首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The tissue-specific expression of transgenes is essential in plant breeding programmes to avoid the fitness costs caused by constitutive expression of a target gene. However, knowledge on the molecular mechanisms of tissue-specific gene expression and practicable tissue-specific promoters is limited. In this study, we identified the cis -acting elements of a tissue-specific promoter from rice, PD54O , and tested the application of original and modified PD54O and its cis -elements in the regulation of gene expression. PD54O is a green tissue-specific promoter. Five novel tissue-specific cis -elements (LPSE1, LPSE2, LPSRE1, LPSRE2, PSE1) were characterized from PD54O . LPSE1 activated gene expression in leaf and young panicle. LPSRE2 suppressed gene expression in leaf, root, young panicle and stem, and PSE1 suppressed gene expression in young panicle and stem. LPSRE1 and LPSE2 had dual roles in the regulation of tissue-specific gene expression; both functioned as activators in leaf, but LPSRE1 acted as a repressor in stem and LPSE2 as a repressor in young panicle and root. Transgenic rice plants carrying cry1Ac encoding Bacillus thuringiensis endotoxin, regulated by PD54O , were resistant to leaf-folders, with no Cry1Ac protein found in endosperm or embryo. A reporter gene regulated by a series of truncated PD54O showed various tissue-specific expression patterns. Different fragments of PD54O fused with the constitutive cauliflower mosaic virus 35S promoter suppressed 35S -regulated gene expression in various tissues. PD54O , truncated PD54O and the tissue-specific cis -elements provide useful tools for the regulation of tissue-specific gene expression in rice breeding programmes.  相似文献   

2.
Ye R  Zhou F  Lin Y 《Plant cell reports》2012,31(7):1159-1172
In plant genetic engineering, using tissue-specific promoters to control the expression of target gene is an effective way to avoid potential negative effects of using constitutive promoter, such as metabolic burden and so on. However, until now, there are few tissue-specific promoters with strong and reliable expression that could be used in crop biotechnology application. In this study, based on microarray and RT-PCR data, we identified a rice green tissue-specific expression gene DX1 (LOC_Os12g33120). The expression pattern of DX1 gene promoter was examined by using the β-glucuronidase (GUS) reporter gene and analyzed in transgenic rice plants in different tissues. Histochemical assays and quantitative analyses of GUS activity confirmed that P (DX1):GUS was highly expressed in green tissues. To identify the regulatory elements controlling the expression of the DX1 gene, a series of 5' and 3' deletions of DX1 promoter were fused to GUS gene and stably introduced into rice plants. In addition, gel mobility shift assays and site-directed mutagenesis studies were used, allowing for the identification of two novel tissue-specific cis-acting elements (GSE1 and GSE2) within P(DX1). GSE1 acted as a positive regulator in all green tissues (leaf, sheath, stem and panicle). Compared with GSE1, GSE2 acted as a positive regulator only in sheath and stem tissue, and had a weaker effect on gene expression. In addition, P(DX1):GUS was not expressed in anther and seed, this characteristic reduced the potential ecological risk and potential food safety issues. Taken together, our results strongly suggest that the identified promoter, P(DX1), and its cis regulatory elements, GSE1 and GSE2, are potentially useful in the field of rice transgenic breeding. KEY MESSAGE: We have isolated and characterized the rice green tissue-specific promoter P(DX1), and identified two novel positive cis-acting elements in P(DX1).  相似文献   

3.
4.
Functional organization of the cassava vein mosaic virus (CsVMV) promoter   总被引:6,自引:1,他引:5  
Cassava vein mosaic virus (CsVMV) is a pararetrovirus that infects cassava plants in Brazil. A promoter fragment isolated from CsVMV, comprising nucleotides -443 to +72, was previously shown to direct strong constitutive gene expression in transgenic plants. Here we report the functional architecture of the CsVMV promoter fragment. A series of promoter deletion mutants were fused to the coding sequence of uidA reporter gene and the chimeric genes were introduced into transgenic tobacco plants. Promoter activity was monitored by histochemical and quantitative assays of -glucuronidase activity (GUS). We found that the promoter fragment is made up of different regions that confer distinct tissue-specific expression of the gene. The region encompassing nucleotides -222 to -173 contains cis elements that control promoter expression in green tissues and root tips. Our results indicate that a consensus as1 element and a GATA motif located within this region are essential for promoter expression in those tissues. Expression from the CsVMV promoter in vascular elements is directed by the region encompassing nucleotides -178 to -63. Elements located between nucleotides -149 and -63 are also required to activate promoter expression in green tissues suggesting a combinatorial mode of regulation. Within the latter region, a 43 bp fragment extending from nucleotide -141 to -99 was shown to interact with a protein factor extracted from nuclei of tobacco seedlings. This fragment showed no sequence homology with other pararetrovirus promoters and hence may contain CsVMV-specific regulatory cis elements.  相似文献   

5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
The precise control of spatiotemporal expression of target genes is crucial when establishing transgenic animals, and the introduction of genes for fluorescent marker proteins is inevitable for accelerating research at molecular levels. To assist this, we constructed a novel dual promoter expression vector for two independent reporter genes, green fluorescent protein (GFP) and red fluorescent protein (mCherry). Their expression is designed under the control of two distinct tissue-specific promoters, e.g. zebrafish cardiac muscle-specific promoter (cmlc2) and medaka skeletal muscle-specific promoter (myl2) derived from the myosin light chain 2 genes, and they are placed in a head-to-head orientation. After microinjecting the dual promoter expression vector into fertilized eggs of medaka, the developing fish embryos and the resulting transgenic fish lines showed strong GFP signal in the whole body (skeletal muscle) and mCherry signal in the heart (cardiac muscle). However, weak GFP signal was observed in the heart, indicating a leakiness of the skeletal muscle promoter. To improve the stringency of dual promoter expression, we inserted two chicken-derived insulators, e.g. tandem copies of the core sequence (250 bp) of cHS4 (5′-hypersensitive site-4 chicken beta-globin insulator), in the boundary of two promoters. The dual promoter expression vector with insulator now ensured the stringent tissue-specific expression in the transgenic fish lines. Thus, our dual promoter expression system with insulator is compatible to the conventional IRES and fused reporter gene systems and will be an alternative method to produce the transgenic fishes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号