首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
General formulae are derived for the probability density and expected age of a mutation of frequency x in a population, and similarly for a mutation with b copies in a sample of n genes. A general formula is derived for the frequency spectrum of a mutation in a sample. Variable population size models are included. Results are derived in two frameworks: diffusion process models for the frequency of the mutation; and birth and death process models. The coalescent structure within the mutant gene group and the non-mutant group is considered.  相似文献   

2.
3.
We are interested in a stochastic model of trait and age-structured population undergoing mutation and selection. We start with a continuous time, discrete individual-centered population process. Taking the large population and rare mutations limits under a well-chosen time-scale separation condition, we obtain a jump process that generalizes the Trait Substitution Sequence process describing Adaptive Dynamics for populations without age structure. Under the additional assumption of small mutations, we derive an age-dependent ordinary differential equation that extends the Canonical Equation. These evolutionary approximations have never been introduced to our knowledge. They are based on ecological phenomena represented by PDEs that generalize the Gurtin–McCamy equation in Demography. Another particularity is that they involve an establishment probability, describing the probability of invasion of the resident population by the mutant one, that cannot always be computed explicitly. Examples illustrate how adding an age-structure enrich the modelling of structured population by including life history features such as senescence. In the cases considered, we establish the evolutionary approximations and study their long time behavior and the nature of their evolutionary singularities when computation is tractable. Numerical procedures and simulations are carried.   相似文献   

4.
建立了污染物排放对微生物种群生灭影响的模型,研究了随机时刻灭绝概率Ψ(x,T)的一致渐近性,并最终得到一致渐近公式Ψ(x,T)~Eλ(T)(?).  相似文献   

5.
We are interested in modeling Darwinian evolution resulting from the interplay of phenotypic variation and natural selection through ecological interactions. The population is modeled as a stochastic point process whose generator captures the probabilistic dynamics over continuous time of birth, mutation, and death, as influenced by each individual's trait values, and interactions between individuals. An offspring usually inherits the trait values of her progenitor, except when a random mutation causes the offspring to take an instantaneous mutation step at birth to new trait values. In the case we are interested in, the probability distribution of mutations has a heavy tail and belongs to the domain of attraction of a stable law and the corresponding diffusion admits jumps. This could be seen as an alternative to Gould and Eldredge's model of evolutionary punctuated equilibria. We investigate the large-population limit with allometric demographies: larger populations made up of smaller individuals which reproduce and die faster, as is typical for micro-organisms. We show that depending on the allometry coefficient the limit behavior of the population process can be approximated by nonlinear Lévy flights of different nature: either deterministic, in the form of non-local fractional reaction-diffusion equations, or stochastic, as nonlinear super-processes with the underlying reaction and a fractional diffusion operator. These approximation results demonstrate the existence of such non-trivial fractional objects; their uniqueness is also proved.  相似文献   

6.
Mathematical models for the spread of invading plant organisms typically utilize population growth and dispersal dynamics to predict the time-evolution of a population distribution. In this paper, we revisit a particular class of deterministic contact models obtained from a stochastic birth process for invasive organisms. These models were introduced by Mollison (J R Stat Soc 39(3):283, 1977). We derive the deterministic integro-differential equation of a more general contact model and show that the quantity of interest may be interpreted not as population size, but rather as the probability of species occurrence. We proceed to show how landscape heterogeneity can be included in the model by utilizing the concept of statistical habitat suitability models which condense diverse ecological data into a single statistic. As ecologists often deal with species presence data rather than population size, we argue that a model for probability of occurrence allows for a realistic determination of initial conditions from data. Finally, we present numerical results of our deterministic model and compare them to simulations of the underlying stochastic process.  相似文献   

7.
The longstanding debate about the importance of group (multilevel) selection suffers from a lack of formal models that describe explicit selection events at multiple levels. Here, we describe a general class of models for two‐level evolutionary processes which include birth and death events at both levels. The models incorporate the state‐dependent rates at which these events occur. The models come in two closely related forms: (1) a continuous‐time Markov chain, and (2) a partial differential equation (PDE) derived from (1) by taking a limit. We argue that the mathematical structure of this PDE is the same for all models of two‐level population processes, regardless of the kinds of events featured in the model. The mathematical structure of the PDE allows for a simple and unambiguous way to distinguish between individual‐ and group‐level events in any two‐level population model. This distinction, in turn, suggests a new and intuitively appealing way to define group selection in terms of the effects of group‐level events. We illustrate our theory of group selection by applying it to models of the evolution of cooperation and the evolution of simple multicellular organisms, and then demonstrate that this kind of group selection is not mathematically equivalent to individual‐level (kin) selection.  相似文献   

8.
We give a stochastic foundation to the Volterra prey-predator population in the following case. We take Volterra's predator equations and let a free host birth and death process support the evolution of the predator population. The purpose of this article is to present a rigorous population sample path construction of this interacted predator process and study the properties of this interacted process. The constructions yields a strong Markov process. The existence of steady-state distribution for the interacted predator process means the existence of equilibrium population level. We find a necessary and sufficient condition for the existence of a steady-state distribution. Next we see that if the host process possesses a steady-state distribution, so does the interacted predator process and this distribution satisfies a difference equation. For special choices of the auto death and interaction parametersa andb of the predator, whenever the host process visits the particular statea *=a/b the predator takes rest (saturates) from its evolution. We find the probability of asymptotic saturating of the predator.  相似文献   

9.
The study of evolutionary dynamics on graphs is an interesting topic for researchers in various fields of science and mathematics. In systems with finite population, different model dynamics are distinguished by their effects on two important quantities: fixation probability and fixation time. The isothermal theorem declares that the fixation probability is the same for a wide range of graphs and it only depends on the population size. This has also been proved for more complex graphs that are called complex networks. In this work, we propose a model that couples the population dynamics to the network structure and show that in this case, the isothermal theorem is being violated. In our model the death rate of a mutant depends on its number of neighbors, and neutral drift holds only in the average. We investigate the fixation probability behavior in terms of the complexity parameter, such as the scale-free exponent for the scale-free network and the rewiring probability for the small-world network.  相似文献   

10.
Although mutations drive the evolutionary process, the rates at which the mutations occur are themselves subject to evolutionary forces. Our purpose here is to understand the role of selection and random genetic drift in the evolution of mutation rates, and we address this question in asexual populations at mutation‐selection equilibrium neglecting selective sweeps. Using a multitype branching process, we calculate the fixation probability of a rare nonmutator in a large asexual population of mutators and find that a nonmutator is more likely to fix when the deleterious mutation rate of the mutator population is high. Compensatory mutations in the mutator population are found to decrease the fixation probability of a nonmutator when the selection coefficient is large. But, surprisingly, the fixation probability changes nonmonotonically with increasing compensatory mutation rate when the selection is mild. Using these results for the fixation probability and a drift‐barrier argument, we find a novel relationship between the mutation rates and the population size. We also discuss the time to fix the nonmutator in an adapted population of asexual mutators, and compare our results with experiments.  相似文献   

11.
The evolution of natural organisms is ultimately driven by the invasion and possible fixation of mutant alleles. The invasion process is highly stochastic, however, and the probability of success is generally low, even for advantageous alleles. Additionally, all organisms live in a stochastic environment, which may have a large influence on what alleles are favorable, but also contributes to the uncertainty of the invasion process. We calculate the invasion probability of a beneficial, mutant allele in a monomorphic, large population subject to stochastic environmental fluctuations, taking into account density‐ and frequency‐dependent selection, stochastic population dynamics and temporal autocorrelation of the environment. We treat both discrete and continuous time population dynamics, and allow for overlapping generations in the continuous time case. The results can be generalized to diploid, sexually reproducing organisms embedded in communities of interacting species. We further use these results to derive an extended canonical equation of adaptive dynamics, predicting the rate of evolutionary change of a heritable trait on long evolutionary time scales.  相似文献   

12.
The crocodilia have multiple interesting characteristics that affect their population dynamics. They are among several reptile species which exhibit temperature-dependent sex determination (TSD) in which the temperature of egg incubation determines the sex of the hatchlings. Their life parameters, specifically birth and death rates, exhibit strong age-dependence. We develop delay-differential equation (DDE) models describing the evolution of a crocodilian population. In using the delay formulation, we are able to account for both the TSD and the age-dependence of the life parameters while maintaining some analytical tractability. In our single-delay model we also find an equilibrium point and prove its local asymptotic stability. We numerically solve the different models and investigate the effects of multiple delays on the age structure of the population as well as the sex ratio of the population. For all models we obtain very strong agreement with the age structure of crocodilian population data as reported in Smith and Webb (Aust. Wild. Res. 12, 541-554, 1985). We also obtain reasonable values for the sex ratio of the simulated population.  相似文献   

13.
We extend the one-locus two allele Moran model of fixation in a haploid population to the case where the total size of the population is not fixed. The model is defined as a two-dimensional birth-and-death process for allele number. Changes in allele number occur through density-independent death events and birth events whose per capita rate decreases linearly with the total population density. Uniquely for models of this type, the latter is determined by these same birth-and-death events. This provides a framework for investigating both the effects of fluctuation in total population number through demographic stochasticity, and deterministic density-dependent changes in mean density, on allele fixation. We analyze this model using a combination of asymptotic analytic approximations supported by numerics. We find that for advantageous mutants demographic stochasticity of the resident population does not affect the fixation probability, but that deterministic changes in total density do. In contrast, for deleterious mutants, the fixation probability increases with increasing resident population fluctuation size, but is relatively insensitive to initial density. These phenomena cannot be described by simply using a harmonic mean effective population size.  相似文献   

14.
MOTIVATION: In our previous studies, we developed discrete-space birth, death and innovation models (BDIMs) of genome evolution. These models explain the origin of the characteristic Pareto distribution of paralogous gene family sizes in genomes, and model parameters that provide for the evolution of these distributions within a realistic time frame have been identified. However, extracting the temporal dynamics of genome evolution from discrete-space BDIM was not technically feasible. We were interested in obtaining dynamic portraits of the genome evolution process by developing a diffusion approximation of BDIM. RESULTS: The diffusion version of BDIM belongs to a class of continuous-state models whose dynamics is described by the Fokker-Plank equation and the stationary solution could be any specified Pareto function. The diffusion models have time-dependent solutions of a special kind, namely, generalized self-similar solutions, which describe the transition from one stationary distribution of the system to another; this provides for the possibility of examining the temporal dynamics of genome evolution. Analysis of the generalized self-similar solutions of the diffusion BDIM reveals a biphasic curve of genome growth in which the initial, relatively short, self-accelerating phase is followed by a prolonged phase of slow deceleration. This evolutionary dynamics was observed both when genome growth started from zero and proceeded via innovation (a potential model of primordial evolution), and when evolution proceeded from one stationary state to another. In biological terms, this regime of evolution can be tentatively interpreted as a punctuated-equilibrium-like phenomenon whereby evolutionary transitions are accompanied by rapid gene amplification and innovation, followed by slow relaxation to a new stationary state.  相似文献   

15.
Three diffusion models are formulated for the evolution of a diploid population with K alleles at one locus with completely symmetric mutation and random genetic drift, a variable-environment, and all the above mechanisms. For the diallelic case, the transient behavior is studied by solving the corresponding diffusion equations by an asymptotic method valid for short time intervals. The transient behavior of the three models is compared for the case when their stationary distributions are identical. The expected amount of heterozygosity is computed using the asymptotic solution and is compared to an exact result. The asymptotic results are extended to the general case with K alleles at the locus for the symmetric mutation and variable-environment models.Research supported by the National Science Foundation under Grant MCS 79-01718  相似文献   

16.
The vast majority of mutations in the exome of cancer cells are passengers, which do not affect the reproductive rate of the cell. Passengers can provide important information about the evolutionary history of an individual cancer, and serve as a molecular clock. Passengers can also become targets for immunotherapy or confer resistance to treatment. We study the stochastic expansion of a population of cancer cells describing the growth of primary tumors or metastatic lesions. We first analyze the process by looking forward in time and calculate the fixation probabilities and frequencies of successive passenger mutations ordered by their time of appearance. We compute the likelihood of specific evolutionary trees, thereby informing the phylogenetic reconstruction of cancer evolution in individual patients. Next, we derive results looking backward in time: for a given subclonal mutation we estimate the number of cancer cells that were present at the time when that mutation arose. We derive exact formulas for the expected numbers of subclonal mutations of any frequency. Fitting this formula to cancer sequencing data leads to an estimate for the ratio of birth and death rates of cancer cells during the early stages of clonal expansion.  相似文献   

17.
Because nearly neutral substitutions are thought to contribute substantially to molecular evolution, and much of our insight about the workings of nearly neutral evolution relies on theory, solvable models of this process are of particular interest. Here, I present an analytical method for solving models of nearly neutral evolution at steady state. The steady state solution applies to any constant fitness landscape under a dynamic of successive fixations, each of which occurs on the background of the population's most recent common ancestor. Because this dynamic neglects the effects of polymorphism in the population beyond the mutant allele under consideration, the steady state solution provides a decent approximation of evolutionary dynamics when the population mutation rate is low (Nu<1). To demonstrate the method, I apply it to two examples: Fisher's geometric model (FGM), and a simple model of molecular evolution. Since recent papers have studied the steady state behavior of FGM under this dynamic, I analyze its behavior in detail and compare the results with previous work.  相似文献   

18.
In this paper a stochastic model of the dynamics of host-pathogen systems with mutation is constructed. In previous works deterministic models of host-pathogen systems with no mutation were considered. The evolution of the pathogen population in any generation of the host is formulated as a multidimensional birth and death process, while the evolution of genotypic frequencies in successive generations of the host is described by a solution of a nonlinear vector difference equation. A general solution of the differential equations of the multidimensional birth and death process is presented and expressions for the stationary distribution, whenever it exists, and the mean time to extinction, when absorbing states are present, are derived. Some answers to questions raised in the discussion of a previous paper (Mode, 1962) are also contained in this paper. The research reported in this paper was supported by the United States Atomic Energy Comission, Division of Biology and Medicine Project AT(45-1)-1729.  相似文献   

19.
Mutation rate (MR) is a crucial determinant of the evolutionary process. Optimal MR may enable efficient evolutionary searching and therefore increase the fitness of the population over time. Nevertheless, individuals may favor MRs that are far from being optimal for the whole population. Instead, each individual may tend to mutate at rates that selfishly increase its own relative fitness. We show that in some cases, undergoing a mutation is altruistic, i.e., it increases the expected fitness of the population, but decreases the expected fitness of the mutated individual itself. In this case, if the population is uniform (completely mixed, undivided), immutability is evolutionary stable and is probably selected for. However, our examination of a segregated population, which is divided into several groups (or patches), shows that the optimal, altruistic MR may out-compete the selfish MR if the coupling between the groups is neither too strong nor too weak. This demonstrates that the population structure is crucial for the succession of the evolutionary process itself. For example, in a uniform population, the evolutionary process may be stopped before the highest fitness is reached, as demonstrated in a one-pick fitness landscape. In addition, we show that the dichotomy between evolutionary stable and optimal MRs can be seen as a special case of a more general phenomenon in which optimal behaviors may be destabilized in finite populations, since optimal sub-populations may become extinct before the benefit of their behavior is expressed.  相似文献   

20.
An age-structured population is considered in which the birth and death rates of an individual of age a is a function of the density of individuals older and/or younger than a. An existence/uniqueness theorem is proved for the McKendrick equation that governs the dynamics of the age distribution function. This proof shows how a decoupled ordinary differential equation for the total population size can be derived. This result makes a study of the population's asymptotic dynamics (indeed, often its global asymptotic dynamics) mathematically tractable. Several applications to models for intra-specific competition and predation are given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号