首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Hydrocortisone (cortisol) increased the binding of thyrotropin-releasing hormone (TRH) to specific membrane receptors in 4 clonal strains of rat pituitary cells. At the highest effective cortisol concentration (3–5 × 10?6 M), the increase was observed within 6–8 hr and became maximal (140 to 160% of control binding) by 18–24 hr. Half-maximum stimulation occurred in serum-containing medium at 9 × 10?8 M cortisol, and a significant increase in TRH binding was seen at 3 × 10?8 M. Equilibrium binding studies showed that enhanced TRH binding was explained by an increase in receptor number with no change in affinity. Similar effects were seen with Dexamethasone, but no increase in TRH binding was noted when testosterone, methyltestosterone, progesterone, estradiol or the antiestrogen Lilly 88571 were added to the culture medium. Cortisol treatment did not cause the appearance of specific TRH binding sites in cell strains previously shown to lack receptors for the tripeptide (F4C1, GH12C1 and R5 cells). When added cortisol was removed from medium, receptor number decayed to control values with a T12 of about 30 hr. Previous studies have shown that TRH receptors in GH-cells can be down-modulated by TRH and thyroid hormones; the present findings demonstrate that glucocorticoid hormones can increase the number of TRH receptors in GH-cells.  相似文献   

3.
Phosphatidylinositol (Ptd Ins) breakdown in response to thyrotropin-releasing hormone (TRH) was measured after preincubation of both normal rat anterior pituitary cells and GH3 turnout cells with [3H]inositol by the determination of [3H]inositol phosphate accumulation in the presence of lithium (which inhibits myo-inositol phosphatase). The method employed, which was originally developed for use with tissue slices, was adapted for isolated cells in monolayer culture. In GH3 cells, TRH stimulated the breakdown of phosphoinositide in a manner similar to that reported previously using alternative methods. Furthermore, in normal male anterior pituitary cells the dose-response profile for TRH stimulation of inositol phosphate accumuJation was found to correlate well with the dose-response profile for TRH stimulation of prolactin secretion. As this response was maintained in the absence of added calcium, the breakdown of phosphoinositide would appear to be implicated as an event preceding calcium mobilization.  相似文献   

4.
The studies reported here were undertaken to clarify the cellular mechanism of the hypothalamic tripeptide, thyrotropin-releasing hormone (TRH), in clonal, hormone-responsive GH pituitary cells and to assess the possibility of a role for cyclic AMP as a mediator of TRH action. We investigated patterns of protein phosphorylation by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography of high speed supernatant and pellet fractions from untreated and treated GH cells. Brief treatment of cells with agents which elevate or mimic cellular cyclic AMP (8-bromo cyclic AMP, dibutyryl cyclic AMP, vasoactive intestinal polypeptide or cholera toxin) stimulated the phosphorylation of five supernatant peptides (41, 45, 47, 72, and 82 kilodaltons) and one pellet peptide (135 kilodaltons) and decreased the phosphorylation of one supernatant peptide (55 kilodaltons). In contrast, TRH promoted the phosphorylation of four different supernatant peptides (two 59, 65, and 80 kilodaltons). In addition, TRH also stimulated the phosphorylation of cyclic AMP-responsive 41-, 45-, and 82-kilodalton supernatant peptides and 135-kilodalton pellet protein and decreased the phosphorylation of 55-kilodalton supernatant peptide. Altered labeling of 47- and 72-kilodalton supernatant peptides, however, was not observed with TRH. Time course studies, as well as the overlapping biological action of TRH and vasoactive intestinal polypeptide, lead us to conclude that these peptide hormones utilize distinct, parallel pathways which converge at some late step. Furthermore, the results indicate that effects of TRH are mediated by a cyclic AMP-independent pathway.  相似文献   

5.
6.
Previous studies demonstrated that phorbol esters and thyrotropin-releasing hormone (TRH) stimulated phosphatidylcholine synthesis via protein kinase C in GH3 pituitary cells (Kolesnick, R. N. (1987) J. Biol. Chem. 262, 14525-14530). Since phosphatidylcholine may serve as the precursor for sphingomyelin synthesis, studies were performed to assess the effect of protein kinase C on sphingomyelin synthesis. The potent phorbol ester, 12-O-tetradecanoylphorbol 13-acetate (TPA), stimulated time- and concentration-dependent incorporation of 32Pi into the head group of sphingomyelin in cells short term labeled with 32Pi and resuspended in medium without radiolabel. TPA (10(-7) M) increased incorporation at a rate 1.4-fold of control after 2 h; EC50 congruent to 2 x 10(-9) M TPA. This correlated closely to TPA-induced phosphatidylcholine synthesis; EC50 congruent to 9 x 10(-10) M TPA. TRH (10(-7) M), which activates protein kinase C via a receptor-mediated mechanism, similarly stimulated 32Pi incorporation into sphingomyelin at a rate 1.5-fold of control; EC50 congruent to 5 x 10(-10) M TRH. This correlated closely with TRH-induced phosphatidylcholine and phosphatidylinositol synthesis; EC50 congruent to 2 x 10(-10) and 1.5 x 10(-10) M TRH, respectively. In cells short term labeled with [3H]palmitate, TRH induced a time- and concentration-dependent reduction in the level of [3H]ceramide and a quantitative increase in the level of [3H]sphingomyelin. Compositional analysis of the incorporated [3H]palmitate revealed that TRH increased radiolabel into both the sphingoid base and the fatty acid moieties of sphingomyelin. Similarly, TRH increased incorporation of [3H] serine into sphingomyelin to 145 +/- 8% of control after 3 h. TPA also stimulated these events. Like the effect of TRH on phosphatidylcholine synthesis, TRH-induced sphingomyelin synthesis was abolished in cells "down-modulated" for protein kinase C. In contrast, TRH-induced phosphatidylinositol synthesis still occurred in these cells. These studies suggest that protein kinase C stimulates coordinate synthesis of phosphatidylcholine and sphingomyelin. This is the first report of stimulation of sphingomyelin synthesis via a cell surface receptor.  相似文献   

7.
The early actions of thyrotropin-releasing hormone (TRH) have been studied in hormone-responsive clonal GH3 rat pituitary cells. Previous studies had demonstrated that TRH promotes a "phosphatidylinositol response" in which increased incorporation of [32P]orthophosphate into phosphatidylinositol and phosphatidic acid was observed within minutes of hormone addition. The studies described here were designed to establish whether increased labeling of phosphatidylinositol and phosphatidic acid resulted from prior hormone-induced breakdown of an inositol phosphatide. GH3 cells were prelabeled with [32P]orthophosphate or myo-[3H]inositol. Addition of TRH resulted in the rapid disappearance of labeled polyphosphoinositides, whereas levels of phosphatidylinositol and other phospholipids remained unchanged. TRH-promoted polyphosphoinositide breakdown was evident by 5 S and maximal by 15 s of hormone treatment. Concomitant appearance of inositol polyphosphates in [3H]inositol-labeled cells was observed. In addition, TRH rapidly stimulated diacylglycerol accumulation in either [3H]arachidonic- or [3H]oleic acid-labeled cultures. These results indicate that TRH rapidly causes activation of a polyphosphoinositide-hydrolyzing phospholipase C-type enzyme. The short latency of this hormone effect suggests a proximal role for polyphosphoinositide breakdown in the sequence of events by which TRH alters pituitary cell function.  相似文献   

8.
Phorbol esters have been shown to stimulate phosphatidylcholine synthesis via the CDP-choline pathway. The present study compares the effects of phorbol esters and thyrotropin-releasing hormone (TRH) on phosphatidylcholine metabolism in GH3 pituitary cells. In a previous study (Kolesnick, R.N., and Paley, A.E. (1987) J. Biol. Chem. 262, 9204-9210), the potent phorbol ester, 12-O-tetradecanoylphorbol 13-acetate (TPA) induced time- and concentration-dependent incorporation of 32Pi and [3H]choline into phosphatidylcholine in short-term labeling experiments. In this study, TPA is shown to activate choline-phosphate cytidylyltransferase (EC 2.7.7.15), the regulatory enzyme of the CDP-choline pathway, by stimulating redistribution of the inactive cytosolic form of the enzyme to the membrane. Redistribution was quantitative. TPA reduced cytosolic activity from 3.5 +/- 0.4 to 1.5 +/- 0.3 nmol . min-1 x 10(7) cells-1 and enhanced particulate activity from 2.5 +/- 0.4 to 4.9 +/- 0.6 nmol . min-1 x 10(7) cells-1. TRH also stimulated time- and concentration-dependent 32Pi and [3H]choline incorporation into phosphatidylcholine. An increase was detectable after 5 min; and after 30 min, the levels were 164 +/- 9 and 150 +/- 11% of control, respectively; EC50 congruent to 2 X 10(-10) M TRH. These events correlated directly with TRH-induced 32Pi incorporation into phosphatidylcholine. TRH also stimulated redistribution of cytidylyl-transferase specific activity. TRH reduced cytosolic activity 45% and enhanced particulate activity 51%. Neither TRH nor TPA stimulated phosphatidylcholine degradation. In cells down-modulated for protein kinase C (Ca2+/phospholipid-dependent protein kinase), the effects of TPA and TRH on 32Pi incorporation into phosphatidylcholine were abolished. However, TRH-induced incorporation into phosphatidylinositol still occurred. These studies provide evidence that hormones may regulate phosphatidylcholine metabolism via the protein kinase C pathway.  相似文献   

9.
Thyrotropin-releasing hormone (TRH) affects hormone secretion and synthesis in GH4C1 cells, a clonal strain of rat pituitary cells. Recent evidence suggests that the intracellular mediators, inositol 1,4,5-trisphosphate and 1,2-diacylglycerol, which are generated as a result of TRH-induced hydrolysis of the polyphosphatidylinositols, may be responsible for some of the physiological events regulated by TRH. Because diacylglycerol is an activator of protein kinase C, we have examined a role for this enzyme in TRH action. The subcellular distribution of protein kinase C in control and TRH-treated cells was determined by measuring both enzyme activity and 12,13-[3H]phorbol dibutyrate binding in the cytosol and by measuring enzyme activity in the particulate fraction. Acute exposure of GH4C1 cells to TRH resulted in a decrease of cytosolic protein kinase C, and an increase in the level of the enzyme associated with the particulate fraction. The redistribution of protein kinase C induced by TRH was dose- and time-dependent, with maximal effects occurring within the first minute of TRH treatment. Analogs of TRH which do not bind to the TRH receptor did not induce redistribution of protein kinase C, while the active analog, methyl-TRH, did promote redistribution. Treatment of GH4C1 cells with phorbol myristate acetate also resulted in a shift in protein kinase C distribution, although the response was slower than that produced by TRH. TRH-induced redistribution of protein kinase C implies translocation of the enzyme from a soluble to a membrane-associated form. Because protein kinase C requires a lipid environment for activity, association with the membrane fraction of the cell suggests activation of the enzyme; thus, protein kinase C may play a role in some of the actions of TRH on GH4C1 cells.  相似文献   

10.
The effects of thyrotropin-releasing hormone (TRH) and 12-O-tetradecanoylphorbol 13-acetate (TPA) on cytosolic pH (pHi) were studied on GH4C1 pituitary cells loaded with the fluorescent pH indicator bis(carboxyethyl)carboxyfluorescein (BCECF) and the fluorescent Ca2+ indicator quin2. TRH, which was minimally effective at around 10(-9) M, and TPA, 100 nM, produced very small elevations in pHi of about 0.05 pH units from the normal basal resting pHi of GH4C1 cells of around 7.05. The effects were more marked after acid-loading the cells using 1 micrograms of nigericin/ml. Preincubation with amiloride or replacing the extracellular Na+ with choline+ completely blocked the elevations stimulated by TRH or TPA, consistent with an activation of the Na+/H+ antiport mechanism. The effects were completely independent of the cytoplasmic free calcium concentration ([Ca2+]i). The calcium ionophore ionomycin produced an elevation in [Ca2+]i with no concomitant effect on pHi, and amiloride, although completely inhibiting the pH change stimulated by TRH, failed to affect the initial stimulated [Ca2+]i transient. Although the data are consistent with an elevation in pHi by TRH which is caused by stimulation of a protein kinase C and subsequent activation of the antiporter, the rapidity of the onset of the pHi response to TRH could not be mimicked by a combination of TPA and ionomycin. These results, together with previous findings which show that secretion can be mimicked by TPA and ionomycin, suggest that TRH-stimulated Na+/H+ exchange plays no part in the acute stimulation of secretion, but that TRH increases the pH-sensitivity of the antiport system during increased synthesis of prolactin and growth hormone.  相似文献   

11.
12.
Hormonal stimulation of voltage-dependent Ca2+ channels in pituitary cells is thought to contribute to the sustained phase of Ca2+ entry and secretion induced by secretion stimulating hormones and has been suggested as a mechanism for refilling the Ca2+ stores. Using the cell-attached patch-clamp technique, we studied the stimulation of single Ca2+ channels by thyrotropin-releasing hormone (TRH) in rat GH3 cells. We show that TRH applied from the bath switched the activity of single L-type Ca2+ channels from a gating mode with very low open probability (po) to a gating mode with slightly smaller conductance but 10 times higher po. Interconversions between these two gating modes were also observed under basal conditions, where the equilibrium was shifted towards the low po mode. TRH applied from the pipette had no effect, indicating the involvement of a cytosolic compound in the stimulatory pathway. We show that TRH does not potentiate all the L-type Ca2+ channels in a given membrane patch and report evidence for co-expression of two functionally different L-type Ca2+ channels. Our results uncover the biophysical mechanism of hormonal stimulation of voltage-dependent Ca2+ channels in GH3 cells and are consistent with differential modulation of different subtypes of dihydropyridine-sensitive Ca2+ channels.  相似文献   

13.
Human D3 dopamine receptor DNA was stably transfected into GH4C1 pituitary cells. Displacement of iodosulpiride binding in hD3 transfected cells (Kd = 0.3 nM, Bmax = 89 fmol/mg protein) by dopaminergic ligands was indistinguishable from that of hD3 receptors in CHO cells. Only two clonal cell lines exhibited weak GppNHp-dependent shifts in [3H]N-0437 binding, and these were used for functional assays. Neither arachidonic acid metabolism, cAMP levels, inositol phosphate turnover, intracellular calcium, or potassium currents were consistently affected by dopamine (1-10 microM). The paucity of responses indicates that human D3 receptors do not couple efficiently to these second messengers in GH4C1 cells.  相似文献   

14.
We examined whether mitogen-activated protein (MAP) kinase is activated by thyrotropin-releasing hormone (TRH) in GH3 cells, and whether MAP kinase activation is involved in secretion of prolactin from these cells. Protein kinase inhibitors--such as PD098059, calphostin C, and genistein--and removal of extracellular Ca2+ inhibited MAP kinase activation by TRH. A cAMP analogue activated MAP kinase in these cells. Effects of cAMP on MAP kinase activation were inhibited by PD098059. TRH-induced prolactin secretion was not inhibited by levels of PD098059 sufficient to i activation but was inhibited by wortmannin (1 microM) and KN93. Treatment of GH3 cells with either TRH or cAMP significantly inhibited DNA synthesis and induced morphological changes. The effects stimulated by TRH were reversed by PD098059 treatment, but the same effects stimulated by cAMP were not. Treatment of GH3 cells with TRH for 48 h significantly increased the prolactin content in GH3 cells and decreased growth hormone content. The increase in prolactin was completely abolished by PD098059, but the decrease in growth hormone was not. These results suggest that TRH-induced MAP kinase activation is involved in prolactin synthesis and differentiation of GH3 cells, but not in prolactin secretion.  相似文献   

15.
The intrinsic tryptophan fluorescence of membranes prepared from the GH3 strain of hormone-producing pituitary cells was monitored by spectrofluorometry. Membranes of GH3 cells have specific receptors which bind thyrotropin-releasing hormone (TRH). When TRH binds to GH3 membranes there is quenching of tryptophan fluorescence. The kinetics of the change in fluorescence of GH3 membranes and of TRH binding are similar. In addition, the concentration of TRH required to produce a half-maximum change in fluorescence is 10 nM, and that required for half-maximum binding of TRH to receptors is 11 nM. Inactive TRH analogs which do not bind to TRH receptors likewise do not alter GH3 membrane fluorescence, and a pituitary cell strain which lacks TRH receptors does not change membrane fluorescence on incubation with TRH. We conclude that the TRH-receptor interaction in GH3 membranes is associated with a change in membrane conformation that is readily measured by differential spectrofluorometry.  相似文献   

16.
To study phosphorylation of the endogenous type I thyrotropin-releasing hormone receptor in the anterior pituitary, we generated phosphosite-specific polyclonal antibodies. The major phosphorylation site of receptor endogenously expressed in pituitary GH3 cells was Thr(365) in the receptor tail; distal sites were more phosphorylated in some heterologous models. beta-Arrestin 2 reduced thyrotropin-releasing hormone (TRH)-stimulated inositol phosphate production and accelerated internalization of the wild type receptor but not receptor mutants where the critical phosphosites were mutated to Ala. Phosphorylation peaked within seconds and was maximal at 100 nm TRH. Based on dominant negative kinase and small interfering RNA approaches, phosphorylation was mediated primarily by G protein-coupled receptor kinase 2. Phosphorylated receptor, visualized by immunofluorescence microscopy, was initially at the plasma membrane, and over 5-30 min it moved to intracellular vesicles in GH3 cells. Dephosphorylation was rapid (t((1/2)) approximately 1 min) if agonist was removed while receptor was at the surface. Dephosphorylation was slower (t((1/2)) approximately 4 min) if agonist was withdrawn after receptor had internalized. After agonist removal and dephosphorylation, a second pulse of agonist caused extensive rephosphorylation, particularly if most receptor was still on the plasma membrane. Phosphorylated receptor staining was visible in prolactin- and thyrotropin-producing cells in rat pituitary tissue from untreated rats and much stronger in tissue from animals injected with TRH. Our results show that the TRH receptor can rapidly cycle between a phosphorylated and nonphosphorylated state in response to changing agonist concentrations and that phosphorylation can be used as an indicator of receptor activity in vivo.  相似文献   

17.
In a previous report we showed that TRH-induced down-regulation of the density of its receptors (TRH-Rs) on rat pituitary tumor (GH3) cells was preceded by a decrease in the activity of the mRNA for the TRH-R, as assayed in Xenopus oocytes. Here we report the effects of TRH, elevation of cytoplasmic free Ca2+ concentration, phorbol myristate acetate (PMA), and H-7 [1-(5-isoquinolinesulfonyl)2-methylpiperazine dihydrochloride], an inhibitor of protein kinases, on the levels of TRH-R mRNA, which were measured by Northern analysis and in nuclease protection assays using probes made from mouse pituitary TRH-R cDNA, in GH3 cells. These agents were studied to gain insight into the mechanism of the TRH effect, because signal transduction by TRH involves generation of inositol 1,4,5-trisphosphate and elevation of cytoplasmic free Ca2+ concentration, which leads to activation of Ca2+/calmodulin-dependent protein kinase, and of 1,2-diacylglycerol, which leads to activation of protein kinase-C. TRH (1 microM TRH, a maximally effective dose) caused a marked transient decrease in TRH-R mRNA that attained a nadir of 20-45% of control by 3-6 h, increased after 9 h, but was still below control levels after 24 h. Elevation of the cytoplasmic free Ca2+ concentration had no effect on TRH-R mRNA. A maximally effective dose of PMA (1 microM) caused decreases in TRH-R mRNA that were similar in magnitude and time course to those induced by 1 microM TRH. H-7 (20 microM) blocked the effects of TRH and PMA to lower TRH-R mRNA to similar extents.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
19.
20.
Addition of thyrotropin-releasing hormone (TRH) to [3H]-inositol pre-labelled GH3 pituitary tumour cells suspended in medium containing 10mM lithium chloride led to a rapid diminution in cellular [3H]-inositol and increase in [3H]-inositol 1-phosphate (InslP), [3H]-inositol bisphosphate (InsP2) and [3H]-inositol trisphosphate (InsP3). In the presence of the benzodiazepine tranquillizer, chlordiazepoxide, the TRH concentration-response curves for these effects were shifted to the right in a parallel fashion. The Ki for chlordiazepoxide in inhibiting all four responses was 1.5 X 10(-5)M. Chlordiazepoxide did not inhibit the small bombesin-induced rise in [3H]-InslP. Another benzodiazepine, diazepam, was less active. The TRH-induced rise in cytosolic free calcium monitored in Quin-2-loaded GH3 cells was also blocked by chlordiazepoxide in a competitive manner, while that induced by high K+-induced depolarisation was unaffected. It is suggested that chlordiazepoxide acts as a competitive antagonist at the level of the TRH receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号