首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Actin-membrane interactions have been studied using purified liver plasma membranes and muscular filamentous actin. Despite the large quantity of endogenous actin present in membranes, exogenous muscular filamentous actin cosediments with membranes after a 30 min centrifugation at 30 000 g. The cosedimentation process is time-dependent and exhibits a complex relationship with actin concentration. The cosedimentation of actin with membranes can be partly explained by gelation as shown by low-shear viscosity and electron microscopy. The characterization of the gelation phenomenon as a function of time, actin and membrane concentrations, ionic strength, temperature and Ca2+ concentration is also presented. Gelation alone cannot however account for the overall cosedimentation data, and a more direct mode of association between actin and the membrane must be envisaged. The analogy that exists between the results obtained with liver plasma membranes and those obtained with other membrane systems suggests that a general mechanism may be involved in the interaction of actin with plasma membranes.  相似文献   

2.
Arginine and creatine kinase activities in different muscles are compared with calculated maximum rates of ATP turnover. The magnitude of the kinase activities decreases in the following order: anaerobic muscles and vertebrate skeletal muscles greater than heart muscle greater than insect flight muscle. The maximum activity of phosphagen kinases (i.e. creatine kinase and arginine kinase), in the direction of phosphagen formation, is lower than the calculated maximum rate of ATP turnover in insect flight muscle or rat heart.  相似文献   

3.
The catalytic activity of c-Abl tyrosine kinase is reduced in fibroblasts that are detached from the extracellular matrix. We report here that a deletion of the extreme C terminus of c-Abl (DeltaF-actin c-Abl) can partially restore kinase activity to c-Abl from detached cells. Because the extreme C terminus of c-Abl contains a consensus F-actin binding motif, we investigated the effect of F-actin on c-Abl tyrosine kinase activity. We found that F-actin can inhibit the kinase activity of purified c-Abl protein. Mutations of the extreme C-terminal region of c-Abl disrupted both the binding of c-Abl to F-actin and the inhibition of c-Abl by F-actin. Mutations of the SH3, SH2, and DNA binding domains did not abolish the inhibition of c-Abl kinase by F-actin. Catalytic domain substitutions that affect the regulation of c-Abl by the retinoblastoma protein or the ataxia telangiectasia-mutated kinase also did not abolish the inhibition of c-Abl by F-actin. Interestingly, among these c-Abl mutants, only the DeltaF-actin c-Abl retained kinase activity in detached cells. Taken together, the data suggest that F-actin is an inhibitor of the c-Abl tyrosine kinase and that this inhibition contributes in part to the reduced Abl kinase activity in detached cells.  相似文献   

4.
5.
The mechanism of activation of protein kinase C isoforms by filamentous actin (F-actin) was investigated with respect to isozyme specificity and phorbol ester and Ca(2+) dependencies. It was found that the "conventional" (cPKC), alpha, betaI, betaII, and gamma, "novel" (nPKC) delta and epsilon, and "atypical" (aPKC) zeta isoforms were each activated by F-actin with varying potencies. The level of activity along with the affinity for binding to F-actin was further potentiated by the phorbol ester 4beta-12-O-tetradecanoylphorbol 13-acetate (TPA), the potency of which again varied for each isoform. By contrast to the other cPKC isoforms, the level of cPKC-gamma activity was unaffected by TPA, as was also the case for aPKC-zeta. It was found that whereas in the absence of F-actin the soluble form of cPKC-betaI contained two phorbol ester binding sites of low and high affinity, respectively, as previously reported for cPKC-alpha [Slater et al. (1998) J. Biol. Chem. 273, 23160-23168], the F-actin-bound form of the isozyme contained only a single site of relatively low affinity. The level of TPA required to induce cPKC-alpha, -betaI, and -betaII activity and the binding of these isozymes to F-actin was reduced in the presence of Ca(2+). By contrast, the activity of cPKC-gamma was unaffected by Ca(2+), as were the activities of nPKC-delta and -epsilon and aPKC-zeta, as expected. Thus, the interaction with F-actin appears to be a general property of each of the seven PKC isozymes tested. However, isoform specificity may, in part, be directed by differences in the phorbol ester and Ca(2+) dependences, which, with the notable exception of cPKC-gamma, appear to resemble those observed for the activation of each isoform by membrane association. The observation that cPKC isoforms may translocate to F-actin as well as the membrane as a response to an elevation of Ca(2+) levels may allow for the functional coupling of fluctuations of intracellular Ca(2+) levels through cPKC to F-actin cytoskeleton-mediated processes.  相似文献   

6.
1. Two molecular forms of arginine kinase, AK1 and AK2 have been purified from the adductor muscle of the scallop, Pecten maximus. AK2 was retained on a DEAE-cellulose column at pH 7.5, but AK1 was not. 2. Both forms were monomeric (mol. wt. approximately 42,000) and showed the same pH optimum (7.5-8.0) in the direction of phosphoarginine synthesis. 3. AK1 had slower electrophoretic mobility at pH 8.3 towards the anode, higher lysine content, lower glutamate content, lower Km for L-arginine and higher Km for Mg(2+)-ATP than AK2. Unlike AK1, AK2 was strongly inhibited at high concentrations of Mg(2+)-ATP. 4. Both molecular forms cross-reacted with antisera raised against native as well as performic acid-oxidized lobster muscle arginine kinase. However, AK1 showed a greater affinity than AK2 to anti-lobster arginine kinase antibodies, particularly to those raised against the native enzyme.  相似文献   

7.
A fraction of Bruton's tyrosine kinase (Btk) co-localizes with actin fibers upon stimulation of mast cells via the high affinity IgE receptor (FcepsilonRI). In this study, a molecular basis of the Btk co-localization with actin fibers is presented. Btk and other Tec family tyrosine kinases have a pleckstrin homology (PH) domain at their N termini. The PH domain is a short peptide module frequently found in signal-transducing proteins and cytoskeletal proteins. Filamentous actin (F-actin) is shown to be a novel ligand for a subset of PH domains, including that of Btk. The actin-binding site was mapped to a 10-residue region of the N-terminal region of Btk. Basic residues in this short stretch are demonstrated to be involved in actin binding. Isolated PH domains induced actin filament bundle formation. Consistent with these observations, Btk binds F-actin in vitro and in vivo. Wild-type Btk protein is in part translocated to the cytoskeleton upon FcepsilonRI cross-linking, whereas Btk containing a mutated PH domain is not. Phosphatidylinositol 3,4, 5-trisphosphate-mediated membrane translocation of Btk was enhanced in cytochalasin D-pretreated, FcepsilonRI-stimulated mast cells. These data indicate that PH domain-mediated F-actin binding plays a role in Btk co-localization with actin filaments.  相似文献   

8.
The interaction of the fluorescent probe 1,8-anilinonaphthalene sulfonate with rabbit muscle pyruvate kinase is reported. Four moles of 1,8-anilinonaphthalene sulfonate interact per mole of the 4-subunit enzyme with a dissociation constant of 1.7 × 10?4m at 30 °. The interaction is not competitive with substrates ADP and phosphoenolpyruvate, with cations K+ and Mg2+, nor with effector phenylalanine.  相似文献   

9.
Actin ADP-ribosylated at Arg177 was previously shown not to polymerise after increasing the ionic strength, but to cap the barbed ends of filaments. Here we confirm that the polymerisation of ADP-ribosylated actin is inhibited, however, under specific conditions the modified actin copolymerises with native actin, indicating that its ability to take part in normal subunit interactions within filaments is not fully eliminated. We also show that ADP-ribosylated actin forms antiparallel but not parallel dimers: the former are not able to form filaments. ADP-ribosylated actin interacts with deoxyribonuclease I, vitamin D binding protein, thymosin beta(4), cofilin and gelsolin segment 1 like native actin. Interaction with myosin subfragment 1 revealed that the potential of the modified actin to aggregate into oligomers or short filaments is not fully eliminated.  相似文献   

10.
In order to investigate the structural basis for functional differences among actin isoforms, we have compared the polymerization properties and conformations of scallop adductor muscle beta-like actin and rabbit skeletal muscle alpha-actin. Polymerization of scallop Ca(2+)-actin was slower than that of skeletal muscle Ca(2+)-actin. Cleavage of the actin polypeptide chain between Gly-42 and Val-43 with Escherichia coli protease ECP 32 impaired the polymerization of scallop Mg(2+)-actin to a greater extent than skeletal muscle Mg(2+)-actin. When monomeric scallop and skeletal muscle Ca(2+)-actins were subjected to limited proteolysis with trypsin, subtilisin, or ECP 32, no differences in the conformation of actin subdomain 2 were detected. At the same time, local differences in the conformations of scallop and skeletal muscle actin subdomains 1 were revealed as intrinsic fluorescence differences. Replacement of tightly bound Ca(2+) with Mg(2+) resulted in more extensive proteolysis of segment 61-69 of scallop actin than in the case of skeletal muscle actin. Furthermore, segment 61-69 was more accessible to proteolysis with subtilisin in polymerized scallop Ca(2+)-actin than in polymerized skeletal muscle Ca(2+)-actin, indicating that, in the polymeric form, the nucleotide-containing cleft is in a more open conformation in beta-like scallop actin than in skeletal muscle alpha-actin. We suggest that this difference between scallop and skeletal muscle actins is due to a less efficient shift of scallop actin subdomain 2 to the position it has in the polymer. The possible consequences of amino acid substitutions in actin subdomain 1 in the allosteric regulation of the actin cleft, and hence in the different stabilities of polymers formed by different actins, are discussed.  相似文献   

11.
Quantitative measurements of the interactions of T beta 4 with muscle actin suggest that its only physiological role is monomer sequestration. T beta 4 forms a 1:1 complex with monomeric actin under physiological salt conditions. Its Kd for actin is not affected by calcium. T beta 4 binds only to actin monomers and not to filament ends or alongside the filament. T beta 4-actin complexes do not elongate actin filaments at either the barbed or the pointed end, and, unlike actobindin, T beta 4 does not specifically suppress the nucleation of polymerization. We assessed the fraction of monomeric actin that can be sequestered by T beta 4 in resting platelets. This was done on the basis of (a) its Kd of 0.4-0.7 microM for platelet actin, which had been prepared by a newly devised simpler method, and (b) the values for the concentrations of monomeric actin and of T beta 4 which we measured as 280 and 560 microM, respectively. Using the higher Kd value of 0.7 microM, the T beta 4-complexed actin is calculated to be between 70 and 240 microM, depending on the steady-state free G-actin concentration. This may vary from 0.1 to 0.5 microM, the critical concentrations for uncapped and for fully barbed-end-capped actin filaments. If the Kd in the platelet is the same as in vitro, most of the sequestered actin would be bound to T beta 4 if more than 95% of the actin filaments are capped at their barbed ends in resting platelets.  相似文献   

12.
The binding of 125I-labeled muscle tropomyosin to Acanthamoeba and muscle actin was studied by ultracentrifugation and by the effect of tropomyosin on the actin-activated muscle heavy meromyosin ATPase activity. Binding of muscle tropomyosin to Acanthamoeba actin was much weaker than its binding to muscle actin. For example, at 5 mM MgCl2, 2 mM ATP, and 5 micronM actin, tropomyosin bound strongly to muscle actin but not detectably to Acanthamoeba actin. When the concentration of actin was raised from 5 micronM to 24 micronM in the presence of 80 mM KCl, the binding of tropomyosin to Acanthamoeba actin approached its binding to muscle actin. As with muscle actin, the addition of muscle heavy meromyosin in the absence of ATP induced binding of tropomyosin in Acanthamoeba actin under conditions were binding would otherwise not have occurred. The most striking difference between the interactions of muscle tropomyosin with the two actins, however, was that under conditions where tropomyosin was found to both actins, its stimulated the Acanthamoeba actin-activated heavy meromyosin ATPase but inhibited the muscle actin-activated heavy meromyosin ATPase.  相似文献   

13.
We have examined the effect of several flavonoids on the activity of phosphorylase kinase from rabbit skeletal muscle. From 14 flavonoids tested, the flavones quercetin and fisetin were found to be efficient inhibitors of nonactivated phosphorylase kinase when assayed at pH 8.2, causing 50% inhibition at a concentration of about 50 microM, while the flavanone hesperetin stimulated phosphorylase kinase activity about 2-fold when tested at 250 microM. The efficiency of quercetin in inhibiting the kinase is higher when the enzyme is stimulated either by ethanol or by alkaline pH. Both casein and troponin phosphorylation by phosphorylase kinase and the autophosphorylation of the kinase were inhibited by quercetin. In addition, quercetin was found to be a competitive inhibitor of ATP for the phosphorylation of phosphorylase b at pH 8.2. These observations suggest that the inhibitory effect of the flavone is directly on the phosphorylase kinase molecule. Trypsin-activated phosphorylase kinase was inhibited by quercetin and stimulated by hesperetin, as for the native enzyme.  相似文献   

14.
Formins are highly conserved proteins that are essential in the formation and regulation of the actin cytoskeleton. The formin homology 2 (FH2) domain is responsible for actin binding and acts as an important nucleating factor in eukaryotic cells. In this work EPR and DSC were used to investigate the properties of the mDia1-FH2 formin fragment and its interaction with actin. MDia1-FH2 was labeled with a maleimide spin probe (MSL). EPR results suggested that the MSL was attached to a single SH group in the FH2. In DSC and temperature-dependent EPR experiments we observed that mDia1-FH2 has a flexible structure and observed a major temperature-induced conformational change at 41 °C. The results also confirmed the previous observation obtained by fluorescence methods that formin binding can destabilize the structure of actin filaments. In the EPR experiments the intermolecular connection between the monomers of formin dimers proved to be flexible. Considering the complex molecular mechanisms underlying the cellular roles of formins this internal flexibility of the dimers is probably important for manifestation of their biological functions.  相似文献   

15.
Protein kinase C (PKC) can be activated by interaction with filamentous actin (F-actin) in the absence of membrane lipids (S.J. Slater, S.K. Milano, B.A. Stagliano, K.J. Gergich, J.P. Curry, F.J. Taddeo and C.D. Stubbs, Biochemistry 39 (2000) 271-280). Here, the effects of ethanol on the F-actin-induced activities of a panel of PKC isoforms consisting of 'conventional' (cPKC) alpha, betaI, gamma, 'novel' (nPKC) delta, epsilon and 'atypical' (aPKC) zeta were investigated using purified PKC and F-actin. Ethanol was found to inhibit the Ca2+- and phorbol ester-dependent activities of cPKCalpha and betaI, and the Ca2+- and phorbol ester-independent activity of cPKCgamma, whereas the activities of nPKCdelta, epsilon and aPKCzeta were unaffected. Although the activities of cPKCalpha and betaI induced by saturating levels of phorbol ester were inhibited by ethanol, the binding of these isozymes to F-actin was unaffected within the same phorbol ester concentration range. Conversely, within submaximal levels of phorbol ester, cPKCalpha and betaI activities were unaffected by ethanol whereas binding to F-actin was inhibited. The potency of the inhibition of F-actin-induced cPKCbetaI activity increased with n-alkanol chain length up to n-hexanol, after which it declined. The results indicate that PKC activities associated with F-actin, and therefore cellular processes involving the actin cytoskeleton, are potential targets for ethanol action. The effects of ethanol on these processes may differ according to the particular regulating PKC isoform, its intracellular localization and the presence of activators and cofactors.  相似文献   

16.
We have previously observed that subunits of the chaperonin required for actin production (type-II chaperonin containing T-complex polypeptide 1 [CCT]) localize at sites of microfilament assembly. In this article we extend this observation by showing that substantially substoichiometric CCT reduces the initial rate of pyrene-labeled actin polymerization in vitro where eubacterial chaperonin GroEL had no such effect. CCT subunits bound selectively to F-actin in cosedimentation assays, and CCT reduced elongation rates from both purified actin filament "seeds" and the short and stabilized, minus-end blocked filaments in erythrocyte membrane cytoskeletons. These observations suggest CCT might remain involved in biogenesis of the actin cytoskeleton, by acting at filament (+) ends, beyond its already well-established role in producing new actin monomers.  相似文献   

17.
The association between purified glycolytic enzymes and filamentous actin from rabbit muscle has been studied by counter-current distribution. The co-distribution of a glycolytic enzyme and filamentous actin leads to a significant change in the counter-current distribution profile of the enzyme whereas that of actin is unaffected. The changes in the distribution profiles clearly demonstrated that all glycolytic enzymes studied, though to different extents, bind to filamentous actin. The aqueous two-phase system used for the studies contained dextran, poly(ethyleneglycol) and 150 millimolal potassium phosphate buffer, pH 7.0. Since the ionic strength of the two-phase system is determined mainly by the buffer, the glycolytic enzymes are evidently able to associate with filamentous actin, at least in the presence of neutral polymers, at ionic strengths comparable to or higher than those assumed to prevail in vivo.  相似文献   

18.
Actins are known to comprise six mammalian isoforms of which beta- and gamma-nonmuscle actins are present in all cells, whereas alpha-smooth muscle (alpha-sm) actin is normally restricted to cells of the smooth muscle lineages. alpha-Sm actin has been found also to be expressed transiently in certain nonmuscle cells, in particular fibroblasts, which are referred to as myofibroblasts. The functional significance of alpha-sm actin in fibroblasts is unknown. However, myofibroblasts appear to play a prominent role in stromal reaction in breast cancer, at the site of wound repair, and in fibrotic reactions. Here, we show that the presence of alpha-sm actin is a signal for retardation of migratory behavior in fibroblasts. Comparison in a migration assay of fibroblast cell strains with and without alpha-sm actin revealed migratory restraint in alpha-sm actin-positive fibroblasts. Electroporation of monoclonal antibody (mAb) 1A4, which recognizes specifically the NH2-terminal Ac-EEED sequence of alpha-sm actin, significantly increased the frequency of migrating cells over that obtained with an unrelated antibody or a mAb against beta-actin. Time- lapse video microscopy revealed migratory rates of 4.8 and 3.0 microns/h, respectively. To knock out the alpha-sm actin protein, several antisense phosphorothioate oligodeoxynucleotide (ODNs) were tested. One of these, 3'UTI, which is complementary to a highly evolutionary conserved 3' untranslated (3'UT) sequence of alpha-sm actin mRNA, was found to block alpha-sm actin synthesis completely without affecting the synthesis of any other proteins as analyzed by two-dimensional gel electrophoresis. Targeting by antisense 3'UTI significantly increased motility compared with the corresponding sense ODN. alpha-Sm actin inhibition also led to the formation of less prominent focal adhesions as revealed by immunofluorescence staining against vinculin, talin, and beta1-integrin. We propose that an important function of filamentous alpha-sm actin is to immobilize the cells.  相似文献   

19.
The mold metabolites chaetoglobosins Ch-A, B, C, E, F, and J exert, as do the cytochalasins CB, CD, CE, and CG, enhancing effects of various strength on the polymerization of rabbit muscle G-actin. The polymers formed differ widely in their viscosity, Ch-B and Ch-J leading to the least viscous actins. Equal states of viscosity are arrived at by interaction of F-actin with the respective drugs. There is no correlation between the ATP hydrolyzing activity of F-actin elicited by the various cytochalasins and their influence on the viscosity.  相似文献   

20.
A chemically cross-linked filamentous actin (F-actin) gel consisting of globular actin (G-actin) as repeating units was prepared. The F-actin gel was cross-linked by covalent bonds, and the main chain is represented by the self-assembly of G-actin with a high-ordered hierarchical structure. The gel exhibited good mechanical performance with a storage modulus >1 kPa and undergoes reversible sol-gel transitions in response to changes in the salt concentration (chemical-induced sol-gel transition) as well as to shear strain (mechanical-induced sol-gel transition). Therefore, the gel exhibits self-repairing ability through dynamic polymerization and depolymerization across the structure hierarchies under repeated shear stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号