (Alox15) in retina were evaluated after optic nerve transection (ONT). Treatment with NPD1 was associated with significant protection against RGC death. The percentage of RGC survival in NPD1-treated group was 30% at 2 weeks after ONT as compared with 12% of RGC survival in the ONT group without treatment. Endogenous NPD1 was a predominant lipid autocoid in uninjured and axotomized retinas. Alox15 mRNA expression was upregulated in retinas following ONT suggesting that amplification of 12/15-lipoxygenase (12/15-LOX) may represent a neuroprotective response in the rat retina. The density of RGCs was higher in the normal retina of 12/15-LOX-deficient mice as compared with congenic controls. Hence, the resident NPD1 has a potential role in the physiological and pathophysiological responses of the retina.  相似文献   

16.

Purpose

Limbic epileptogenesis triggers molecular and cellular events that foster the establishment of aberrant neuronal networks that, in turn, contribute to temporal lobe epilepsy (TLE). Here we have examined hippocampal neuronal network activities in the pilocarpine post-status epilepticus model of limbic epileptogenesis and asked whether or not the docosahexaenoic acid (DHA)-derived lipid mediator, neuroprotectin D1 (NPD1), modulates epileptogenesis.

Methods

Status epilepticus (SE) was induced by intraperitoneal administration of pilocarpine in adult male C57BL/6 mice. To evaluate simultaneous hippocampal neuronal networks, local field potentials were recorded from multi-microelectrode arrays (silicon probe) chronically implanted in the dorsal hippocampus. NPD1 (570 μg/kg) or vehicle was administered intraperitoneally daily for five consecutive days 24 hours after termination of SE. Seizures and epileptiform activity were analyzed in freely-moving control and treated mice during epileptogenesis and epileptic periods. Then hippocampal dendritic spines were evaluated using Golgi-staining.

Results

We found brief spontaneous microepileptiform activity with high amplitudes in the CA1 pyramidal and stratum radiatum in epileptogenesis. These aberrant activities were attenuated following systemic NPD1 administration, with concomitant hippocampal dendritic spine protection. Moreover, NPD1 treatment led to a reduction in spontaneous recurrent seizures.

Conclusions

Our results indicate that NPD1 displays neuroprotective bioactivity on the hippocampal neuronal network ensemble that mediates aberrant circuit activity during epileptogenesis. Insight into the molecular signaling mediated by neuroprotective bioactivity of NPD1 on neuronal network dysfunction may contribute to the development of anti-epileptogenic therapeutic strategies.  相似文献   

17.
The mediator neuroprotectin D1 (NPD1) is an enzymatic derivative of the omega-3 essential fatty acid docosahexaenoic acid. NPD1 stereoselectively and specifically binds to human retinal pigment epithelium (RPE) cells and neutrophils. In turn, this lipid mediator induces dephosphorylation of Bcl-xL in a PP2A-dependent manner and induces PI3K/Akt and mTOR/p70S6K pathways leading to RPE cell survival during oxidative stress-induced apoptosis. As a proof of principle of its systemic in vivo bioactivity, NPD1 attenuates laser-induced choroidal neovascularization in mice. Using human neural cells transfected with amyloid precursor protein (APP)sw (Swedish double mutation APP695sw, K595N, M596L), NPD1 was shown to regulate secretase-mediated production of Aβ peptide, downregulates pro-inflammatory gene expression, and promotes cell survival. In human neural cells overexpressing beta-amyloid precursor protein (βAPP), the lipid mediator suppressed Aβ42 shedding by downregulating β-secretase (BACE1) while activating the α-secretase (ADAM10), thus shifting the βAPP cleavage from the noxious amyloidogenic pathway into a non-amyloidogenic, neurotrophic pathway. Furthermore, downregulation of Aβ42 peptide release by NPD1 may be dependent upon PPARγ activation. In conclusion, NPD1 exhibits anti-inflammatory, anti-amyloidogenic, and anti-apoptotic bioactivities in human neural cells in part via PPARγ signaling and through the targeting of α- and β-secretase systems.  相似文献   

18.
Among omega-3 polyunsaturated fatty acids (PUFAs), docosahexaenoic acid (DHA, 22:6n-3) is important for adequate brain development and cognition. DHA is highly concentrated in the brain and plays an essential role in brain functioning. DHA, one of the major constituents in fish fats, readily crosses the blood–brain barrier from blood to the brain. Its critical role was further supported by its reduced levels in the brain of Alzheimer's disease (AD) patients. This agrees with a potential role of DHA in memory, learning and cognitive processes. Since there is yet no cure for dementia such as AD, there is growing interest in the role of DHA-supplemented diet in the prevention of AD pathogenesis. Accordingly, animal, epidemiological, preclinical and clinical studies indicated that DHA has neuroprotective effects in a number of neurodegenerative conditions including AD. The beneficial effects of this key omega-3 fatty acid supplementation may depend on the stage of disease progression, other dietary mediators and the apolipoprotein ApoE genotype. Herein, our review investigates, from animal and cell culture studies, the molecular mechanisms involved in the neuroprotective potential of DHA with emphasis on AD.  相似文献   

19.
Zhang T  Guan M  Xu C  Chen Y  Lu Y 《Life sciences》2007,81(16):1256-1263
Glioblastoma multiforme is the most common malignant brain tumor in adults, and it is among the most lethal of all cancers. Recent studies have shown that pigment epithelium-derived factor (PEDF) can induce differentiation and inhibit angiogenesis of several tumors. This study was designed to determine whether gliomas angiogenesis and tumor growth could be inhibited by PEDF. We found that PEDF down-regulated expression levels of vascular endothelial growth factor and up-regulated the expression of thrombospondin-2 and augmented apoptosis in a dose-dependent manner in both A172 and U87 glioma cells lines after 48 h of treatment. Analysis of the cell cycle showed arrest in the G1 phase and block in S phase of the cell cycle. Meanwhile PEDF induced apoptosis was associated with increases of p53 and Bax and inhibition of Bcl-2. Conditioned medium with PEDF showed a significantly reductive effect on migration in vitro accompanied with a significant reduction of matrix metalloproteinase-9 expression. PEDF suppressed glioma cell migration in vitro and tumor burden in athymic nude mice. These results demonstrate for the first time inhibitory effects of PEDF on the growth and migration of human gliomas via induction of apoptosis and blocking of migratory-related factors. PEDF activation can be a novel approach for future therapeutic purposes against gliomas.  相似文献   

20.
Aging is associated with an enhanced susceptibility to brain dysfunction, loss of memory, and cognitive decline and significantly influences the quality of life for the affected individual. Recent molecular–genetic approaches have provided powerful insights into common age-related diseases that are both progressive and multifactorial, such as Alzheimer’s disease (AD), and in vitro in AD models. These investigations have uncovered consistent deficits in brain gene signaling mechanisms and neurotrophic substances known to contribute to normal brain function. Inflammatory signaling pathways involving up-regulation of cytosolic phospholipase A2 and the arachidonic acid cycle, the depletion of the brain-essential fatty acid docosahexaenoic acid (DHA) and DHA-derived neuroprotectin D1, and changes in the expression of key proapoptotic and antiapoptotic members of the Bcl-2 gene family are thought to be major contributors to pathogenic processes in degenerating brain tissue. This review will focus on the roles of stress genes, apoptosis-related genes, and inflammation in the molecular genetics of AD with emphasis on the interactive nature of inflammatory, neurotrophic, and apoptotic signaling and will highlight areas of rapid progress in the characterization of action of DHA and neuroprotectin D1 and address important research challenges. We also attempt to integrate these molecular, genetic, and neurochemical changes with cellular pathways involved in brain aging to formulate an integrated understanding of multifactorial age-related neurologic disease and pharmacotherapeutic strategies that may be useful in the restoration of homeostatic brain function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号