首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Heterogeneous expression of multiple genes in the nucleus of transgenic plants requires the introduction of an individual gene and the subsequent backcross to reconstitute multi-subunit proteins or metabolic pathways. In order to accomplish the expression of multiple genes in a single transformation event, we inserted both large and small subunits of allophycocyanin gene (apcA and apcB) into Chlamydomonas reinhardtii chloroplast expression vector, resulting in papc-S. The constructed vector was then introduced into the chloroplast of C. reinhardtii by micro-particle bombardment. Polymerase chain reaction and Southern blot analysis revealed that the two genes had integrated into the chloroplast genome. Western blot and enzyme-linked immunosorbent assay showed that the two genes from the prokaryotic cyanobacteria could be correctly expressed in the chloroplasts of C. reinhardtii. The expressed foreign protein in transformants accounted for about 2%-3% of total soluble proteins. These findings pave the way to the reconstitution of multi-subunit proteins or metabolic pathways in transgenic C. reinhardtii chloroplasts in a single transformation event.  相似文献   

3.
Chlamydomonas is an unicellular green alga that contains one cup-shaped chloroplast with about 60 copies of cpDNA. Chloroplasts (cp) multiply in the cytoplasm of the plant cell by binary division, with multiple copies of cpDNA transmitted and maintained in successive generations. The effect of cpDNA copy number on cell proliferation and aging was investigated using a C. reinhardtii moc mutant, which has an undispersed cp-nucleoid and unequal segregation of cpDNA during cell division. When the mother cell divided into four daughters, one moc daughter cell chloroplast contained about 60 copies of cpDNA, and the chloroplasts in the three other daughter cells contained the 4–7 copies of cpDNA. In liquid medium, the number of moc cells at the period of stationary phase was about one-third that of the wild type. To observe the process of proliferation and aging in the mother cell, we used solid medium. Three out of four moc cell spores were preferentially degenerated 60 days after cell transfer. To confirm this, wild-type and moc mother cells containing four daughter cells were treated with novobiocin to inhibit cpDNA replication. Cell degeneration increased only in the moc strain following novobiocin introduction. In total, our results suggest that cells possessing smaller amounts of cpDNA degenerate and age more rapidly. Received 7 September 2000/ Accepted in revised form 14 February 2001  相似文献   

4.
Microalgae, also called microphytes, are a vast group of microscopic photosynthetic organisms living in aquatic ecosystems. Microalgae have attracted the attention of biotechnology industry as a platform for extracting natural products with high commercial value. During last decades, microalgae have been also used as cost-effective and easily scalable platform for the production of recombinant proteins with medical and industrial applications. Most progress in this field has been made with Chlamydomonas reinhardtii as a model organism mainly because of its simple life cycle, well-established genetics and ease of cultivation. However, due to the scarcity of existing infrastructure for commercial production and processing together with relatively low product yields, no recombinant products from C. reinhardtii have gained approval for commercial production and most of them are still in research and development. In this review, we focus on the chloroplast of C. reinhardtii as an algal recombinant expression platform and compare its advantages and disadvantages to other currently used expression systems. We then discuss the strategies for engineering the chloroplast of C. reinhardtii to produce recombinant cells and present a comprehensive overview of works that have used this platform for the expression of high-value products.  相似文献   

5.
Localization of apoproteins of the major light-harvesting complex (LHCII) in Chl b -less cells of Chlamydomonas reinhardtii cbn 1–113 was determined by immunoelectron microscopy. In dark-grown cells, a low amount of apoproteins was detected in cytoplasmic vacuoles. The amount in vacuoles, and in the cytosol, increased dramatically when the rate of protein synthesis was enhanced in the dark by raising the temperature to 38°C. After exposure of cells to light, the apoproteins accumulated also in the chloroplast. Mature-sized apoproteins were recovered in an alkali-soluble fraction of cellular proteins commensurate with accumulation in the cytoplasm. At 25°C, content of apoproteins in the chloroplast of pale-green cells grown in medium lacking acetate was one-half of the amount in cells grown with acetate, yet the total amount remained similar. Cytoplasmic vacuoles, which were nearly filled with immunoreactive, electron-opaque material, were more abundant in cells grown without acetate as compared with cells grown with acetate. Accumulation of apoproteins outside of the chloroplast suggested that translocation into the organelle of a portion of the apoproteins, apparently synthesized in excess of the amount accommodated by Chl synthesis, was aborted after processing of precursors. These results suggested that assembly of LHCII was required for retention of apoproteins by the chloroplast.  相似文献   

6.
7.
Assembly of the major light-harvesting complex (LHC II) and development of photosynthetic function were examined during the initial phase of thylakoid biogenesis inChlamydomonas reinhardtii cells at 38°C. Continuous monitoring of LHC II fluorescence showed that these processes were initiated immediately upon exposure of cells to light. However, mature-size apoproteins of LHC II (Lhcb) increased in amount in an alkali-soluble (non-membrane) fraction in parallel with the increase in the membrane fraction. Alkali-soluble Lhcb were not integrated into membranes when protein synthesis was inhibited, suggesting that they were not active intermediates in LHC II assembly, nor were they recovered in a purified chloroplast preparation. Immunocytochemical analysis of greening cells revealed Lhcb inside the chloroplast near the envelope and in clusters deeper in the organelle. Antibody binding also detected Lhcb in granules within vacuoles in the cytosol, and Lhcb were recovered in granules purified from greening cells. Our results suggest that the cytosolic granules serve as receptacles of Lhcb synthesized in excess of the amount that can be accommodated by thylakoid membrane formation within the plastid envelope.  相似文献   

8.
An open reading frame potentially encoding a protein of 1995 amino acids (orf1995) has been found in the chloroplast genome of the green alga Chlamydomonas reinhardtii. Besides having a short hydrophobic N-terminal domain with five putative transmembrane helices, the predicted orf1995 product is highly basic. orf1995 might be a homologue of the ycf1 gene in land plants, whose function has not yet been determined. Mutants of C. reinhardtii transformed with a disruption of orf1995 remain heteroplasmic for the wild-type and disrupted alleles of this gene, indicating that the orf1995 product is essential for cell survival. Received: 18 August 1996 / Accepted: 24 September 1996  相似文献   

9.
 The accumulation of different precursors of carotenoid biosynthesis in carotenoid-deficient mutants of Chlamydomonas reinhardtii was studied by HPLC-analysis. ζ-Carotene accumulated in several ac5 mutants, this character cosegregated with mutations in the ac5 gene. Two groups of ac5 mutants differing in ζ-carotene accumulation were distinguished. One (ac5–1) accumulated ζ-carotene in the dark but not in the light. The other (ac5–2) accumulated ζ-carotene under both dark and light conditions. ac5–2 strains accumulated more ζ-carotene in the dark than ac5-1 strains. Genetic data suggested that the mutations ac5–1 and ac5–2 were allelic. Pleiotropic effects of mutations in the ac5 gene included decreased levels of chlorophyll a and b and acetate requirement. The results are consistent with the presence of a defective ζ-carotene desaturase in ac5 mutants. Received: 27 October 1998 / Revision received: 1 February 1999 / Accepted: 16 February 1999  相似文献   

10.
In Chlamydomonas reinhardtii the formation of a starch sheath surrounding the pyrenoid is observed when cells grown under high CO2 (5% CO2 in air) are transferred to low CO2 (0.03%) conditions. Formation of the starch sheath occurs coincidentally with induction of the CO2 concentrating mechanism and with de novo synthesis of 5 polypeptides with molecular masses of 21, 36, 37, 42–44 kDa. We studied the effect of CO2 concentrations on photosynthesis, ultrastructure and protein synthesis in Chlamydomonas reinhardtii cw-15 (wild phenotype for photosynthesis) and in the starch-less mutant BAFJ -6, with the aim to clarify the role of the pyrenoid starch sheath in the operation of the CO2 concentrating mechanism and whether these low CO2-inducible polypeptides are involved in the formation of starch sheath. When wild type and starch-less mutant cells were transferred from high to low CO2, the CO2 requirement for half-maximal rates of photosynthesis decreased from 40 μM to 2 μM CO2. 35SO42- labeling analyses showed that the starch-less mutant induced the 5 low CO2-inducible polypeptides. These observations suggest that the starch-less mutant was able to induce a fully active CO2 concentrating mechanism. Since the starch-less mutant did not form a pyrenoid starch sheath, we suggest that the starch sheath is not involved in the operation of the CO2 concentrating mechanism and that none of these 5 low CO2-inducible proteins is involved in the formation of the starch sheath in Chlamydomonas .  相似文献   

11.
In the green alga Chlamydomonas reinhardtii , nitrogen staravation induced a reversible increase (2-fold) in NAD-isocitrate dehydrogenase (NAD-IDH; EC 1.1.1.41) and NADP-isocitrate dehydrogenase (NADP-IDH; EC 1.1.1.42) activities. Both enzymes were not affected by the concentration of CO2, the dark or the nature of the nitrogen source (nitrate, nitrite, or ammonium). When cells growing autotrophically were transferred to heterotrophic conditions, a 40% reduction of the NAD-IDH activity was detected, a 2-fold increase of NADP-IDH was observed and isocitrate lyase (ICL; EC 4.1.3.1) activity was induced. The replacement of autotrophic conditions led to the initial activity levels. NAD- and NADP-IDH activities showed markedly different patterns of increase in synchronous cultures of this alga obtained by 12 h light/12 h dark transitions. While NAD-IDH increased in the last 4 h of the dark period, NADP-IDH increased during the last 4 h of the light period, remaining constant for the rest of the cycle.  相似文献   

12.
Summary We demonstrated that the 1055 by restriction fragment containing OriA, a chloroplast DNA replication origin of Chlamydomonas reinhardtii, has electrophoretic anomalies characteristic of bent DNA. A tandem dimer of the region was constructed. Quantitative measurement of the relative gel mobility of a set of permuted fragments was used to extrapolate the approximate position of the bent DNA segment. By analyzing the gel mobility of short, sequenced fragments of the bent DNA region, the putative bending locus was identified. Two A4 tracts and two A5 tracts were located in the bending locus. Oligonucleotide-directed mutagenesis was then used to disrupt the A tract or the spacing between A tracts and the effect of site-specific mutation on electrophoretic mobility was analyzed. To assess the functional role of the bent DNA region, subclones containing the bending locus, mutated bending locus, and regions flanking the bending locus were constructed. Each subclone was used as template in an in vitro DNA replication system which preferentially initiated DNA replication at OriA. A 224 by subclone with the bending locus positioned in the middle displayed the highest replication function and was sufficient to initiate DNA replication in vitro. Site-specific mutations or alterations of the A tracts resulted in decreased DNA bending and decreased DNA replication activity.  相似文献   

13.
申培丽  王海涛  薛松 《微生物学通报》2016,43(11):2405-2413
【目的】基于突变藻株本身属性和意义出发,考察在两种常用培养方式下莱茵衣藻淀粉突变株(CC-4326)与野生型藻株(CC-137)在甘油酯中酰基随生长的变化差异,为进一步认识莱茵衣藻突变株提供参考信息。【方法】分别在柱状鼓泡式反应器和摇瓶中培养CC-4326和CC-137,比较两株藻在正常培养和氮胁迫培养状态下甘油酯中酰基相对含量和其在甘油三酯(TAG)含量的差异。【结果】正常培养状态下,CC-4326和CC-137中多不饱和酰基C16:4和C18:3相对含量占总酰基45%左右,CC-4326在两种培养方式下这两个酰基含量及变化无差别,而CC-137在摇瓶中培养二者相对含量增加幅度和含量均高于反应器。缺氮条件下两种藻株积累TAG,但程度不同,CC-4326在反应器中培养TAG含量达到CC-137的1.5倍,在摇瓶中培养含量与CC-137无显著差异,两株藻的甘油酯和TAG中C18:1含量显著增加,CC-4326在反应器中培养C18:1增加幅度大于摇瓶,比摇瓶培养更快速积累TAG。而CC-137在摇瓶中培养TAG含量与反应器接近,单不饱和酰基增加幅度却高于反应器,表明CC-137在摇瓶中培养比反应器更利于积累TAG。最终,CC-4326在光生物反应器中缺氮培养实现了TAG 12倍的增加。【结论】通过对淀粉合成抑制,与CC-137相比,缺氮光生物反应器培养条件下,CC-4326能够实现TAG的高效积累。  相似文献   

14.
Most chloroplastic proteins are synthesized as precursors in the cytosol prior to their transport into chloroplasts. These precursors are generally synthesized in a form that is larger than the mature form found inside chloroplasts. The extra amino acids, called transit peptides, are present at the amino terminus. The transit peptide is necessary and sufficient to recognize the chloroplast and induce movement of the attached protein across the envelope membranes. In this review, we discuss the primary and secondary structure of transit peptides, describe what is known about the import process, and present some hypotheses on the evolutionary origin of the import mechanism.Abbreviations DHFR dihydrofolate reductase - EPSP synthase 5-enolpyrovylshikimate-3-phosphate synthase; hsp heat-shock protein - LHCP II light-harvesting chlorophylla/b binding protein - OEE 16, 23, and 33 the 16-, 23-, and 33-kDa proteins of the oxygen-evolving complex - pr precursor - rubisco ribulose-1,5-bisphosphate carboxylase/oxygenase - SS rubisco small subunit  相似文献   

15.
There is a growing interest in the use of microalgae as low‐cost hosts for the synthesis of recombinant products such as therapeutic proteins and bioactive metabolites. In particular, the chloroplast, with its small, genetically tractable genome (plastome) and elaborate metabolism, represents an attractive platform for genetic engineering. In Chlamydomonas reinhardtii, none of the 69 protein‐coding genes in the plastome uses the stop codon UGA, therefore this spare codon can be exploited as a useful synthetic biology tool. Here, we report the assignment of the codon to one for tryptophan and show that this can be used as an effective strategy for addressing a key problem in chloroplast engineering: namely, the assembly of expression cassettes in Escherichia coli when the gene product is toxic to the bacterium. This problem arises because the prokaryotic nature of chloroplast promoters and ribosome‐binding sites used in such cassettes often results in transgene expression in E. coli, and is a potential issue when cloning genes for metabolic enzymes, antibacterial proteins and integral membrane proteins. We show that replacement of tryptophan codons with the spare codon (UGG→UGA) within a transgene prevents functional expression in E. coli and in the chloroplast, and that co‐introduction of a plastidial trnW gene carrying a modified anticodon restores function only in the latter by allowing UGA readthrough. We demonstrate the utility of this system by expressing two genes known to be highly toxic to E. coli and discuss its value in providing an enhanced level of biocontainment for transplastomic microalgae.  相似文献   

16.
Summary Synchronous cultures of the green algaScenedesmus quadricauda (Turp.) Bréb. grown at mean irradiances 25Wm–2, 75Wm–2, and 130Wm–2 PhAR were exposed to different illumination regimes (ratio of light to dark interval varied from 2:22 to 24:0 hours). The populations of daughter cells released under these conditions differed markedly in their progress in the cell cycle. The cells from these populations were stained with DAPI and the shape, localization and number of chloroplast nucleoids were examined. The nucleoids were of spherical shape, divided asynchronously having dumbbell shape during fission. In the chloroplast, nucleoids were located symmetrically about the transverse axis of the cells. The mean number of nucleoids varied from two in the least developed daughter cells to 16 in the daughter cells of the highest developmental stage. The progress of these cells and thus also the number of nucleoids were proportional to the portion of the light energy amount which these daughter cells shared from the total light energy amount obtained by their mother cells.Abbreviations DAPI 4, 6-diamidino-2-diphenylindole - PhAR photosynthetically active radiation (400–700 nm)  相似文献   

17.
Enzymatically prepared alginate oligomer (AO) promoted the growth of Chlamydomonas reinhardtii in a concentration-dependent manner. AO at 2.5 mg/mL induced increase in expression levels of cyclin A, cyclin B, and cyclin D in C. reinhardtii. CuSO4 at 100 μM suppressed the growth of C. reinhardtiin, and AO at 2.5 mg/mL significantly alleviated the toxicity of CuSO4. Increased intracellular reactive oxygen species level in C. reinhardtii induced by CuSO4 was reduced by AO. After cultivation with CuSO4 at 100 μM, expression levels of ascorbate peroxidase and superoxide dismutase in C. reinhardtii were increased, and AO reduced the increased levels of these enzymes. These results suggest that AO exhibits beneficial effects on C. reinhardtii through influencing the expression of various genes not only at normal growth condition but also under CuSO4 stress.  相似文献   

18.
The unicellular green alga Chlamydomonas reinhardtii synthesizes glycerol as an osmoregulatory metabolite when exposed to high saline concentrations (200 mM NaCl). Response to osmotic stress can be used for biotechnological production of this compound. When synthesis of a substance is linked to photosynthetic capacity and consequently to effective light, the production on a large scale makes an efficient utilization of light necessary. In the present work a model for evaluation of effective light has been tested.  相似文献   

19.
The room temperature chlorophyll fluorescence decay kinetics of photosynthetic mutants of Chlamydomonas reinhardtii have been measured as a function of Photosystem 2 (PS2) trap closure, DNB-induced quenching at FM, and time-resolved emission spectra. The overall decays have been analyzed in terms of three or four kinetic components where necessary. A comparison of the characteristics of the decay components exhibited by the mutants with the wild-type has been carried out to elucidate the precise origins of the different emissions in relation to the observed pigment-protein complexes. It is shown that a) charge recombination in PS2 is not necessary for the presence of long-lived decay components, b) there are two rapid PS1-associated emissions (=30 and 150–200 ps), c) a slow PS1 decay is observed (=1.73 ns) in the absence of PS1 reaction centres, d) the two variable components (=0.25–1.2 and 0.5–2.2 ns) observed in the wild-type arise from LHC2 and e) a rapid (=50–250 ps) decay is associated with the PS2 core antenna (CP3 and CP4). These results show that the intact thylakoid membrane system is too complex to distinguish all of the individual kinetic components.Abbreviations Aexp preexponential factor (Amplitude) - chl chlorophyll - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethyl urea - DNB m, dinitrobenzene - FM maximum chl fluorescence level - F0 initial chl fluorescence level - Fv variable chl fluorescence (FM–F0) - LHC light harvesting chl a/b protein complex - PS photosystem - QA primary stable electron acceptor of PS2  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号