首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
This review describes the role of oxidative stress caused by endotoxin challenge in sepsis or septic shock symptoms. We observed that endotoxin injection resulted in lipid peroxide formation and membrane damage (near 60-150 kDa) in the livers of experimental animals, causing decreased levels of scavengers or quenchers of free radicals. The administration of alpha-tocopherol completely prevented injury to the liver plasma membrane caused by endotoxin, and suggested that lipid peroxidation by free radicals might occur in a tissue ischemic state, probably by disseminated intravascular coagulation (DIC), in endotoxemia. In mice, depression of Ca(2+)-ATPase activity in the liver plasma membrane may contribute to the membrane damage caused by endotoxin, and the increase of [Ca(2+)](i) in the liver cytoplasm may partially explain the oxidative stress that occurs in endotoxemia. It seems that endotoxin-induced free radical formation is regulated by Ca(2+) mobilization. Moreover, we have suggested that the oxidative stress caused by endotoxin may be due, at least in part, to the changes in endogenous zinc or selenium regulation during endotoxemia. Interestingly, the extent of TNF-alpha-induced oxidative stress may be the result of a synergism between TNF-alpha and gut-derived endotoxin. It is likely that bacterial or endotoxin translocation plays a significant role in TNF-alpha-induced septic shock. On the other hand, although nitric oxide (NO) has been implicated in the pathogenesis of vascular hyporesponsiveness and hypotension in septic shock in our experimental model, it is unlikely that NO plays a significant role in liver injury caused by free radical generation in endotoxemia.  相似文献   

3.
Administration of recombinant murine tumor necrosis factor (TNF) to mice results in lethal shock, characterized by hypotension, hypothermia, and dramatic induction of cytokines released in the circulation, such as interleukin-6 (IL-6). The sensitivity of mice to the effects of murine TNF varies from strain to strain. DBA/2 mice were found to be considerably more resistant to TNF than C57BL/6 mice. The resistance proved to be dominant since (C57BL/6 x DBA/2)F1 mice were also resistant. Using BXD recombinant inbred mice and a dose of TNF lethal for C57BL/6 but not for DBA/2 mice, we found that the resistance to TNF links to loci coding for corticosteroid-binding globulin (Cbg), alpha1-protease inhibitor (Spi1), contrapsin (Spi2) and the contrapsin-regulating gene Spi2r that form a gene cluster on chromosome 12. Quantitative trait-loci analysis of TNF-induced induction of IL-6 and of hypothermia also points to the importance of this locus (P < 0.0002 and P = 0.017, respectively), more particularly the Cbg and Spi2 loci, in the resistance to TNF. We propose to name the locus "TNF protection locus." The data suggest that endogenous protease inhibitors and/or glucocorticoids play a significant role in the attenuation of TNF-induced lethal shock. This study also demonstrates that loci affecting important biological responses can be identified with very high resolution using recombinant inbred mice.  相似文献   

4.
Oxidative stress associated with reactive oxygen species (ROS) and cytokines produced by immune cells, which is involved in septic shock caused by endotoxin, can be controlled to a certain degree by antioxidants with free radical scavenging action. N-acetylcysteine (NAC) and ascorbic acid (AA) are ROS scavengers that improve the immune response, and modulate macrophage function in mice with endotoxin-caused oxidative stress. Therefore, we have investigated the in vitro effects of these antioxidants on the functions of lymphocytes from BALB/c mice with lethal endotoxic shock caused by intraperitoneal injection of E. coli lipopolysaccharide (LPS) (100 mg/kg). Adherence to tissues and chemotaxis (the earliest two functions of lymphocytes in the immune response), as well as ROS levels and TNF alpha production were determined in the presence or absence of NAC or AA (0.001, 0.01, 0.1, 1 and 2.5 mM) in lymphocytes from peritoneum, axillary nodes, spleen and thymus obtained at several times (2, 4, 12 and 24 hours) after LPS injection. Endotoxic shock decreases the chemotaxis of lymphocytes from all the above localizations and increases their adherence, TNF alpha and ROS production. These changes in lymphocyte function were counteracted by NAC and AA, bringing these functions to values near those of control animals. Our data suggest that lymphocytes are important targets of endotoxins contributing to oxidative stress by septic shock, and that antioxidants can preserve the function of lymphocytes, preventing the homeostatic disturbances caused by endotoxin.  相似文献   

5.
Tumor necrosis factor (TNF) is an essential mediator in the pathogenesis of Gram-negative septic shock. Injection of TNF into normal mice leads to systemic, lethal inflammation, which is indistinguishable from lipopolysaccharide (LPS)-induced lethal inflammation. alpha(2)-macroglobulin (A2M) is a major positive acute phase protein with broad-spectrum protease-inhibitory activity. Mouse A2M-deficient (MAM-/-) mice were significantly protected against lethal systemic inflammation induced by TNF. The protection is not due to faster clearance of the injected TNF. The induction of tolerance to TNF-induced lethality by repetitive administration of small doses of human TNF for five consecutive days was equally efficient in both mutant mice compared to wild-type mice. In D-(+)-galactosamine (GalN)-sensitized mice, TNF induces lethal inflammatory hepatitis. MAM(-/-) mice are equally sensitive to the lethal combination of TNF/GalN. Furthermore, interleukin-1-induced desensitization to TNF/GalN was not impaired in MAM(-/-) mice. We conclude that MAM plays a mediating role in TNF-induced lethal shock and that MAM deficiency does not reduce changes in efficiency of tolerance and desensitization to TNF and TNF/GalN-induced lethality, respectively.  相似文献   

6.
Oxidative stress associated with reactive oxygen species (ROS) and cytokines produced by immune cells, which is involved in septic shock caused by endotoxin, can be controlled to a certain degree by antioxidants with free radical scavenging action. N-acetylcysteine (NAC) and ascorbic acid (AA) are ROS scavengers that improve the immune response, and modulate macrophage function in mice with endotoxin-caused oxidative stress. Therefore, we have investigated the in vitro effects of these antioxidants on the functions of lymphocytes from BALB/c mice with lethal endotoxic shock caused by intraperitoneal injection of E. coli lipopolysaccharide (LPS) (100 mg/kg). Adherence to tissues and chemotaxis (the earliest two functions of lymphocytes in the immune response), as well as ROS levels and TNFα production were determined in the presence or absence of NAC or AA (0.001, 0.01, 0.1, 1 and 2.5 mM) in lymphocytes from peritoneum, axillary nodes, spleen and thymus obtained at several times (2, 4, 12 and 24 hours) after LPS injection. Endotoxic shock decreases the chemotaxis of lymphocytes from all the above localizations and increases their adherence, TNFα and ROS production. These changes in lymphocyte function were counteracted by NAC and AA, bringing these functions to values near those of control animals. Our data suggest that lymphocytes are important targets of endotoxins contributing to oxidative stress by septic shock, and that antioxidants can preserve the function of lymphocytes, preventing the homeostatic disturbances caused by endotoxin.  相似文献   

7.
During septic shock with Gram-negative microorganisms, mortality is determined by two independent factors: high concentrations of circulating proinflammatory cytokines and multiplication of the microorganisms in the organs of the host. We studied the role of endogenous tumor necrosis factor-alpha (TNF) and lymphotoxin-alpha (LT) in the pathogenesis of lethal endotoxemia and infection with viable Salmonella typhimurium. Compared to wild-type control mice, TNF-/-LT-/- knock-out mice were more resistant (100% versus 25% mortality) to a lethal challenge with LPS, due to a significantly decreased production of the proinflammatory cytokines TNF, IL-1alpha and IL-1beta. In contrast, TNF-/-LT-/- mice were highly susceptible to infection with viable S. typhimurium as compared to wild-type mice (100% versus 0% mortality), and this was accompanied by a 100-fold greater bacterial load in their organs. The effect of endogenous TNF and LT during infection was mediated by a defective recruitment of neutrophils at the site of infection, as well as a reduced intracellular killing of S. typhimurium by these cells. These results show that TNF and LT have crucial, yet opposite effects on lethal endotoxemia induced by S. typhimurium LPS and on the infection of mice with live Salmonella microorganisms, and suggest caution when extrapolating results obtained in the lethal endotoxemia model to bacteremia in patients.  相似文献   

8.
Nitric oxide in physiology and pathology   总被引:8,自引:0,他引:8  
Summary Nitric oxide (NO) can exert a multitude of biological actions. NO, formed froml-arginine by a calcium-dependent enzyme (NO synthase) plays a key physiological role in regulating vascular tone and integrity. NO, formed by a constitutive neuronal isoform of NO synthase, likewise plays an important neuromodulator role. By contrast, high levels of NO can be generated following induction of a calcium-independent isoform of NO synthase. This excessive production of NO can provoke hypotension such as that observed in septic shock, and can exert cytotoxic actions leading to tissue injury and inflammation. Selective inhibitors of this inducible isoform thus have therapeutic potential in a number of disease states.  相似文献   

9.
Previously, the changes in phagocyte functions such as adherence, chemotaxis or TNFalpha production were found to be associated with oxidative stress in endotoxin-induced septic shock. However, in this type of oxidative stress the lymphocyte involvement has rarely been studied. In the present report, we analyzed the above functions in peritoneal lymphocytes from male and female BALB/c mice with a lethal endotoxic shock caused by intraperitoneal injection of E. coli lipopolysaccharide (LPS) (100 mg/kg), male and female Swiss mice with lethal endotoxic shock caused by intraperitoneal injection of LPS (150 and 250 mg/kg, respectively) or non-lethal endotoxic shock (100 mg/kg). In peritoneal lymphocytes obtained at 0, 2, 4, 12 or 24 h after LPS injection, the first two functions of these cells in the immune response, i.e. adherence to tissues and directed migration (chemotaxis), were studied. At 0, 0.5, 1, 1.5, 2, 4, 12 and 24 h after LPS injection, TNFalpha released by lymphocytes was also analyzed. The results show that endotoxic shock increases the adherence and TNFalpha release, and decreases the chemotaxis of peritoneal lymphocytes. These changes were more significant in mice with lethal than with non-lethal endotoxic shock, a fact that confirms the important role of lymphocytes during endotoxic shock.  相似文献   

10.
Cytokines have been studied intensively to delineate their role in the altered pathophysiology observed in septic shock. We studied the role of TNF in the lethality of two well characterized models of septic shock by inhibiting TNF's activity with a specific antibody. In the first model, sepsis was induced by cecal ligation and puncture (CLP), and in the second model sepsis was induced by either an i.p. or i.v. injection of LPS. After CLP, plasma endotoxin was detectable within 4 h and reached a peak at 8 h (136 +/- 109 ng/ml). TNF bioactivity peaked at 12 h (528 +/- 267 pg/ml) at a significantly higher level than sham-operated control mice (64 +/- 31 pg/ml). After i.p. LPS, TNF peaked much more quickly (90 min) compared with CLP and at a significantly higher level (107,900 +/- 25,000 pg/ml). Another cytokine studied in septic shock, IL-6, peaked at 12 h after CLP at 1011 +/- 431 pg/ml, and at 90 min after lethal LPS at 16,300 +/- 3,700 pg/ml. Mice were treated with an anti-TNF antibody that has been shown previously to inhibit in vivo TNF activity. Antibody treatment of mice subjected to CLP significantly reduced TNF bioactivity but did not reduce mortality or pulmonary neutrophilic infiltration. In the i.v. LPS model, anti-TNF antibody treatment concomitant with LPS injection reduced plasma TNF activity from 80,000 +/- 20,000 pg/ml to undetectable levels. However, anti-TNF treatment immediately before either i.v. or i.p. LPS did not reduce mortality. Additionally, when the antibody was administered 4 h before the lethal i.v. LPS, there was no reduction in lethality. These data show that in two separate models of septic shock blockade of TNF biologic activity will not prevent lethality.  相似文献   

11.
应用盲肠结扎法制备大鼠败血症休克模型,研究内源性一氧化碳(CO)在败血症休克时低血压发病中的作用。用血红素加氧酶(hemeoxygenase,HO)抑制剂2,4二甘油次卟啉锌(zincdeuteroporphyrin2,4bisglycol,ZnDPBG)处理大鼠后,观察动物动脉血压,同时测定主动脉平滑肌组织中HO活性和CO生成量。结果发现:败血症大鼠动脉收缩压、舒张压降低,同时血管平滑肌HO活性和CO生成明显增加。败血症大鼠用ZnDPBG处理后,动脉血压明显回升,同时HO活性和CO生成明显被抑制。实验表明败血症休克时低血压的发生与血管平滑肌细胞HO活性增加和内源性CO生成增多明显相关;应用HO抑制剂阻断HO活性能导致内源性CO生成减少,继而使败血症休克时大鼠血压明显回升。实验提示,内源性CO对血管张力具有重要的调节作用;HO活性和内源性CO生成增加是败血症休克时低血压发生的重要机制之一。  相似文献   

12.
Ou HS  Yang J  Dong LW  Pang YZ  Su JY  Tang CS  Liu NK 《生理学报》1999,51(1):1-6
A sepsis model induced by cecal ligation and puncture was used to study the role of endogenous carbon monoxide in hypotension pathogenesis of rats during septic shock. After administration of zinc deuteroporphyrin 2,4-bisglycol (ZnDPBG),an inhibitor of heme oxygenase (HO),blood pressure (BP),HO activity and carbon monoxide (CO) release from vascular muscle tissue were measured. The results showed that BP of sepsis rats, including systolic and diastolic arterial BP, decreased significantly while HO activity and CO content were significantly increased. In contrast, after administration of ZnDPBG, BP of sepsis rats was significantly increased while the HO activity and CO production were significantly decreased. These findings suggest that HO activity and CO release within vascular musculature are increased during septic shock; inhibition of HO may elevate BP of rats during septic shock through a decrease of endogenous CO production. It is concluded that endogenous CO derived from vascular muscle cells plays an important role in regulating vascular tone, and the up-regulation of HO activity followed by subsequent CO production contributes to hypotension pathogenesis during septic shock.  相似文献   

13.
A sepsis model induced by cecal ligation and puncture was used to study the role of endogenous carbon monoxide in hypotension pathogenesis of rats during septic shock. After administration of zinc deuteroporphyrin 2,4-bisglycol (ZnDPBG),an inhibitor of heme oxygenase (HO),blood pressure (BP),HO activity and carbon monoxide (CO) release from vascular muscle tissue were measured. The results showed that BP of sepsis rats,including systolic and diastolic arterial BP,decreased significantly while HO activity and CO content were significantly increased. In contrast,after administration of ZnDPBG,BP of sepsis rats was significantly increased while the HO activity and CO production were significantly decreased. These findings suggest that HO activity and CO release within vascular musculature are increased during septic shock;inhibition of HO may elevate BP of rats during septic shock through a decrease of endogenous CO production. It is concluded that endogenous CO derived from vascular muscle cells plays an important role in regulating vascular tone,and the up-regulation of HO activity followed by subsequent CO production contributes to hypotension pathogenesis during septic shock.  相似文献   

14.
15.
Mitochondria as targets of apoptosis regulation by nitric oxide   总被引:1,自引:0,他引:1  
Vieira H  Kroemer G 《IUBMB life》2003,55(10-11):613-616
In addition to their vital role as the cell's power stations, mitochondria exert an important function in apoptosis. In response to most if not all apoptosis inducers, mitochondrial membranes are permeabilized, leading to the release of potentially toxic proteins, mostly from the intermembrane space to the rest of the cells. Such pro-apoptotic intermembrane proteins include the caspase-independent death effector AIF, as well as cytochrome c, which can trigger the activation of caspases, once it has reached the cytosol. The mitochondrial permeabilization process can be induced by a variety of different xenobiotics, via a direct effect on mitochondrial membranes. Alternatively, mitochondrial permeabilization can be induced by endogenous second messengers, which are elicited in response to stress. The permeabilization process is controlled by the mitochondrial permeability transition pore complex (PTPC), by proteins of the Bcl-2/Bax family, as well as by lipids and metabolites. Nitric oxide (NO) is one of the second messengers that can trigger apoptosis by inducing mitochondrial membrane permeabilization. This effect may involve a direct effect on the PTPC and/or indirect effects secondary to the NO-mediated inhibition of oxidative phosphorylation. This has far-reaching implications for the pathophysiology of NO.  相似文献   

16.
1-Acid glycoprotein (AGP) is an acute phase protein produced by hepatocytes. Although its exact biological function remains controversial, it was shown to protect galactosamine-sensitized or normal mice against hepatitis and lethal shock induced by tumor necrosis factor (TNF). Rat-AGP- transgenic mice, constitutively producing several mg AGP per ml serum were tested for their response to a combined challenge with TNF and D-(+)-galactosamine. A previously characterized, single transgenic line (9.5–5) was used. In contrast to our expectations both heterozygous or homozygous transgenic mice were not protected by the endogenously overproduced AGP. However, both transgenic and non-transgenic mice were protected by pretreatment with interleukin-1, an effect which we believe is mediated by the induction of acute phase proteins like AGP. Furthermore, both types of mice were protected by exogenous bovine AGP, suggesting that the lack of protection by endogenous AGP is not because of a repressed response to AGP. Finally, we demonstrate that purified AGP from the serum of transgenic mice is as protective as the AGP from non-transgenic mice or rats. The results suggest that AGP is protective only when its concentration is rapidly induced, perhaps because the endogenous steady state synthesis of AGP, in non-transgenic as well as transgenic mice, is coupled to the production of an AGP-binding factor. This study provides an interesting example of differences in outcome to a lethal challenge between an acute administered and a chronically produced protective protein.  相似文献   

17.
Identification of new therapeutic targets for the management of septic shock remains imperative as all investigational therapies, including anti-tumor necrosis factor (TNF) and anti-interleukin (IL)-1 agents, have uniformly failed to lower the mortality of critically ill patients with severe sepsis. We report here that macrophage migration inhibitory factor (MIF) is a critical mediator of septic shock. High concentrations of MIF were detected in the peritoneal exudate fluid and in the systemic circulation of mice with bacterial peritonitis. Experiments performed in TNFalpha knockout mice allowed a direct evaluation of the part played by MIF in sepsis in the absence of this pivotal cytokine of inflammation. Anti-MIF antibody protected TNFalpha knockout from lethal peritonitis induced by cecal ligation and puncture (CLP), providing evidence of an intrinsic contribution of MIF to the pathogenesis of sepsis. Anti-MIF antibody also protected normal mice from lethal peritonitis induced by both CLP and Escherichia coli, even when treatment was started up to 8 hours after CLP. Conversely, co-injection of recombinant MIF and E. coli markedly increased the lethality of peritonitis. Finally, high concentrations of MIF were detected in the plasma of patients with severe sepsis or septic shock. These studies define a critical part for MIF in the pathogenesis of septic shock and identify a new target for therapeutic intervention.  相似文献   

18.
The role of IFN-gamma in the pathology of experimental endotoxemia   总被引:21,自引:0,他引:21  
Proinflammatory cytokines provoked by circulating bacterial LPS mediate many of the destructive host responses characteristic of septic shock. To determine if the lymphokine IFN-gamma has a similar pathogenic role during endotoxic shock, mice were pretreated with murine rIFN-gamma (rMuIFN-gamma) at various times relative to challenge with Salmonella enteritidis LPS. Subsequent mortality was increased when rMuIFN-gamma was administered before or up to 4 h after endotoxin challenge. Pretreatment with rMuIFN-gamma resulted in nearly fivefold increases in serum TNF during endotoxemia, but TNF levels were unaffected by IFN administered after endotoxin. The increased levels of serum TNF probably reflected enhanced translation of this factor, as tissue expression of TNF mRNA did not increase correspondingly in IFN-pretreated mice. To examine the role of IFN-gamma produced endogenously during endotoxemia, mice were pretreated with 0.5 mg of anti-IFN-gamma mAb before endotoxin injection. This treatment significantly reduced mortality from endotoxic shock but caused only minor decreases in serum TNF. Anti-IFN-gamma administered 2 h after endotoxin was similarly protective. These results demonstrate a significant role for IFN-gamma in the pathology of septic shock, both indirectly as an activator of monokines known to promote lethality and possibly by other, late-acting mechanisms.  相似文献   

19.
Interleukin 1 (IL-1) and Tumor Necrosis Factor (TNF) are thought to play a key role in septic shock and inflammation. We have tested the effect of dexamethasone (DEX) and chlorpromazine (CPZ) on the lethal effect of IL-1, TNF and endotoxin. Two different experimental models were used to sensitize mice to the lethal effect of IL-1: adrenalectomy and pretreatment with actinomycin D. CPZ (4 mg/kg) was found to protect mice against IL-1 and endotoxin toxicity in all cases, while DEX had a protective effect only in adrenalectomized mice. In contrast to its protective effect against IL-1 and endotoxin, CPZ did not protect mice against TNF. These findings might be useful in the analysis of the differences in the actions of IL-1 and TNF in vivo, and in the development of new drugs preventing their toxicity.  相似文献   

20.
The expression of inducible nitric-oxide synthase (iNOS) and subsequent "high-output" nitric oxide (NO) production underlies the systemic hypotension, inadequate tissue perfusion, and organ failure associated with septic shock. Therefore, modulators of iNOS expression and activity, both endogenous and exogenous, are important in determining the magnitude and time course of this condition. We have shown previously that NO from the constitutive endothelial NOS (eNOS) is necessary to obtain maximal iNOS expression and activity following exposure of murine macrophages to lipopolysaccharide (LPS). Thus, eNOS represents an important regulator of iNOS expression in vitro. Herein, we validate this hypothesis in vivo using a murine model of sepsis. A temporal reduction in iNOS expression and activity was observed in LPS-treated eNOS knock-out (KO) mice as compared with wild-type animals; this was reflected in a more stable hemodynamic profile in eNOS KO mice during endotoxaemia. Furthermore, in human umbilical vein endothelial cells, LPS leads to the activation of eNOS through phosphoinositide 3-kinase- and Akt/protein kinase B-dependent enzyme phosphorylation. These data indicate that the pathogenesis of sepsis is characterized by an initial eNOS activation, with the resultant NO acting as a co-stimulus for the expression of iNOS, and therefore highlight a novel pro-inflammatory role for eNOS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号