首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Mdm2 and Mdm4 loss regulates distinct p53 activities   总被引:1,自引:0,他引:1  
Mutational inactivation of p53 is a hallmark of most human tumors. Loss of p53 function also occurs by overexpression of negative regulators such as MDM2 and MDM4. Deletion of Mdm2 or Mdm4 in mice results in p53-dependent embryo lethality due to constitutive p53 activity. However, Mdm2(-/-) and Mdm4(-/-) embryos display divergent phenotypes, suggesting that Mdm2 and Mdm4 exert distinct control over p53. To explore the interaction between Mdm2 and Mdm4 in p53 regulation, we first generated mice and cells that are triple null for p53, Mdm2, and Mdm4. These mice had identical survival curves and tumor spectrum as p53(-/-) mice, substantiating the principal role of Mdm2 and Mdm4 as negative p53 regulators. We next generated mouse embryo fibroblasts null for p53 with deletions of Mdm2, Mdm4, or both; introduced a retrovirus expressing a temperature-sensitive p53 mutant, p53A135V; and examined p53 stability and activity. In this system, p53 activated distinct target genes, leading to apoptosis in cells lacking Mdm2 and a cell cycle arrest in cells lacking Mdm4. Cells lacking both Mdm2 and Mdm4 had a stable p53 that initiated apoptosis similar to Mdm2-null cells. Additionally, stabilization of p53 in cells lacking Mdm4 with the Mdm2 antagonist nutlin-3 was sufficient to induce a cell death response. These data further differentiate the roles of Mdm2 and Mdm4 in the regulation of p53 activities.  相似文献   

2.
Takagi M  Absalon MJ  McLure KG  Kastan MB 《Cell》2005,123(1):49-63
Increases in p53 protein levels after DNA damage have largely been attributed to an increase in the half-life of p53 protein. Here we demonstrate that increased translation of p53 mRNA is also a critical step in the induction of p53 protein in irradiated cells. Ribosomal protein L26 (RPL26) and nucleolin were found to bind to the 5' untranslated region (UTR) of p53 mRNA and to control p53 translation and induction after DNA damage. RPL26 preferentially binds to the 5'UTR after DNA damage, and its overexpression enhances association of p53 mRNA with heavier polysomes, increases the rate of p53 translation, induces G1 cell-cycle arrest, and augments irradiation-induced apoptosis. Opposite effects were seen when RPL26 expression was inhibited. In contrast, nucleolin overexpression suppresses p53 translation and induction after DNA damage, whereas nucleolin downregulation promotes p53 expression. These findings demonstrate the importance of increased translation of p53 in DNA-damage responses and suggest critical roles for RPL26 and nucleolin in affecting p53 induction.  相似文献   

3.
As a genome guardian, p53 maintains genome stability by arresting cells for damage repair or inducing cell apoptosis to eliminate the damaged cells in stress response. Several nucleolar proteins stabilize p53 by interfering Mdm2–p53 interaction upon cellular stress, while other mechanisms by which nucleolar proteins activate p53 remain to be determined. Here, we identify NAT10 as a novel regulator for p53 activation. NAT10 acetylates p53 at K120 and stabilizes p53 by counteracting Mdm2 action. In addition, NAT10 promotes Mdm2 degradation with its intrinsic E3 ligase activity. After DNA damage, NAT10 translocates to nucleoplasm and activates p53‐mediated cell cycle control and apoptosis. Finally, NAT10 inhibits cell proliferation and expression of NAT10 decreases in human colorectal carcinomas. Thus, our data demonstrate that NAT10 plays a critical role in p53 activation via acetylating p53 and counteracting Mdm2 action, providing a novel pathway by which nucleolar protein activates p53 as a cellular stress sensor.  相似文献   

4.
Ribosomal protein RPL26 enhances p53 translation after DNA damage, and this regulation depends upon interactions between the 5'- and 3'-UTRs of human p53 mRNA (Takagi, M., Absalon, M. J., McLure, K. G., and Kastan, M. B. (2005) Cell 123, 49-63; Chen, J., and Kastan, M. B. (2010) Genes Dev. 24, 2146-2156). In contrast, nucleolin (NCL) suppresses the translation of p53 mRNA and its induction after DNA damage. We confirmed reports that RPL26 and NCL interact with each other and then explored the potential role of this interaction in the translational control of p53 after stress. NCL repression of p53 translation utilizes both the 5'- and 3'-UTRs of p53 mRNA, and NCL binds to the same 5'-3'-UTR interaction region that is critical for the recruitment of RPL26 to p53 mRNA after DNA damage. We also found that NCL is able to oligomerize, consistent with a model in which NCL stabilizes this double-stranded RNA structure. We found that the RNA-binding domain of NCL participates in binding to p53 mRNA, is required for both NCL dimerization and NCL-mediated translational repression, and is the domain of NCL that interacts with RPL26. Excessive RPL26 disrupts NCL dimerization, and point mutations in the NCL-interacting region of RPL26 reduce NCL-RPL26 interactions and attenuate both RPL26 binding to human p53 mRNA and p53 induction by RPL26. These observations suggest a model in which the base pairings in the p53 UTR interaction regions are critical for both translational repression and stress induction of p53 by NCL and RPL26, respectively, and that disruption of a NCL-NCL homodimer by RPL26 may be the switch between translational repression and activation after stress.  相似文献   

5.
HDM2 is a p53-specific E3 ubiquitin ligase. Its overexpression leads to excessive inactivation of tumor protein p53, diminishing its tumor suppressor function. HDM2 also affects the cell cycle, apoptosis and tumorigenesis through interacting with other molecules, including several ribosomal proteins. To identify novel HDM2 regulators, we performed a yeast two-hybrid screening using HDM2 as bait. Among the candidates, ribosomal protein L26 (RPL26) was characterized as a novel HDM2-interactor. The interaction between HDM2 and RPL26 was further validated by in vivo and in vitro assays. RPL26 modulates the HDM2–p53 interaction by forming a ternary complex among RPL26, HDM2 and p53, which stabilize p53 through inhibiting the ubiquitin ligase activity of HDM2. The ribosomal stress caused by a low dose of Act D enhances RPL26–HDM2 interaction and activates p53. Overexpression of RPL26 results in activating of p53, inhibits cell proliferation and induces a p53-dependent cell cycle arrest. These results provide a novel regulatory mechanism of RPL26 to activate p53 by inhibiting HDM2.  相似文献   

6.
7.
8.
G alpha(12/13), which belongs to the G alpha(12) family, participates in the regulation of diverse physiologic processes. In view of the control of G alpha(12/13) in cell proliferation, this study investigated the role of G alpha(12/13) in the regulation of p53 and mdm4. Immunoblotting and immunocytochemistry revealed that p53 was expressed in control embryonic fibroblasts and was largely localized in the nuclei. G alpha(12) deficiency decreased p53 levels and its DNA binding activity, accompanying p21 repression with Bcl(2) induction, whereas G alpha(13) deficiency exerted weak effects. G alpha(12) or G alpha(13) deficiency did not change p53 mRNA expression. ERK1/2 or Akt was not responsible for p53 repression due to G alpha(12) deficiency. Mdm4, a p53-stabilizing protein, was repressed by G alpha(12) deficiency and to a lesser extent by G alpha(13) deficiency, whereas mdm2, PTEN, beta-catenin, ATM, and Chk2 were unaffected. p53 accumulation by proteasomal inhibition during G alpha(12) deficiency suggested the role of G alpha(12) in p53 stabilization. Constitutively active G alpha(12) (G alpha(12)QL) or G alpha(13) (G alpha(13)QL) promoted p53 accumulation with mdm4 induction in MCF10A cells. p53 accumulation by mdm4 overexpression, but no mdm4 induction by p53 overexpression, and small interfering RNA knockdown verified the regulatory role of mdm4 for p53 downstream of G alpha(12/13). In control or G alpha(12)/G alpha(13)-deficient cells, genotoxic stress led to p53 accumulation. At concentrations increasing the flow cytometric pre-G(1) phase, doxorubicin or etoposide treatment caused serine phosphorylations in G alpha(12)-/- or G alpha(12/13)-/- cells, but did not induce mdm4. G alpha(12/13)QL transfection failed to phosphorylate p53 at serines. Our results indicate that G alpha(12/13) regulate basal p53 levels via mdm4, which constitutes a cell signaling pathway distinct from p53 phosphorylations elicited by genotoxic stress.  相似文献   

9.
PML regulates p53 stability by sequestering Mdm2 to the nucleolus   总被引:12,自引:0,他引:12  
The promyelocytic leukaemia (PML) tumour-suppressor protein potentiates p53 function by regulating post-translational modifications, such as CBP-dependent acetylation and Chk2-dependent phosphorylation, in the PML-Nuclear Body (NB). PML was recently shown to interact with the p53 ubiquitin-ligase Mdm2 (refs 4-6); however, the mechanism by which PML regulates Mdm2 remains unclear. Here, we show that PML enhances p53 stability by sequestering Mdm2 to the nucleolus. We found that after DNA damage, PML and Mdm2 accumulate in the nucleolus in an Arf-independent manner. In addition, we found that the nucleolar localization of PML is dependent on ATR activation and phosphorylation of PML by ATR. Notably, in Pml(-/-) cells, sequestration of Mdm2 to the nucleolus was impaired, as well as p53 stabilization and the induction of apoptosis. Furthermore, we demonstrate that PML physically associates with the nucleolar protein L11, and that L11 knockdown impairs the ability of PML to localize to nucleoli after DNA damage. These findings demonstrate an unexpected role of PML in the nucleolar network for tumour suppression.  相似文献   

10.
11.
Mdm2 regulates p53 independently of p19(ARF) in homeostatic tissues   总被引:8,自引:0,他引:8       下载免费PDF全文
Tumor suppressor proteins must be exquisitely regulated since they can induce cell death while preventing cancer. For example, the p19(ARF) tumor suppressor (p14(ARF) in humans) appears to stimulate the apoptotic function of the p53 tumor suppressor to prevent lymphomagenesis and carcinogenesis induced by oncogene overexpression. Here we present a genetic approach to defining the role of p19(ARF) in regulating the apoptotic function of p53 in highly proliferating, homeostatic tissues. In contrast to our expectation, p19(ARF) did not activate the apoptotic function of p53 in lymphocytes or epithelial cells. These results demonstrate that the mechanisms that control p53 function during homeostasis differ from those that are critical for tumor suppression. Moreover, the Mdm2/p53/p19(ARF) pathway appears to exist only under very restricted conditions.  相似文献   

12.
The p53 tumor suppressor protein plays a key role in maintaining genomic integrity. Enhanced expression of p53 during genotoxic stress is due to both increased protein stability and translational up regulation. Previous reports have shown that p53 mRNA is translated from an alternative initiation codon to produce N-terminal truncated isoform (ΔN-p53) besides full-length p53. We have demonstrated that two internal ribosome entry sites (IRESs) regulate the translation of p53 and ΔN-p53 in a distinct cell-cycle phase-dependent manner. Here, we report that polypyrimidine tract-binding protein (PTB) is a p53 IRES interacting trans-acting factor. PTB protein binds specifically to both the p53 IRESs but with differential affinity. siRNA-mediated knockdown of PTB protein results in reduction of activity of both IRESs and also the levels of both the isoforms. It is well known that DNA-damaging agents such as doxorubicin enhance the expression of p53. Our results indicate that during doxorubicin treatment, PTB protein translocates from nucleus to the cytoplasm, probably to facilitate IRES mediated p53 translation. These observations suggest that the relative cytoplasmic abundance of PTB protein, under DNA-damaging conditions, might contribute to regulating the coordinated expression of the p53 isoforms, owing to the differential affinity of PTB binding to the two p53 IRESs.  相似文献   

13.
The p53 tumour suppressor has a key role in the control of cell growth and differentiation, and in the maintenance of genome integrity. p53 is kept labile under normal conditions, but in response to stresses, such as DNA damage, it accumulates in the nucleus for induction of cell-cycle arrest, DNA repair or apoptosis. Mdm2 is an ubiquitin ligase that promotes p53 ubiquitination and degradation. Mdm2 is also self-ubiquitinated and degraded. Here, we identified a novel cascade for the increase in p53 level in response to DNA damage. A new SUMO-specific protease, SUSP4, removed SUMO-1 from Mdm2 and this desumoylation led to promotion of Mdm2 self-ubiquitination, resulting in p53 stabilization. Moreover, SUSP4 competed with p53 for binding to Mdm2, also resulting in p53 stabilization. Overexpression of SUSP4 inhibited cell growth, whereas knockdown of susp4 by RNA interference (RNAi) promoted of cell growth. UV damage induced SUSP4 expression, leading to an increase in p53 levels in parallel with a decrease in Mdm2 levels. These findings establish a new mechanism for the elevation of cellular p53 levels in response to UV damage.  相似文献   

14.
Genetic evidence has implicated both Mdm2 and MdmX as essential in negative regulation of p53. However, the exact role of MdmX in this Mdm2-dependent protein degradation is not well understood. Most, if not all, previous Mdm2 studies used GST-Mdm2 fusion proteins in the in vitro assays. Here, we show that the p53 polyubiquitination activity of GST-Mdm2 is conferred by the GST tag and non-GST-tagged Mdm2 only catalyzes monoubiquitination of p53 even at extremely high concentrations. We further demonstrate that MdmX is a potent activator of Mdm2, facilitating dose-dependent p53 polyubiquitination. This activation process requires the RING domains of both MdmX and Mdm2 proteins. The polyubiquitination activity of Mdm2/MdmX is Mdm2-dependent. Unlike Mdm2 or MdmX overexpression alone, co-overexpression of MdmX and Mdm2 consistently triggered p53 degradation in cells. Moreover, cellular polyubiquitination of p53 was only observable in the cytoplasm where both Mdm2 and MdmX are readily detectable. Importantly, RNAi knockdown of MdmX increased levels of endogenous p53 accompanied by reduced p53 polyubiquitination. In conclusion, our work has resolved a major confusion in the field derived from using GST-Mdm2 and demonstrated that MdmX is the cellular activator that converts Mdm2 from a monoubiquitination E3 ligase to a polyubiquitination E3 ligase toward p53. Together, our findings provide a biochemical basis for the requirement of both Mdm2 and MdmX in the dynamic regulation of p53 stability.  相似文献   

15.
By blot hybridization we found that DNA fragments of eukaryotic 18 and 28S rRNAs bind specifically with mRNA. In these experiments the in vitro transcribed mRNA of mouse gene p53 was used. In addition we found that both 18 and 28S rRNAs were able to form intermolecular complexes with mRNAs of several genes 18S rRNA-mRNA; 28S rRNA-mRNA, but fail to bind the antisense RNAs of the same genes. The experimental data allow to suppose that 18S and 28S rRNAs carry several fragments that are complementary to some fragments in the mRNA sequences.  相似文献   

16.
The tumor suppressor protein Pdcd4 is thought to suppress translation of mRNAs containing structured 5'-UTRs by interacting with translation initiation factor eIF4A and inhibiting its helicase activity. However, natural target mRNAs regulated by Pdcd4 so far are mostly unknown. Here, we identified p53 mRNA as a translational target of Pdcd4. We found that Pdcd4 is associated with p53 mRNA and suppresses its translation. The inhibitory effect of Pdcd4 on the translation of p53 mRNA depends on the ability of Pdcd4 to interact with eIF4A and is mediated by the 5'-UTR of p53 mRNA, which is able to form a stable stem-loop structure. We show that treatment of cells with DNA-damaging agents decreases the expression of Pdcd4. This suggests that translational suppression by Pdcd4 plays a role in maintaining a low level of p53 in unstressed cells and that this suppression is abrogated due to low levels of Pdcd4 after DNA damage. Overall, our work demonstrates for the first time that Pdcd4 is directly involved in translational suppression of a natural mRNA with a 5'-structured UTR and provides novel insight into the translational control of p53 expression.  相似文献   

17.
The Mdm2 oncoprotein regulates abundance and activity of the p53 tumor suppressor protein. For efficient degradation of p53, Mdm2 needs to be phosphorylated at several contiguous residues within the central conserved domain. We show that glycogen synthase kinase 3 (GSK-3) phosphorylated the Mdm2 protein in vitro and in vivo in the central domain. Inhibition of GSK-3 rescued p53 from degradation in an Mdm2-dependent manner while its association with Mdm2 was not affected. Likewise, inhibition of GSK-3 did not alter localization of p53 and Mdm2 or the interaction of Mdm2 and MdmX. Ionizing radiation, which leads to p53 accumulation, directed phosphorylation of GSK-3 at serine 9, which preceded and overlapped with the increase in p53 levels. Moreover, expression of a GSK-3 mutant where serine 9 was replaced with an alanine reduced the accumulation of p53 and induction of its target p21(WAF-1). We therefore conclude that inhibition of GSK-3 contributes to hypophosphorylation of Mdm2 in response to ionizing rays, and in consequence to p53 stabilization.  相似文献   

18.
19.
Direct interactions between HIF-1 alpha and Mdm2 modulate p53 function   总被引:22,自引:0,他引:22  
  相似文献   

20.
Mdm2 is an E3 ubiquitin ligase that promotes its own ubiquitination and also ubiquitination of the p53 tumour suppressor. In a bacterial two-hybrid screen, using Mdm2 as bait, we identified an Mdm2-interacting peptide that bears sequence similarity to the deubiquitinating enzyme USP2a. We have established that full-length USP2a associates with Mdm2 in cells where it can deubiquitinate Mdm2 while demonstrating no deubiquitinating activity towards p53. Ectopic expression of USP2a causes accumulation of Mdm2 in a dose-dependent manner and consequently promotes Mdm2-mediated p53 degradation. This differs from the behaviour of HAUSP, which deubiquitinates p53 in addition to Mdm2 and thus protects p53 from Mdm2-mediated degradation. We further demonstrate that suppression of endogenous USP2a destabilises Mdm2 and causes accumulation of p53 protein and activation of p53. Our data identify the deubiquitinating enzyme USP2a as a novel regulator of the p53 pathway that acts through its ability to selectively target Mdm2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号