首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A method based on PCR-restriction fragment length polymorphism analysis (PRA) using a novel region of the hsp65 gene was developed for the rapid and exact identification of mycobacteria to the species level. A 644 bp region of hsp65 in 62 mycobacteria reference strains, and 4 related bacterial strains were amplified, and the amplified DNAs were subsequently digested with restriction enzymes, namely, AvaII, HphI, and HpaII. Most of the mycobacteria species were easily differentiated at the species level by the developed method. In particular, the method enabled the separation of M. avium, M. intracellulare and M. tuberculosis to the species level by AvaII digestion alone. An algorithm was constructed based on the results and a blind test was successfully performed on 251 clinical isolates, which had been characterized by conventional biochemical testing. Our results suggest that this novel PRA offers a simple, rapid, and accurate method for the identification of mycobacteria culture isolates at the species level.  相似文献   

2.
Polymerase chain reaction amplification of part of the gene coding for the heat shock protein hsp65 followed by restriction enzyme analysis (PRA) is a recently described tool for rapid identification of mycobacteria. In this study, the speed and simplicity of PRA for identification of isolates of mycobacteria from patients with clinical symptoms of tuberculosis was evaluated and compared with identification results obtained by commercially available methods. Established PRA patterns were observed for nineteen isolates of Mycobacterium tuberculosis, eleven belonging to the complex M. avium-intracellulare, four of M. kansasii, one of M. fortuitum, one of M. abscessus, three of M. gordonae and one of the recently described species M. lentiflavum, as identified by commercially available methods. Two isolates of M. fortuitum and one of M. gordonae had unique and so far undescribed PRA patterns, suggesting geographically-related intra-species variation within the hsp65 sequence. We propose the inclusion of these new patterns in the PRA identification algorithm and have defined more accurately the molecular weight values of the restriction fragments. This is the first report on the isolation of M. lentiflavum in Brazil suggesting that identification by means of PRA could be useful for detection of mycobacterial species that are usually unnoticed. Where the use of several commercial techniques in combination was necessary for correct identification, PRA demonstrated to be a simple technique with good cost-benefit for characterization of all mycobacterial isolates in this study.  相似文献   

3.
ABSTRACT: BACKGROUND: Mycobacteria can be quickly and simply identified by PCR restriction-enzyme analysis (PRA), but misidentification can occur because of similarities in band sizes that are critical for discriminating among species. Capillary electrophoresis can provide computer-aided band discrimination. The aim of this research was to develop an algorithm for identifying mycobacteria by combined rpoB duplex PRA (DPRA) and hsp65 PRA with capillary electrophoresis. RESULTS: Three hundred and seventy-six acid-fast bacillus smear-positive BACTEC cultures, including 200 Mycobacterium tuberculosis complexes (MTC) and 176 non-tuberculous mycobacteria (NTM) were analyzed. With combined hsp65 and rpoB DPRA, the accuracy rate was 100 % (200 isolates) for the MTC and 91.4 % (161 isolates) for the NTM. Among the discordant results (8.6 %) for the NTM, one isolate of Mycobacterial species and the an isolate of M. flavescens were found as new sub-types in hsp65 PRA. CONCLUSIONS: This effective and novel identification algorithm using combined rpoB DPRA and hsp65 PRA with capillary electrophoresis can rapidly identify mycobacteria and find new sub-types in hsp65 PRA. In addition, it is complementary to 16S rDNA sequencing.  相似文献   

4.
To investigate the occurrence and species diversity of mycobacteria in waters, surface water samples were collected monthly from the Han River and tap water samples at the terminal sites of the distribution system. Mycobacteria in each water sample were isolated by decontamination using cetylpyridinium chloride (CPC) and cultivation on Middlebrook 7H10 agar, and then identified by polymerase chain reaction-restriction fragment length polymorphism analysis (PRA) and sequencing of the 65-kDa heat-shock protein gene (hsp65 gene). Mycobacteria were detected in 59% of the surface water samples and 26% of the tap water samples. Over half of the 158 isolates could not be identified by hsp65 PRA and gene sequencing, and several identification discrepancies were observed between the two methods. The most frequently isolated species was Mycobacterium gordonae in surface water and M. lentiflavum in tap water. M. avium complex (MAC), the most important pathogen among environmental mycobacteria, was detected in the surface water samples but not found in the tap water samples. The result demonstrated that water is an important environmental source of mycobacteria and the combined application of hsp65 PRA and sequencing was more reliable than hsp65 PRA alone to accurately identify mycobacteria present in water.  相似文献   

5.
The species identification within Mycobacterium terrae complex has been known to be very difficult. In this study, the genomic diversity of M. terrae complex with eighteen clinical isolates, which were initially identified as M. terrae complex by phenotypic method, was investigated, including that of three type strains (M. terrae, M. nonchromogenicum, and M. triviale ). 16S rRNA and 65-kDa heat shock protein (hsp 65) gene sequences of mycobacteria were determined and aligned with eleven other references for the comparison using similarity search against the GenBank and Ribosomal Database Project II (RDP) databases. 16S rRNA and hsp 65 genes of M. terrae complex showed genomic heterogeneity. Amongst the eighteen clinical isolates, nine were identified as M. nonchromogenicum, eight as M. terrae, one as M. mucogenicum with the molecular characteristic of rapid growth. M. nonchromogenicum could be subdivided into three subgroups, while M. terrae could be subdivided into two subgroups using a 5 bp criterion (>1% difference). Seven isolates in two subgroups of M. nonchromogenicum were Mycobacterium sp. strain MCRO 6, which was closely related to M. nonchromogenicum. The hsp 65 gene could not differentiate one M. nonchromogenicum from M. avium or one M. terrae from M. intracellulare. The nucleotide sequence analysis of 16S rRNA and hsp 65 genes was shown to be useful in identifying the M. terrae complex, but hsp 65 was less discriminating than 16S rRNA.  相似文献   

6.
The genus Mycobacterium contains more than 150 species. Non-tuberculosis mycobacteria (NTM) often cause extrapulmonary and pulmonary disease. Mycobacteria detection at species level is necessary and provides useful information on epidemiology and facilitates successful treatment of patients. This retrospective study aimed to determine the incidence of the NTM isolates and Mycobacterium tuberculosis (Mtb) in clinical specimens collected from Iranian patients during February 2011–December 2013, by PCR–restriction fragment length polymorphism analysis (PRA) of the hsp65 gene. We applied conventional biochemical test and hsp65–PRA identification assay to identify species of mycobacteria in specimens from patients suspected of having mycobacterial isolates. This method was a sensitive, specific and effective assay for detecting mycobacterial species and had a 100% sensitivity and specificity for Mtb and Mycobacterium avium complex (MAC) species. Using PRA for 380 mycobacterial selected isolates, including 317 Mtb, four Mycobacterium bovis and of the 59 clinical isolates, the most commonly identified organism was Mycobacterium kansasii (35.6%), followed by Mycobacterium simiae (16.9%), Mycobacterium gordonae (16.9%), Mycobacterium fortuitum (5.1%), Mycobacterium intracellulare (5.1%), Mycobacterium avium (5.1%), Mycobacterium scrofulaceum (3.4%), Mycobacterium gastri (3.4%), Mycobacterium flavescens (3.4%), Mycobacterium chelonae (3.4%) and Mycobacterium nonchromogenicum (1.7%). PRA method, in comparison with classical methods, is rapid, useful and sensitive for the phylogenetic analysis and species detection of mycobacterial strains. Mycobacterium kansasii is the most common cause of infection by NTM in patients with non-HIV and HIV which demonstrated a high outbreak and diversity of NTM strains in our laboratory.  相似文献   

7.
Biochemical identification of mycobacteria is slow and many times fail to produce correct results. We compared PCR-restriction fragment length polymorphism analysis (PRA) of hsp65 and biochemical methods for the identification of mycobacteria from human samples in Belgium. PRA was found useful in the identification of mycobacteria and simple to implement as a quick method in the laboratory.  相似文献   

8.
To evaluate the usefulness of the AvaII PRA method targeting 644-bp hsp65 gene for the direct detection of pathogenic mycobacteria from clinical specimens, we applied this method to 40 sputum samples and compared the results to those obtained by IS 6110 PCR. Although this method showed a sensitivity slightly lower than IS 6110 PCR (97.5% vs. 100%), it detected infections of M. avium complex (MAC) in two patients, which was not possible by IS 6110 PCR. We conclude that AvaII PRA is a highly effective method for directly detecting pathogenic mycobacteria in primary clinical specimens.  相似文献   

9.
The identification of mycobacteria is essential because tuberculosis (TB) and mycobacteriosis are clinically indistinguishable and require different therapeutic regimens. The traditional phenotypic method is time consuming and may last up to 60 days. Indeed, rapid, affordable, specific and easy-to-perform identification methods are needed. We have previously described a polymerase chain reaction-based method called a mycobacteria mobility shift assay (MMSA) that was designed for Mycobacterium tuberculosis complex (MTC) and nontuberculous mycobacteria (NTM) species identification. The aim of this study was to assess the MMSA for the identification of MTC and NTM clinical isolates and to compare its performance with that of the PRA-hsp65 method. A total of 204 clinical isolates (102 NTM and 102 MTC) were identified by the MMSA and PRA-hsp65. For isolates for which these methods gave discordant results, definitive species identification was obtained by sequencing fragments of the 16S rRNA and hsp65 genes. Both methods correctly identified all MTC isolates. Among the NTM isolates, the MMSA alone assigned 94 (92.2%) to a complex or species, whereas the PRA-hsp65 method assigned 100% to a species. A 91.5% agreement was observed for the 94 NTM isolates identified by both methods. The MMSA provided correct identification for 96.8% of the NTM isolates compared with 94.7% for PRA-hsp65. The MMSA is a suitable auxiliary method for routine use for the rapid identification of mycobacteria.  相似文献   

10.
Mycobacterium kansasii is the most common cause of pulmonary nontuberculous mycobacteria infection and classical identification of this pathogen needs a time consuming phenotypic tests. Polymerase chain reaction-restriction fragment length polymorphism analysis (PRA) of the gene enconding for the 65 kDa heat shock (hsp65) protein offers an easy, rapid, and inexpensive procedure to identify and subtype M. kansasii isolates. In the present study, we performed a retrospective analysis of patients who had mycobacteria identified on the basis of phenotypic tests by means of a review of database at Mycobacteria Laboratory of the Instituto Adolfo Lutz in the period 1995-1998. A total of 9381 clinical isolates were analyzed of which 7777 (82.9%) were identified as M. tuberculosis complex and 1604 (17.1%) as nontuberculous mycobacteria. Of the 296 M. kansasii isolates, 189 (63.8%) isolates obtained from 119 patients were viable and were analyzed by PRA-hsp65. Hundred eight two (98.9%) were classified as M. kansasii type I. Two isolates were classified as type II and III and five isolates were characterized as other Mycobacterium species. Clinical isolates of M. kansasii in the state of Sao Paulo was almost exclusively subtype I regardless of HIV status.  相似文献   

11.
The identification of mycobacterial species in clinical isolates is essential for making patient care decisions. Polymerase chain reaction (PCR) restriction enzyme analysis (PRA) is a simple and rapid identification method, based on amplification of 441 bp of the hsp65 gene and restriction with BstEII and HaeIII. As a contribution to the validation of PRA, a multicenter study was performed in eight laboratories located in Argentina, Brazil, Colombia, Chile, and Guadeloupe. Each laboratory received 18 coded isolates from the collection of the Institute of Tropical Medicine (Antwerp, Belgium), representing duplicates of nine laboratory strains: Mycobacterium terrae CIPT 140320001, Mycobacterium scrofulaceum CIPT 140220031, Mycobacterium flavescens ATCC 14474, Mycobacterium triviale ATCC 23292, Mycobacterium nonchromogenicum ATCC 19530, Mycobacterium chitae ATCC 19627, Mycobacterium abscessus ATCC 19977, Mycobacterium kansasii ATCC 12478, and Mycobacterium peregrinum ATCC 14467. A detailed protocol including amplification, enzymatic digestion, and gel preparation was provided to each laboratory. Two laboratories identified correctly all 18 (100%) isolates, one identified correctly 17 (94.5%), two identified 14 (77.7%), one identified 11 (61%), and two identified 8 (44.4%) isolates. Errors detected in laboratories with more than 77% accuracy were associated with electrophoresis running conditions and an unspecific amplicon produced by a single strain. Lower accuracy was mainly related to inappropriate use of DNA markers and insufficient training in interpretation of patterns. In conclusion, the PRA method was readily implemented in some Latin American and Caribbean laboratories of mycobacteria, but improvements in critical points, as gel running conditions and training in interpretiation of patterns, are needed in order to improve accuracy. In others, improvement in critical points is still necessary.  相似文献   

12.
Kim BJ  Yi SY  Shim TS  Do SY  Yu HK  Park YG  Kook YH  Kim BJ 《PloS one》2012,7(6):e38420
So far, genetic diversity among strains within Mycobacterium massiliense has rarely been studied. To investigate the genetic diversity among M. massiliense, we conducted phylogenetic analysis based on hsp65 (603-bp) and rpoB (711-bp) sequences from 65 M. massiliense Korean isolates. We found that hsp65 sequence analysis could clearly differentiate them into two distinct genotypes, Type I and Type II, which were isolated from 35 (53.8%) and 30 patients (46.2%), respectively. The rpoB sequence analysis revealed a total of four genotypes (R-I to R-IV) within M. massiliense strains, three of which (R-I, R-II and R-III) correlated with hsp65 Type I, and other (R-IV), which correlated with Type II. Interestingly, genotyping by the hsp65 method agreed well with colony morphology. Despite some exceptions, Type I and II correlated with smooth and rough colonies, respectively. Also, both types were completely different from one another in terms of MALDI-TOF mass spectrometry profiles of whole lipid. In addition, we developed PCR-restriction analysis (PRA) based on the Hinf I digestion of 644-bp hsp65 PCR amplicons, which enables the two genotypes within M. massiliense to be easily and reliably separated. In conclusion, two distinct hsp65 genotypes exist within M. massiliense strains, which differ from one another in terms of both morphology and lipid profile. Furthermore, our data indicates that Type II is a novel M. massiliense genotype being herein presented for the first time. The disparity in clinical traits between these two hsp65 genotypes needs to be exploited in the future study.  相似文献   

13.
Nontuberculosis mycobacteria (NTM) are an important cause of human disease and infections. Though less notorious than tuberculosis, these infections are clinically significant and have been associated with outbreaks in various settings. To accommodate outbreak investigations for the numerous species of NTM, we evaluated a DiversiLab repetitive-sequence-based PCR (rep-PCR) kit for genotyping of mycobacteria. This kit was used to genotype both rapidly and slowly growing mycobacteria and was compared with other PCR-based genotyping methods, including random amplified polymorphic DNA (RAPD) analysis, hsp65 gene sequencing, and mycobacterial interspersed repetitive unit?- variable number of tandem repeat (MIRU-VNTR) analysis. Compared with RAPD analysis, rep-PCR achieved better reproducibility in testing. When compared with hsp65 gene sequencing and MIRU-VNTR for Mycobacterium avium , rep-PCR provided results that agreed with these less discriminatory genotyping methods but provided a higher level of discrimination for situations such as outbreak investigations. We also evaluated the kit for its ability to identify closely related rapidly growing NTM. While rep-PCR was informative in some cases, a much larger library of isolates would be necessary to truly evaluate it as an identification tool. Overall, rep-PCR was able to provide improved reproducibility over RAPD and a discriminatory genotyping method for the isolates evaluated in this study.  相似文献   

14.
The availability of the dnaJ1 gene for identifying Mycobacterium species was examined by analyzing the complete dnaJ1 sequences (approximately 1200 bp) of 56 species (54 of them were type strains) and comparing sequence homologies with those of the 16S rRNA gene and other housekeeping genes (rpoB, hsp65). Among the 56 Mycobacterium species, the mean sequence similarity of the dnaJ1 gene (80.4%) was significantly less than that of the 16S rRNA, rpoB and hsp65 genes (96.6%, 91.3% and 91.1%, respectively), indicating a high discriminatory power of the dnaJ1 gene. Seventy-one clinical isolates were correctly clustered to the corresponding type strains, showing isolates belonging to the same species. In order to propose a method for strain identification, we identified an area with a high degree of polymorphism, bordered by conserved sequences, that can be used as universal primers for PCR amplification and sequencing. The sequence of this fragment (approximately 350 bp) allows accurate species identification and may be used as a new tool for the identification of Mycobacterium species.  相似文献   

15.
One hundred and ninety-eight clinical isolates of Mycobacterium kansasii collected between 2003 and 2004 in Japan were genotyped by PCR and restriction enzyme analysis (PRA) and 16S-23S internal transcribed spacer (ITS) sequencing. The results demonstrated that clinical isolates of M. kansasii in Japan are almost exclusively of the type I PRA genotype, as is the case in other countries. Although the results of subtyping using the 16S-23S ITS sequence were generally consistent with subtyping using hsp65 PRA, four strains showed a discrepancy between the two methods. Sequence analysis of the hsp65, gyrB and 16S rRNA genes and the ITS sequence of the four strains suggests that they branched from type II and could be considered an ancestral strain of the type I strain. The newly recognized strains were designated as intermediate type I.  相似文献   

16.
We developed schemes for rapid identification of Mycobacterium species and strain typing using a microfluidic labchip instrument. A 439-bp region of the gene that codes for the 65-kDa heat shock protein (hsp65), which has sequence polymorphisms specific for most mycobacterial species, was examined using PCR-restriction analysis (PRA). We performed PRA in duplicate, using 2 strains each of 12 species, and observed that fragment sizes (bp) determined automatically by the instrument were consistently smaller than the correct sizes for each of the species as determined by sequence analysis (mean variance, < 7 bp). Mycobacterium tuberculosis isolates were typed with the labchip instrument using mycobacterial interspersed repetitive unit-variable number tandem repeat (MIRU-VNTR) typing, which determines the number of copies of repeated units at 12 loci in the genome based on product size after PCR amplification. Seven strains with one to six repeat copies at each locus were examined. Sizes were smaller by a mean of 13.47 bp compared with correct sizes predicted by sequence analysis, but could be used to correctly identify all strains types. Isolates of Mycobacterium chelonae and Mycobacterium abscessus were typed using randomly amplified polymorphic DNA (RAPD) electrophoresis, and patterns obtained using the labchip instrument were compared with multilocus enzyme electrophoresis (MEE) types. Patterns were distinct and reproducible for all strains except those with closely related MEE types. The labchip instrument is a versatile alternative for sizing mycobacterial DNA fragments.  相似文献   

17.
The development of fast, inexpensive, and reliable tests to identify nontuberculous mycobacteria (NTM) is needed. Studies have indicated that the conventional identification procedures, including biochemical assays, are imprecise. This study evaluated a proposed alternative identification method in which 83 NTM isolates, previously identified by conventional biochemical testing and in-house M. avium IS1245-PCR amplification, were submitted to the following tests: thin-layer chromatography (TLC) of mycolic acids and PCR-restriction enzyme analysis of hsp65(PRA). High-performance liquid chromatography (HPLC) analysis of mycolic acids and Southern blot analysis for M. avium IS1245 were performed on the strains that evidenced discrepancies on either of the above tests. Sixty-eight out of 83 (82%) isolates were concordantly identified by the presence of IS1245 and PRA and by TLC mycolic acid analysis. Discrepant results were found between the phenotypic and molecular tests in 12/83 (14.4%) isolates. Most of these strains were isolated from non-sterile body sites and were most probably colonizing in the host tissue. While TLC patterns suggested the presence of polymycobacterial infection in 3/83 (3.6%) cultures, this was the case in only one HPLC-tested culture and in none of those tested by PRA. The results of this study indicated that, as a phenotypic identification procedure, TLC mycolic acid determination could be considered a relatively simple and cost-effective method for routine screening of NTM isolates in mycobacteriology laboratory practice with a potential for use in developing countries. Further positive evidence was that this method demonstrated general agreement on MAC and M. simiae identification, including in the mixed cultures that predominated in the isolates of the disseminated infections in the AIDS patients under study. In view of the fact that the same treatment regimen is recommended for infections caused by these two species, TLC mycolic acid analysis may be a useful identification tool wherever molecular methods are unaffordable.  相似文献   

18.
Specific DNA probe has been developed for fast-growing, mycobacterial mutants able to selectively biotransform side chain of plant sterols. The PCR assay, using primers complementary to the sequence of the probe, was shown to distinguish biotechnological mutants from other fast-growing mycobacteria. Moreover, the species identification of biotechnological strains was done using PCR-restriction analysis based on amplification and digestion of the inner part of hsp65 gene (PRA-assay) as well as 16S rRNA sequencing.  相似文献   

19.
In order to study the diversity and community of genus Mycobacterium in polluted soils, we tried to isolate mycobacteria from 11 soil samples collected from an illegal dumping site and 3 landfills in Japan. Using culture methods with or without Acanthamoeba culbertsoni, a total of 19 isolates of mycobacteria were obtained from 5 soil samples and 3 of them were isolated only by the co-culture method with the amoeba. Conventional biochemical tests and sequencing of the hsp65, rpoB, and 16S rRNA genes were performed for species identification of 17 of the 19 isolates. Among the 17 isolates, there was one isolate each of Mycobacterium vanbaalenii, Mycobacterium mageritense, Mycobacterium frederiksbergense, M. vanbaalenii or Mycobacterium austroafricanum, and Mycobacterium chubuense or Mycobacterium chlorophenolicum. The remaining 12 isolates could not be precisely identified at the species level. A phylogenic tree based on the hsp65 sequences indicated that 2 of the 12 isolates were novel species. In addition, 4 isolates were phylogenically close to species that degrade polycyclic aromatic hydrocarbons, which induce some cancers in humans. These results demonstrated that there were many hitherto-unreported mycobacteria in the polluted soils, and suggested that some mycobacteria might play roles in the natural attenuation and engineered bioremediation of contaminated sites with other microorganisms.  相似文献   

20.
Here we used a multigene sequencing approach for the identification and molecular typing of environmental mycobacteria of the fast-growing subgroup. Strains were isolated from hemodialysis water and clinical samples. Eleven type strains of related species of the genus were also included in this study. To gain further insight into the diversity of the environmental mycobacteria, we analyzed several housekeeping genes (16S rRNA, ITS1, gyrB, hsp65, recA, rpoB, and sodA). No individual phylogenetic tree allowed good discrimination of all of the species studied. However, a concatenated and a consensus analysis, combining the genes, allowed better discrimination of each strain to the species level, and the increase in sequence size also led to greater tree robustness. This approach is useful not only for the discrimination and identification of environmental mycobacteria but also for their molecular typing and studies of population genetics. Our results demonstrate high genetic diversity among the isolates obtained, which are probably new species of the genus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号