首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The present study examines the manner in which several whole‐tree water transport properties scale with species‐specific variation in sapwood water storage capacity. The hypothesis that constraints on relationships between sapwood capacitance and other water relations characteristics lead to predictable scaling relationships between intrinsic capacitance and whole‐tree behaviour was investigated. Samples of sapwood from four tropical forest canopy tree species selected to represent a range of wood density, tree size and architecture, and taxonomic diversity were used to generate moisture release curves in thermocouple psychrometer chambers, from which species‐specific values of sapwood capacitance were calculated. Sapwood capacitance was then used to scale several whole‐tree water transport properties determined from measurements of upper branch and basal sap flow, branch water potential, and axial and radial movement of deuterated water (D2O) injected into the base of the trunk as a tracer. Sapwood capacitance ranged from 83 to 416 kg m?3 MPa?1 among the four species studied and was strongly correlated with minimum branch water potential, soil‐to‐branch hydraulic conductance, daily utilization of stored water, and axial and radial movement of D2O. The species‐independent scaling of several whole‐tree water transport properties with sapwood capacitance indicated that substantial convergence in plant function at multiple levels of biological organization was revealed by a simple variable related to a biophysical property of water transport tissue.  相似文献   

2.
Transpiration from the Amazon rainforest generates an essential water source at a global and local scale. However, changes in rainforest function with climate change can disrupt this process, causing significant reductions in precipitation across Amazonia, and potentially at a global scale. We report the only study of forest transpiration following a long‐term (>10 year) experimental drought treatment in Amazonian forest. After 15 years of receiving half the normal rainfall, drought‐related tree mortality caused total forest transpiration to decrease by 30%. However, the surviving droughted trees maintained or increased transpiration because of reduced competition for water and increased light availability, which is consistent with increased growth rates. Consequently, the amount of water supplied as rainfall reaching the soil and directly recycled as transpiration increased to 100%. This value was 25% greater than for adjacent nondroughted forest. If these drought conditions were accompanied by a modest increase in temperature (e.g., 1.5°C), water demand would exceed supply, making the forest more prone to increased tree mortality.  相似文献   

3.
We investigated the contribution of internal water storage and efficiency of water transport to the maintenance of water balance in six evergreen tree species in a Hawaiian dry forest. Wood‐saturated water content, a surrogate for relative water storage capacity, ranged from 70 to 105%, and was inversely related to its morphological correlate, wood density, which ranged between 0·51 and 0·65 g cm?3. Leaf‐specific conductivity (kL) measured in stem segments from terminal branches ranged from 3 to 18 mmol m?1 s?1 MPa?1, and whole‐plant hydraulic efficiency calculated as stomatal conductance (g) divided by the difference between predawn and midday leaf water potential (ΨL), ranged from 70 to 150 mmol m?2 s?1 MPa?1. Hydraulic efficiency was positively correlated with kL (r2 = 0·86). Minimum annual ΨL ranged from ? 1·5 to ? 4·1 MPa among the six species. Seasonal and diurnal variation in ΨL were associated with differences among species in wood‐saturated water content, wood density and kL. The species with higher wood‐saturated water content were more efficient in terms of long‐distance water transport, exhibited smaller diurnal variation in ΨL and higher maximum photosynthetic rates. Smaller diurnal variation in ΨL in species with higher wood‐saturated water content, kL and hydraulic efficiency was not associated with stomatal restriction of transpiration when soil water deficit was moderate, but avoidance of low minimum seasonal ΨL in these species was associated with a substantial seasonal decline in g. Low seasonal minimum ΨL in species with low kL, hydraulic efficiency, and wood‐saturated water content was associated with higher leaf solute content and corresponding lower leaf turgor loss point. Despite the species‐specific differences in leaf water relations characteristics, all six evergreen tree species shared a common functional relationship defined primarily by kL and stem water storage capacity.  相似文献   

4.
A gauge that measures the mass flow rate of water in a growing tree is described. The gauge consists of an electric band heater wrapped around a section of the stem, a temperature controller that switches the current to the heater on and off so as to maintain a constant temperature rise across the heated section, and a timer to record the total time for which the heater is switched on. An energy balance shows the mass flow of water to be proportional to the time of operation of the heater. The magnitude of measurement errors is estimated using dimensional analysis and a numerical model. Experimental measurements of the flow rate of water in a tree using the gauge agree well with its recorded loss of weight.  相似文献   

5.
Baobab trees (Adansonia, Bombacaceae) are widely thought to store water in their stems for use when water availability is low. We tested this hypothesis by assessing the role of stored water during the dry season in three baobab species in Madagascar. In the dry season, leaves are present only during and after leaf flush. We quantified the relative contributions of stem and soil water during this period through measures of stem water content, sap flow and stomatal conductance. Rates of sap flow at the base of the trunk were near zero, indicating that leaf flushing was almost entirely dependent on stem water. Stem water content declined by up to 12% during this period, yet stomatal conductance and branch sap flow rates remained very low. Stem water reserves were used to support new leaf growth and cuticular transpiration, but not to support stomatal opening before the rainy season. Stomatal opening coincided with the onset of sap flow at the base of the trunk and occurred only after significant rainfall.  相似文献   

6.
Concurrent, independent measurements of stomatal conductance (gs), transpiration (E) and microenvironmental variables were used to characterize control of crown transpiration in four tree species growing in a moist, lowland tropical forest. Access to the upper forest canopy was provided by a construction crane equipped with a gondola. Estimates of boundary layer conductance (gb) obtained with two independent methods permitted control of E to be partitioned quantitatively between gs and gb using a dimensionless decoupling coefficient (Ω) ranging from zero to 1. A combination of high gs (c. 300–600 mmol m?2 s?1) and low wind speed, and therefore relatively low gb (c. 100–800 mmol m?2 s?1), strongly decoupled E from control by stomata in all four species (Ω= 0.7–0.9). Photosynthetic water-use efficiency was predicted to increase rather than decrease with increasing gs because gb was relatively low and internal conductance to CO2 transfer was relatively high. Responses of gs to humidity were apparent only when the leaf surface, and not the bulk air, was used as the reference point for determination of external vapour pressure. However, independent measurements of crown conductance (gc), a total vapour phase conductance that included stomatal and boundary layer components, revealed a clear decline in gc with increasing leaf-to-bulk air vapour pressure difference (Va because the external reference points for determination of gc and Va were compatible. The relationships between gc and Vc and between gs and Vs appeared to be distinct for each species. However, when gs and gc were normalized by the branch-specific ratio of leaf area to sapwood area (LA/SA), a morphological index of potential transpirational demand relative to water transport capacity, a common relationship between conductance and evaporative demand for all four species emerged. Taken together, these results implied that, at a given combination of LA/SA and evaporative demand scaled to the appropriate reference point, the vapour phase conductance and therefore transpiration rates on a leaf area basis were identical in all four contrasting species studied.  相似文献   

7.
热带雨林林冠层具有丰富的物种、功能和系统发育(谱系)多样性,能够显著影响生态系统生物地球化学循环,调节大气水热平衡,缓解气候变化与人为干扰的负面作用。因此热带雨林林冠层功能和谱系生态学研究是目前群落生态学研究的热点之一。选取海南尖峰岭热带山地雨林3个1 hm2样地的林冠层为研究对象,利用样地林冠树种清查数据基于APG III系统发育结构重建样地林冠层系统发育树。利用Blomber's K对和Pagel'sλ指标结合系统发育独立性比较法对组成林冠层乔木树种的结构、化学计量和水力学功能性状(11个性状)的系统发育信号、关联性和演化模式进行研究,以探讨物种亲缘关系对尖峰岭热带山地雨林林冠层多维功能性状关联性及其动态演化的影响。结果表明,有8个功能性状(叶面积、叶厚度和潜在最大高度除外)具有显著的系统发育信号(通过P0.05的显著性检验),Blomber's K值和Pagel'sλ值分别介于0.202—0.392和0.277—0.847之间,表明尖峰岭热带山地雨林林冠层功能性状普遍存在系统发育保守性。在系统发育背景下,林冠层乔木树种结构、化学和水力学功能性状在物种水平普遍存在显著关联性(P0.05),表现出趋同或趋异进化;而且林冠层乔木随物种分化其功能性状分化模式大致呈水平"漏斗"状,姐妹类群功能性状间差异性在物种分化早期(大约1亿2千万年前至6000万年前)明显小于其在中后期(大约6000万年前至今)的差异性,导致了林冠层性状空间在中后期迅速膨大。然而林冠层主要功能性状在系统发育树内部每一节点上姊妹类群分化产生的系统发育独立性比较值绝大部分与零模型随机模拟值并无显著性差异。了解系统发育背景下林冠层功能性状的权衡关系及其随物种演化的分化模式与时间动态为进一步探究热带雨林林冠生态系统功能发挥奠定基础。  相似文献   

8.
Land devoted to plantation forestry (50 million ha) has been increasing worldwide and the genus Eucalyptus is a popular plantation species (14 million ha) for its rapid growth and ability to grow well on a wide range of sites. Fertilization is a common silvicultural tool to improve tree growth with potential effects on stand water use, but the relationship between wood growth and water use in response to fertilization remains poorly quantified. Our objectives in this study were to determine the extent, timing and longevity of fertilization effects on water use and wood growth in a non‐water limited Eucalyptus saligna experimental forest near Hilo, HI. We evaluated the short‐ and long‐term effects of fertilization on water use by measuring sap flux per unit sapwood area, canopy conductance, transpiration per unit leaf area and water‐use efficiency in control and fertilized stands. Short‐term effects were assessed by comparing sap flux before and after fertilizer application. Long‐term effects were assessed by comparing control plots and plots that had received nutrient additions for 5 years. For the short‐term response, total water use in fertilized plots increased from 265 to 487 mm yr?1 during the 5 months following fertilization. The increase was driven by an increase in stand leaf area accompanied by an increase in sap flux per unit sapwood area. Sap flux per unit leaf area and canopy conductance did not differ during the 5 months following fertilizer additions. For the last 2 months of our short‐term measurements, fertilized trees used less water per unit carbon gain (361 compared with 751 kg H2O kg C?1 in control stands). Trees with 5 years of fertilization also used significantly more water than controls (401 vs. 302 mm yr?1) because of greater leaf area in the fertilized stands. Sap flux per unit sapwood area, sap flux per unit leaf area, and canopy conductance did not differ between control and fertilized trees in the long‐term plots. In contrast to the short‐term response, the long‐term response of water use per unit wood growth was not significant. Overall, fertilization of E. saligna at our site increased stand water use by increasing leaf area. Fertilized trees grew more wood and used more water, but fertilization did not change wood growth per unit water use.  相似文献   

9.
塔克拉玛干沙漠腹地多枝柽柳茎干液流及耗水量   总被引:13,自引:2,他引:11  
2005年4—11月,利用植物茎流计研究了塔克拉玛干沙漠腹地沙漠公路防护林植物多枝柽柳的茎干液流特性和耗水量.结果表明:在极端干旱的沙漠腹地,土壤水分充足时,直径为3.5和2.0 cm的多枝柽柳在整个生长季的日平均耗水量分别为6.322和1.179 kg;多枝柽柳的茎干液流呈单峰曲线型,有明显的昼夜变化规律,茎干液流随环境因子变化而波动;在土壤水分充足的条件下,总辐射、风速、温度是影响茎干液流变化的主要环境因子,可以用总辐射和风速的线性回归模型预测茎干液流的变化.沙漠腹地多枝柽柳的蒸腾耗水量相对较高,是因为在较为充足的水分供应条件下,多枝柽柳通过大量的水分消耗来抵御干燥高温的沙漠环境.  相似文献   

10.
Little is known about partitioning of soil water resources in species-rich, seasonally dry tropical forests. We assessed spatial and temporal patterns of soil water utilization in several canopy tree species on Barro Colorado Island, Panama, during the 1997 dry season. Stable hydrogen isotope composition (δD) of xylem and soil water, soil volumetric water content (θv), and sap flow were measured concurrently. Evaporative fractionation near the soil surface caused soil water δD to decrease from about –15‰ at 0.1 m to –50 to –55‰ at 1.2 m depth. Groundwater sampled at the sources of nearby springs during this period yielded an average δD value of –60‰. θv increased sharply and nearly linearly with depth to 0.7 m, then increased more slowly between 0.7 and 1.05 m. Based on xylem δD values, water uptake in some individual plants appeared to be restricted largely to the upper 20 cm of the soil profile where θv dropped below 20% during the dry season. In contrast, other individuals appeared to have access to water at depths greater than 1 m where θv remained above 45% throughout the dry season. The depths of water sources for trees with intermediate xylem δD values were less certain because variation in soil water δD between 20 and 70 cm was relatively small. Xylem water δD was also strongly dependent on tree size (diameter at breast height), with smaller trees appearing to preferentially tap deeper sources of soil water than larger trees. This relationship appeared to be species independent. Trees able to exploit progressively deeper sources of soil water during the dry season, as indicated by increasingly negative xylem δD values, were also able to maintain constant or even increase rates of water use. Seasonal courses of water use and soil water partitioning were associated with leaf phenology. Species with the smallest seasonal variability in leaf fall were also able to tap increasingly deep sources of soil water as the dry season progressed. Comparison of xylem, soil, and groundwater δD values thus pointed to spatial and temporal partitioning of water resources among several tropical forest canopy tree species during the dry season. Received: 5 October 1998 / Accepted: 23 June 1999  相似文献   

11.
热带季节雨林林窗辐射特征研究   总被引:5,自引:0,他引:5  
利用不同季节热带季节雨林林窗、林内及旷地不同波长太阳辐射的实测资料,探讨了热带季节雨林林窗不同波长辐射特征。结果表明,热带季节雨林林窗中央和北侧林冠下的不同波长太阳辐射存在“突跃现象”,中午前后各辐射量值迅速达到最大后又急速下降;林窗内不同波长太阳辐射日总量值均大于林内,却小于旷地;林窗中央和北侧林冠下比较可见,在干热季、雨季和雨季后期,林窗中央的各辐射要素总量值高于北侧林冠下,但雾凉季时受浓雾和太阳高度以及方位的影响,各辐射要素总量值较北侧林冠下低;林窗中央的总辐射日总量在雨季太阳高度角最大时最高,雨季后期和干热季其次,雾凉季时最小;林窗中央和北侧林冠下的红外辐射及可见光在总辐射中所占份额随季节的变化而不同,充分显示了林窗辐射环境的异质性;与旷地和林内相比,林窗内各测点的红外辐射在总辐射中所占份额介于旷地和林内之间.高于旷地却低于林内;而可见光占总辐射的比值情况正好相反.另外,林窗可见光分配率的季节变化都大于红外辐射;热带季节雨林林窗育增加红外辐射、减少可见光的特征.  相似文献   

12.
Dou J X  Zhang Y P  Yu G R  Zhao S J  Song Q H 《农业工程》2007,27(8):3099-3109
The values and variation characteristics of energy components, their relationship with net radiation and the characteristics of water balance in the forest were analyzed, based on the observation data of energy fluxes, meteorological parameters and biomass in a tropical seasonal rain forest in Xishuangbanna from January 2003 to December 2004. The results show that annual net radiation was 3516.4 MJ/(m2 · a) and 3516.6 MJ/(m2 · a) in 2003 and 2004, respectively, of which 46% and 44% were used in latent heat flux, and 12% and 11% were lost as sensible heat flux. Annual mean canopy surface conductance was 10.3 mm/s and 10.0 mm/s in 2003 and 2004, respectively. Moreover, canopy surface conductance was lower in dry-hot seasons than in fog-cool and rainy seasons. Canopy surface conductance correlated significantly and positively with leaf area index, but negatively with water vapor pressure deficit. In general, canopy surface conductance was not affected directly by soil water content, but highly depended on soil moisture status when soil water content was below 0.15 m3/m3. Annual total evapotranspiration of this forest ecosystem in dry seasons was lower than that in rainy seasons, which was considered as one of the most important reasons that tropical seasonal rain forest could survive and flourish in Xishuangbanna at limit of water and heat.  相似文献   

13.
西双版纳热带季节雨林水热通量   总被引:5,自引:1,他引:5  
利用西双版纳热带季节雨林2003和2004年常规气象、生物量以及水热通量观测资料,对该林地两年内各能量分量的数值大小和变化规律、能量分配以及水量平衡特征等进行了分析研究。结果表明,2003和2004年净辐射总量分别为3516.4MJ/(m.2a)和3516.6MJ/(m.2a)。在能量分配过程中潜热通量占优势,2003年和2004年的总量分别是相应年份净辐射总量的46%和44%,显热通量则分别只有12%和11%。2003年和2004年林冠传导率均值分别为10.3mm/s和10.0mm/s,其中干热季期间的林冠传导率明显低于雾凉季和雨季。林冠传导率与叶面积指数和空气饱和水汽压差值之间分别呈极显著的正、负线性相关关系;它基本上不受土壤含水量的影响,只是当长期无雨或雨量很小导致土壤含水量低于0.15m3/m3时,林冠传导率才与土壤含水量间存在极显著的相关关系。西双版纳热带雨林2003和2004年的蒸散量分别是663mm和634mm,受浓雾和林冠传导率的综合影响,该森林生态系统干季蒸散量低于雨季,这是西双版纳热带季节雨林能够在水热极限条件下生存并良好发育的重要原因。  相似文献   

14.
15.
The values and variation characteristics of energy components, their relationship with net radiation and the characteristics of water balance in the forest were analyzed, based on the observation data of energy fluxes, meteorological parameters and biomass in a tropical seasonal rain forest in Xishuangbanna from January 2003 to December 2004. The results show that annual net radiation was 3516.4 MJ/(m2 · a) and 3516.6 MJ/(m2 · a) in 2003 and 2004, respectively, of which 46% and 44% were used in latent heat flux, and 12% and 11% were lost as sensible heat flux. Annual mean canopy surface conductance was 10.3 mm/s and 10.0 mm/s in 2003 and 2004, respectively. Moreover, canopy surface conductance was lower in dry-hot seasons than in fog-cool and rainy seasons. Canopy surface conductance correlated significantly and positively with leaf area index, but negatively with water vapor pressure deficit. In general, canopy surface conductance was not affected directly by soil water content, but highly depended on soil moisture status when soil water content was below 0.15 m3/m3. Annual total evapotranspiration of this forest ecosystem in dry seasons was lower than that in rainy seasons, which was considered as one of the most important reasons that tropical seasonal rain forest could survive and flourish in Xishuangbanna at limit of water and heat.  相似文献   

16.
Canopy transpiration (Ec) of a 150-year-old Pinus sylvestris L. stand in an inner Alpine dry valley, Tyrol, Austria was estimated throughout two growing seasons 2011 and 2012 by means of xylem sap flow measurements. Although there were prolonged periods of limited soil water availability, Ec did not show a clear trend with respect to soil water availability and averaged 0.4 ± 0.19 mm day−1 under conditions of non-limiting soil water availability and 0.37 ± 0.17 mm day−1 when soil water availability was limited. This is because canopy conductance declined significantly with increasing evaporative demand and thus significantly reduced tree water loss. The growing season total of Ec was 74 mm and 88 mm in 2011 and 2012, respectively, which is significantly below the values estimated for other P. sylvestris forest ecosystems in Central Europe, and thus reflecting a strong adaptation to soil drought during periods of high evaporative demands.  相似文献   

17.
三种温带树种树干储存水对蒸腾的贡献   总被引:3,自引:0,他引:3       下载免费PDF全文
金鹰  王传宽  桑英 《植物生态学报》2011,35(12):1310-1317
树干储存水在协调叶片水分和碳平衡、维持树木水分收支平衡中起着重要作用。以无孔材红松(Pinus koraiensis)、散孔材山杨(Populus davidiana)和环孔材蒙古栎(Quercus mongolica)为对象, 于2010年8月中旬至9月末(生长季后期)测定其冠基和干基树干液流通量以及树干储存水的日变化过程, 量化分析树干储存水对日蒸腾量的贡献及其生物影响因子。结果表明: 冠基的液流比干基启动得早, 而且两者在一天中存在显著的时滞。树干储存水的日进程总体上可分为: 完全释放、以释放为主补充为辅、以补充为主释放为辅、饱和稳定等4个阶段, 但每个阶段的持续时间和变化格局随树种而变。红松的树干储存水在一天内表现出两个释放-补充周期, 而两种阔叶树种均只经历了一次释放-补充过程。在测定时段内红松、山杨、蒙古栎标准化到平均木(边材体积为0.29 m3)的树干储存水释放量分别为: (3.4 ± 1.5)、(2.4 ± 0.6)和(1.5 ± 0.4) kg·d -1, 分别占日蒸腾量的18.9%、17.1%和8.8%。树干储存水释放量与日蒸腾量呈显著的指数函数关系, 而与干基的边材面积和树高呈正相关关系。该研究突显了树木大小(树高和边材面积)和材性特征对树干储存水释放量及其对蒸腾量贡献的重要影响。  相似文献   

18.
Stomatal control of crown transpiration was studied in Anacardium excelsum, a large-leaved, emergent canopy species common in the moist forests of Central and northern South America. A construction crane equipped with a gondola was used to gain access to the uppermost level in the crown of a 35-m-tall individual. Stomatal conductance at the single leaf scale, and transpiration and total vapour phase conductance (stomatal and boundary layer) at the branch scale were measured simultaneously using the independent techniques of porometry and stem heat balance, respectively. This permitted the sensitivity of transpiration to a marginal change in stomatal conductance to be evaluated using a dimensionless coupling coefficient (1-ω) ranging from zero to 1, with 1 representing maximal stomatal control of transpiration. Average stomatal conductance varied from 0.09 mol m?2 s?1 during the dry season to 0.3 mol m?2 s?1 during the wet season. Since boundary layer conductance was relatively low (0.4 mol m?2 s?1), 1-ω ranged from 0.46 during the dry season to only 0.25 during the wet season. A pronounced stomatal response to humidity was observed, which strongly limited transpiration as evaporative demand increased. The stomatal response to humidity was apparent only when the leaf surface was used as the reference point for measurement of external vapour pressure. Average transpiration was predicted to be nearly the same during the dry and wet seasons despite a 1 kPa difference in the prevailing leaf-to-air vapour pressure difference. The patterns of stomatal behaviour and transpiration observed were consistent with recent proposals that stomatal responses to humidity are based on sensing the transpiration rate itself.  相似文献   

19.
In the present study the linkage between hydraulic, photosynthetic and phenological properties of tropical dry forest trees were investigated. Seasonal patterns of stem‐specific conductivity (KSP) described from 12 species, including deciduous, brevi‐deciduous and evergreen species, indicated that only evergreen species were consistent in their response to a dry‐to‐wet season transition. In contrast, KSP in deciduous and brevi‐deciduous species encompassed a range of responses, from an insignificant increase in KSP following rains in some species, to a nine‐fold increase in others. Amongst deciduous species, the minimum KSP during the dry season ranged from 6 to 56% of wet season KSP, indicating in the latter case that a significant portion of the xylem remained functional during the dry season. In all species and all seasons, leaf‐specific stem conductivity (KL) was strongly related to the photosynthetic capacity of the supported foliage, although leaf photosynthesis became saturated in species with high KL. The strength of this correlation was surprising given that much of the whole‐plant resistance appears to be in the leaves. Hydraulic capacity, defined as the product of KL and the soil–leaf water potential difference, was strongly correlated with the photosynthetic rate of foliage in the dry season, but only weakly correlated in the wet season.  相似文献   

20.
西双版纳热带季节雨林林冠截留雾水和土壤水的关系   总被引:3,自引:1,他引:3  
利用2002年1月-2003年12月在西双版纳热带季节雨林观测样地收集的林冠截留滴落雾水、雨水、浅层土壤水和地下水水样,对其氢、氧稳定性同位素比率δD和δ^18O的测定结果进行了分析,研究了林冠截留雾水对土壤水和地下水的影响。干季(11-翌年4月份),热带雨林林冠截留雾水的稳定性同位素比率、过量氘(d-excess)值明显高于雨水的相应值,表明雾水水汽中包含了区域森林植被蒸发、蒸腾的再循环水汽。林下地表浅层土壤水的稳定性同位素比率介于雾水和雨水的同位索比率之间,表明浅层土壤水来源于雾水和雨水的补给,但是干季浅层土壤水包含更多的雾水。在降雨稀少的干季,浅层土壤水主要来自雾水的补给,表明了林冠滴落的雾水是林下幼树和耐阴树种生长和生存的重要环境因子。干季和雨季(5-10月份)地下水的稳定性同位素比率与雨水的均没有显著差别,表明雾水对地下水的补给没有贡献,其水分补给仅仅来自雨水。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号