共查询到20条相似文献,搜索用时 0 毫秒
1.
Willoughby EA Perkins GR Collins MK Whitmarsh AJ 《The Journal of biological chemistry》2003,278(12):10731-10736
The c-Jun N-terminal kinase (JNK) group of mitogen-activated protein kinases (MAPKs) are activated by pleiotropic signals including environmental stresses, growth factors, and hormones. A subset of JNK can bind to distinct scaffold proteins that also bind upstream kinases of the JNK pathway, allowing sequential kinase activation within a signaling module. The JNK-interacting protein-1 (JIP-1) scaffold protein specifically binds JNK, MAP kinase kinase 7, and members of the MLK family and is essential for stress-mediated JNK activation in neurones. Here we report that JIP-1 also binds the dual-specificity phosphatases MKP7 and M3/6 via a region independent of its JNK binding domain. The C-terminal region of MKP7, homologous to that of M3/6 but not other DSPs, is required for interaction with JIP-1. When MKP7 is bound to JIP-1 it reduces JNK activation leading to reduced phosphorylation of the JNK target c-Jun. These results indicate that the JIP-1 scaffold protein modulates JNK signaling via association with both protein kinases and protein phosphatases that target JNK. 相似文献
2.
Imasato A Desbois-Mouthon C Han J Kai H Cato AC Akira S Li JD 《The Journal of biological chemistry》2002,277(49):47444-47450
Despite the importance of glucocorticoids in suppressing immune and inflammatory responses, their role in enhancing host immune and defense response against invading bacteria is poorly understood. We have demonstrated recently that glucocorticoids synergistically enhance nontypeable Haemophilus influenzae (NTHi)-induced expression of Toll-like receptor 2 (TLR2), an important TLR family member that has been shown to play a critical role in host immune and defense response. However, the molecular mechanisms underlying the glucocorticoid-mediated enhancement of TLR2 induction still remain unknown. Here we show that glucocorticoids synergistically enhance NTHi-induced TLR2 expression via specific up-regulation of the MAPK phosphatase-1 (MKP-1) that, in turn, leads to dephosphorylation and inactivation of p38 MAPK, the negative regulator for TLR2 expression. Moreover, increased expression of TLR2 in epithelial cells greatly enhances the NTHi-induced expression of several key cytokines, including tumor necrosis factor-alpha and interleukins 1beta and 8, thereby contributing significantly to host immune and defense response. These studies may bring new insights into the novel role of glucocorticoids in orchestrating and optimizing host immune and defense responses during bacterial infections and enhance our understanding of the signaling mechanisms underlying the glucocorticoid-mediated attenuation of MAPKs. 相似文献
3.
Role of MAPK phosphatase-1 in sustained activation of JNK during ethanol-induced apoptosis in hepatocyte-like VL-17A cells 总被引:2,自引:0,他引:2
Venugopal SK Chen J Zhang Y Clemens D Follenzi A Zern MA 《The Journal of biological chemistry》2007,282(44):31900-31908
Ethanol metabolism plays a central role in activating the mitogen-activated protein kinase (MAPK) cascade leading to inflammation and apoptosis. Sustained activation of c-Jun N-terminal kinase (JNK), one of the MAPKs, has been shown to induce apoptosis in hepatocytes. MAPK phosphatase-1 (MKP-1) has been shown to dephosphorylate MAPKs in several cells. The aim of the study is to evaluate the role of MKP-1 in sustained JNK activation as a mechanism to explain ethanol-induced hepatocyte apoptosis. VL-17A cells (HepG2 cells overexpressing alcohol dehydrogenase and cytochrome P450-2E1) were exposed to ethanol for different time periods. Western blots were performed for MKP-1, phospho-JNK, phosphotyrosine, and protein kinase Cdelta (PKCdelta). Electrophoretic mobility shift assays for AP-1 were performed. Apoptosis was measured by caspase-3 activity assay, TUNEL, and 4',6-diamidino-2-phenylindole staining. Reactive oxygen species were neutralized by overexpressing both superoxide dismutase-3 and catalase genes using lentiviral vectors in VL-17A cells. Ethanol incubation markedly decreased the MKP-1 protein levels to 15% of control levels and was associated with sustained phosphorylation of p46 JNK and p54 JNK, as well as increased apoptosis. VL-17A cells overexpressing superoxide dismutase-3 and catalase, treatment with a tyrosine kinase inhibitor, or incubation of the cells with PKCdelta small interference RNAs significantly inhibited the ethanol-induced MKP-1 degradation and apoptosis. Ethanol-induced oxidative stress enhanced the tyrosine phosphorylation of PKCdelta, which in turn caused the proteasomal degradation of MKP-1, leading to sustained JNK activation and increased apoptosis in VL-17A cells. 相似文献
4.
Role of MAPK phosphatase-1 in the induction of monocyte chemoattractant protein-1 during the course of adipocyte hypertrophy 总被引:2,自引:0,他引:2
Ito A Suganami T Miyamoto Y Yoshimasa Y Takeya M Kamei Y Ogawa Y 《The Journal of biological chemistry》2007,282(35):25445-25452
Monocyte chemoattractant protein-1 (MCP-1), an important chemokine whose expression is increased during the course of obesity, plays a role in macrophage infiltration into obese adipose tissue. This study was designed to elucidate the role of mitogen-activated protein kinase (MAPK) phosphatase-1 (MKP-1) in the induction of MCP-1 during the course of adipocyte hypertrophy. We examined the time course of MKP-1 and MCP-1 mRNA expression and extracellular signal-regulated kinase (ERK) phosphorylation in the adipose tissue from mice rendered mildly obese by a short term high fat diet. We also studied the role of MKP-1 in the induction of MCP-1 in 3T3-L1 adipocytes during the course of adipocyte hypertrophy. MCP-1 mRNA expression was increased, followed by ERK activation and down-regulation of MKP-1, an inducible dual specificity phosphatase to inactivate ERK, in the adipose tissue at the early stage of obesity induced by a short term high fat diet, when macrophages are not infiltrated. Down-regulation of MKP-1 preceded ERK activation and increased production of MCP-1 in 3T3-L1 adipocytes in vitro during the course of adipocyte hypertrophy. Adenovirus-mediated restoration of MKP-1 in hypertrophied 3T3-L1 adipocytes reduced the otherwise increased ERK phosphorylation, thereby leading to the significant reduction of MCP-1 mRNA expression. This study provides evidence that the down-regulation of MKP-1 is critical for increased production of MCP-1 during the course of adipocyte hypertrophy. 相似文献
5.
Svensson C Part K Künnis-Beres K Kaldmäe M Fernaeus SZ Land T 《Biochemical and biophysical research communications》2011,(3):686-492
Identifying MAPK pathways and understanding their role in microglial cells may be crucial for understanding the pathogenesis of neurodegenerative diseases since activated microglia could contribute to the progressive nature of neurodegeneration. In this study we show that the JNK pathway plays an important role in the survival of resting microglia BV-2 cells, as evidenced by Annexin-V positive staining and caspase-3 activation in cells treated with the specific JNK inhibitor SP600125. During LPS-induced activation of BV-2 cells inhibition of the p38 and JNK pathways with SB203580 and SP600125, respectively, results in apoptosis as detected by apoptotic markers. In the presence SP600125 the phosphorylation of p38 was significantly increased both in control and LPS-activated BV-2 cells. This suggests that the pro-survival role of JNK is possible due to its abrogation of a potentially apoptotic signal mediated by p38 MAPK pathway. Furthermore, inhibition of the p38 MAPK pathway during LPS-induced activation of BV-2 cells resulted in an increased phosphorylation of c-Jun, suggesting that the pro-survival effect of p38 MAPK during inflammatory conditions involves the JNK pathway. In conclusion, the results of this study demonstrate that both the JNK and p38 MAPK pathways possess anti-apoptotic functions in the microglial cell line BV-2 during LPS-induced activation. 相似文献
6.
Calcineurin enhances MAPK phosphatase-1 expression and p38 MAPK inactivation in cardiac myocytes 总被引:4,自引:0,他引:4
Multiple intracellular signaling pathways have been shown to regulate the hypertrophic growth of cardiac myocytes including mitogen-activated protein kinase (MAPK) and calcineurin-nuclear factor of activated T-cells. However, it is uncertain if individual regulatory pathways operate in isolation or if interconnectivity between unrelated pathways is required for the orchestration of the entire hypertrophic response. To this end, we investigated the interconnectivity between calcineurin-mediated cardiac myocyte hypertrophy and p38 MAPK signaling in vitro and in vivo. We show that calcineurin promotes down-regulation of p38 MAPK activity and enhances expression of the dual specificity phosphatase MAPK phosphatase-1 (MKP-1). Transgenic mice expressing activated calcineurin in the heart were characterized by inactivation of p38 and increased MKP-1 expression during early postnatal development, before the onset of cardiac hypertrophy. In vitro, cultured neonatal cardiomyocytes infected with a calcineurin-expressing adenovirus and stimulated with phenylephrine demonstrated reduced p38 phosphorylation and increased MKP-1 protein levels. Activation of endogenous calcineurin with the calcium ionophore decreased p38 phosphorylation and increased MKP-1 protein levels. Inhibition of endogenous calcineurin with cyclosporin A decreased MKP-1 protein levels and increased p38 activation in response to agonist stimulation. To further investigate potential cross-talk between calcineurin and p38 through alteration in MKP-1 expression, the MKP-1 promoter was characterized and determined to be calcineurin-responsive. These data suggest that calcineurin enhances MKP-1 expression in cardiac myocytes, which is associated with p38 inactivation. 相似文献
7.
Sukhumavasi W Egan CE Denkers EY 《Journal of immunology (Baltimore, Md. : 1950)》2007,179(6):3570-3577
The MAPK family member JNK/stress-activated MAPK (SAPK) is involved in extracellular stress and proinflammatory cytokine responses, including production of cytokines such as IL-12. The JNK1 and 2 isoforms are widely expressed, but JNK3 is largely restricted to tissues of the brain, testis, and heart. In this study, we focus on mouse neutrophils, a cell type in which JNK/SAPK expression and activity has been given little study. We used Western blot analysis to examine expression patterns of JNK/SAPK in wild-type and JNK2-/- polymorphonuclear leukocytes (PMN). Surprisingly, neutrophils displayed a major deficiency in JNK1 expression, in contrast to macrophages that expressed high levels of both JNK1 and JNK2 MAPK. JNK1 expression was steadily reduced during the neutrophil maturation in bone marrow. We used PMN infection with the protozoan parasite Toxoplasma gondii to determine whether neutrophil JNK2 was functional. The parasite induced rapid JNK2 phosphorylation and intracellular FACS staining demonstrated preferential activation in infected neutrophils. Use of JNK2-/- neutrophils revealed that this MAPK family member was required for PMN IL-12p40 and CCL2/MCP-1 production. The chemotactic response displayed a minor JNK2 dependence but phagocytosis and oxidative burst activity did not require this MAPK. These findings are important because they demonstrate 1) a previously unrecognized unusual JNK expression pattern in mouse neutrophils, 2) JNK2 in PMN is activated by Toxoplasma invasion, and 3) a requirement for JNK2 in PMN IL-12p40 and CCL2/MCP-1 production in response to a microbial pathogen. 相似文献
8.
9.
Yang YH Toh ML Clyne CD Leech M Aeberli D Xue J Dacumos A Sharma L Morand EF 《Journal of immunology (Baltimore, Md. : 1950)》2006,177(11):8148-8153
Annexin 1 (Anx-1) is a mediator of the anti-inflammatory actions of glucocorticoids, but the mechanism of its anti-inflammatory effects is not known. We investigated the role of Anx-1 in the regulation of the proinflammatory cytokine, IL-6. Lung fibroblast cell lines derived from Anx-1(-/-) and wild-type (WT) mice were treated with dexamethasone and/or IL-1. IL-6 mRNA and protein were measured using real-time PCR and ELISA, and MAPK pathway activation was studied. Compared with WT cells, unstimulated Anx-1(-/-) cells exhibited dramatically increased basal IL-6 mRNA and protein expression. In concert with this result, Anx-1 deficiency was associated with increased basal phosphorylated p38, JNK, and ERK1/2 MAPKs. IL-1-inducible phosphorylated p38 was also increased in Anx-1(-/-) cells. The increase in IL-6 release in Anx-1(-/-) cells was inhibited by inhibition of p38 MAPK. Anx-1(-/-) cells were less sensitive to dexamethasone inhibition of IL-6 mRNA expression than WT cells, although inhibition by dexamethasone of IL-6 protein was similar. MAPK phosphatase-1 (MKP-1), a glucocorticoid-induced negative regulator of MAPK activation, was up-regulated by dexamethasone in WT cells, but this effect of dexamethasone was significantly impaired in Anx-1(-/-) cells. Treatment of Anx-1(-/-) cells with Anx-1 N-terminal peptide restored MKP-1 expression and inhibited p38 MAPK activity. These data demonstrate that Anx-1 is an endogenous inhibitory regulator of MAPK activation and IL-6 expression, and that Anx-1 is required for glucocorticoid up-regulation of MKP-1. Therapeutic manipulation of Anx-1 could provide glucocorticoid-mimicking effects in inflammatory disease. 相似文献
10.
We previously showed that MKP-7 suppresses MAPK activation in COS-7 cells in the order of selectivity, JNK > p38 > ERK, but interacts with ERK as well as JNK and p38. In this study we found that, when expressed in COS-7 cells with HA-ERK2, the mobility of FLAG-MKP-7 was decreased on SDS-PAGE gels depending on several stimuli, including phorbol 12-myristate 13-acetate, fetal bovine serum, epidermal growth factor, H2O2, and ionomycin. By using U0126, a MEK inhibitor, and introducing several point mutations, we demonstrated that this upward mobility shift is because of phosphorylation and identified Ser-446 of MKP-7 as the phosphorylation site targeted by ERK activation. To determine how MKP-7 interacts with MAPKs, we identified three domains in MKP-7 required for interaction with MAPKs, namely, putative MAP kinase docking domains (D-domain) I and II and a long COOH-terminal stretch unique to MKP-7. The D-domain I is required for interaction with ERK and p38, whereas the D-domain II is required for interaction with JNK and p38, which is likely to be important for MKP-7 to suppress JNK and p38 activations. The COOH-terminal stretch of MKP-7 was shown to determine JNK preference for MKP-7 by masking MKP-7 activity toward p38 and is a domain bound by ERK. These data strongly suggested that Ser-446 of MKP-7 is phosphorylated by ERK. 相似文献
11.
Hypoxia-induced regulation of MAPK phosphatase-1 as identified by subtractive suppression hybridization and cDNA microarray analysis 总被引:12,自引:0,他引:12
Seta KA Kim R Kim HW Millhorn DE Beitner-Johnson D 《The Journal of biological chemistry》2001,276(48):44405-44412
Subtractive suppression hybridization was used to generate a cDNA library enriched in cDNA sequences corresponding to mRNA species that are specifically up-regulated by hypoxia (6 h, 1% O(2)) in the oxygen-responsive pheochromocytoma cell line. The dual specificity protein-tyrosine phosphatase MAPK phosphatase-1 (MKP-1) was highly represented in this library. Clones were arrayed on glass slides to create a hypoxia-specific cDNA microarray chip. Microarray, northern blot, and western blot analyses confirmed that MKP-1 mRNA and protein levels were up-regulated by hypoxia by approximately 8-fold. The magnitude of the effect of hypoxia on MKP-1 was approximately equal to that induced by KCl depolarization and much larger than the effects of either epidermal growth factor or nerve growth factor on MKP-1 mRNA levels. In contrast to the calcium-dependent induction of MKP-1 by KCl depolarization, the effect of hypoxia on MKP-1 persisted under calcium-free conditions. Cobalt and deferoxamine also increased MKP-1 mRNA levels, suggesting that hypoxia-inducible factor proteins may play a role in the regulation of MKP-1 by hypoxia. Pretreatment of cells with SB203580, which inhibits p38 kinase activity, significantly reduced the hypoxia-induced increase in MKP-1 RNA levels. Thus, hypoxia robustly increases MKP-1 levels, at least in part through a p38 kinase-mediated mechanism. 相似文献
12.
13.
Zhang Y Leung DY Richers BN Liu Y Remigio LK Riches DW Goleva E 《Journal of immunology (Baltimore, Md. : 1950)》2012,188(5):2127-2135
It is estimated that 1 billion people around the world are vitamin D deficient. Vitamin D deficiency has been linked to various inflammatory diseases. However, the mechanism by which vitamin D reduces inflammation remains poorly understood. In this study, we investigated the inhibitory effects of physiologic levels of vitamin D on LPS-stimulated inflammatory response in human blood monocytes and explored potential mechanisms of vitamin D action. We observed that two forms of the vitamin D, 1,25(OH)(2)D(3), and 25(OH)D(3), dose dependently inhibited LPS-induced p38 phosphorylation at physiologic concentrations, IL-6 and TNF-α production by human monocytes. Upon vitamin D treatment, the expression of MAPK phosphatase-1 (MKP-1) was significantly upregulated in human monocytes and murine bone marrow-derived macrophages (BMM). Increased binding of the vitamin D receptor and increased histone H4 acetylation at the identified vitamin D response element of the murine and human MKP-1 promoters were demonstrated. Moreover, in BMM from MKP1(-/-) mice, the inhibition of LPS-induced p38 phosphorylation by vitamin D was completely abolished. Vitamin D inhibition of LPS-induced IL-6 and TNF-α production by BMM from MKP-1(-/-) mice was significantly reduced as compared with wild-type mice. In conclusion, this study identified the upregulation of MKP-1 by vitamin D as a novel pathway by which vitamin D inhibits LPS-induced p38 activation and cytokine production in monocytes/macrophages. 相似文献
14.
In this study, we examined the effect of heat pulsing on oocyte maturation and assessed the possible role of stress-activated enzymes during heat stress-induced meiotic maturation. Denuded oocytes from immature eCG-primed mice were pulsed for 30 min at increasing temperatures from 40 degrees C to 43 degrees C in dibutyryl cAMP-containing medium and were subsequently cultured at 37 degrees C for a total incubation time of 17-18 h. Oocytes exposed to 42 degrees C showed the greatest stimulation of maturation, with no effect at 43 degrees C. A heat pulse did not compromise progression to metaphase II as observed by polar body (PB) formation. The AMP-activated protein kinase (PRKA) inhibitors compound C and Ara-A each blocked the meiosis-stimulating effects of heat. Western blots showed that acetyl-CoA carboxylase, an important substrate of PRKA, was phosphorylated in heat-treated germinal vesicle-stage oocytes, indicating activation of PRKA before maturation. The mitogen-activated protein 2 kinase (MAP2K1) inhibitor PD98059 also prevented heat-induced maturation, but this effect was unrelated to MAPK1/3 activation, which was not observed until after germinal vesicle breakdown (GVB). Phosphorylated MAPK14 was not detected in the oocyte under any experimental condition, and only high concentrations of the MAPK14 inhibitor SB203580 blocked heat-stimulated maturation, suggesting that MAPK14 is not involved in meiotic induction. MAPK8/9 was activated by heat, and the MAPK8/9 inhibitor SP600125, but not JUN N-terminal kinase I, blocked heat-induced maturation. Heat treatment transiently suppressed GVB and PB formation in spontaneously maturing oocytes by a mechanism that is apparently different from its meiosis-inducing action. Collectively, these data show that an acute heat pulse stimulates GVB in meiotically arrested oocytes and suggest that this effect is mediated through the activation of PRKA. 相似文献
15.
ERK1/2 achieves sustained activation by stimulating MAPK phosphatase-1 degradation via the ubiquitin-proteasome pathway 总被引:1,自引:0,他引:1
Sustained extracellular signal-regulated kinase 1/2 (ERK1/2) activation does not always correlate with its upstream Ras-Raf-mitogen-activated protein kinase kinase 1/2 (MKK1/2) signal cascade in cancer cells, and the mechanism remains elusive. Here we report a novel mechanism by which sustained ERK1/2 activation is established. We demonstrate that Pb(II), a carcinogenic metal, persistently induces ERK1/2 activity in CL3 human lung cancer cells and that Ras-Raf-MKK1/2 signaling cannot fully account for such activation. It is intriguing that Pb(II) treatment reduces mitogen-activated protein kinase phosphatase 1 (MKP-1) protein levels in time- and dose-dependent manners, which correlates with sustained ERK1/2 activation, and that Pb(II) also induces mRNA and de novo protein synthesis of MKP-1. In Pb(II)-treated cells, MKP-1 is polyubiquitinated, and proteasome inhibitors markedly alleviate the ubiquitination and degradation of MKP-1. Inhibiting the Pb(II)-induced ERK1/2 activation by PD98059 greatly suppresses MKP-1 ubiquitination and degradation. It is remarkable that constitutive activation of MKK1/2 triggers endogenous MKP-1 ubiquitination and degradation in various mammalian cell lines. Furthermore, expression of functional MKP-1 decreases ERK1/2 activation and the c-Fos protein level and enhances cytotoxicity under Pb(II) exposure. Taken together, these results demonstrate that activated ERK1/2 can trigger MKP-1 degradation via the ubiquitin-proteasome pathway, thus facilitating long-term activation of ERK1/2 against cytotoxicity. 相似文献
16.
17.
18.
Essential role of MAPK phosphatase-1 in the negative control of innate immune responses 总被引:7,自引:0,他引:7
Salojin KV Owusu IB Millerchip KA Potter M Platt KA Oravecz T 《Journal of immunology (Baltimore, Md. : 1950)》2006,176(3):1899-1907
TLR-induced innate immunity and inflammation are mediated by signaling cascades leading to activation of the MAPK family of Ser/Thr protein kinases, including p38 MAPK, which controls cytokine release during innate and adoptive immune responses. Failure to terminate such inflammatory reactions may lead to detrimental systemic effects, including septic shock and autoimmunity. In this study, we provide genetic evidence of a critical and nonredundant role of MAPK phosphatase (MKP)-1 in the negative control of MAPK-regulated inflammatory reactions in vivo. MKP-1-/- mice are hyperresponsive to low-dose LPS-induced toxicity and exhibit significantly increased serum TNF-alpha, IL-6, IL-12, MCP-1, IFN-gamma, and IL-10 levels after systemic administration of LPS. Furthermore, absence of MKP-1 increases systemic levels of proinflammatory cytokines and exacerbates disease development in a mouse model of rheumatoid arthritis. When activated through TLR2, TLR3, TLR4, TLR5, and TLR9, bone marrow-derived MKP-1-/- macrophages exhibit increased cytokine production and elevated expression of the differentiation markers B7.2 (CD86) and CD40. MKP-1-deficient macrophages also show enhanced constitutive and TLR-induced activation of p38 MAPK. Based on these findings, we propose that MKP-1 is an essential component of the intracellular homeostasis that controls the threshold and magnitude of p38 MAPK activation in macrophages, and inflammatory conditions accentuate the significance of this regulatory function. 相似文献
19.
Idiopathic pulmonary fibrosis (IPF; a progressive lung disease) is characterized by parenchymal remodeling with enlarged air spaces called honeycomb cysts and palisades of fibroblasts called fibroblast foci. In IPF, lung epithelial cells covering honeycomb cysts and fibroblast foci aberrantly express the active conformation of the potent fibrogenic cytokine transforming growth factor-beta1 (TGF-beta1). Using explanted rat lung slices, we transfected alveolar epithelial cells with the retrovirus pMX containing a site-directed mutation in which Cys223 and Cys225 were substituted with serines, resulting in release of biologically active TGF-beta1 and fibroblast proliferation and remodeling that resembled IPF. Fibroblasts obtained from transfected explants and in culture for 6 weeks incorporated 6.59 +/- 1.55-fold more [3H]thymidine compared with control fibroblasts without transfection or fibroblasts obtained from transfected explants cultured with antibody to fibroblast growth factor-2 (FGF-2). Primary lung fibroblasts obtained from normal rat lungs cultured with TGF-beta1 expressed increased levels of phosphorylated p38 MAPK and JNK, but not ERK1/2. The presence of TGF-beta1 caused an immediate release of extracellular FGF-2 from primary pulmonary fibroblasts; and in the presence of anti-FGF-2 antibody, phosphorylated p38 MAPK and JNK were abrogated. TGF-beta inhibits cell proliferation by suppression of c-Myc and induction of p15INK46, p21CIP1, or p27KIP. Fibroblasts cultured with TGF-beta1 showed no regulation of c-Myc or induction of p15INK46, p21CIP1,or p27KIP. These findings suggest that pulmonary fibroblasts may not respond to the anti-proliferative effects of TGF-beta1, but proliferate in response to TGF-beta1 indirectly by the release of FGF-2, which induces phosphorylation of p38 MAPK and JNK. 相似文献
20.
Pilquil C Dewald J Cherney A Gorshkova I Tigyi G English D Natarajan V Brindley DN 《The Journal of biological chemistry》2006,281(50):38418-38429
Lysophosphatidate (LPA) stimulates cell migration and division through a family of G-protein-coupled receptors. Lipid phosphate phosphatase-1 (LPP1) regulates the degradation of extracellular LPA as well as the intracellular accumulation of lipid phosphates. Here we show that increasing the catalytic activity of LPP1 decreased the pertussis toxin-sensitive stimulation of fibroblast migration by LPA and an LPA-receptor agonist that could not be dephosphorylated. Conversely, knockdown of endogenous LPP1 activity increased LPA-induced migration. However, LPP1 did not affect PDGF- or endothelin-induced migration of fibroblasts in Transwell chamber and "wound healing" assays. Thus, in addition to degrading exogenous LPA, LPP1 controls signaling downstream of LPA receptors. Consistent with this conclusion, LPP1 expression decreased phospholipase D (PLD) stimulation by LPA and PDGF, and phosphatidate accumulation. This LPP1 effect was upstream of PLD activation in addition to the possible metabolism of phosphatidate to diacylglycerol. PLD(2) activation was necessary for LPA-, but not PDGF-induced migration. Increased LPP1 expression also decreased the LPA-, but not the PDGF-induced activation of important proteins involved in fibroblast migration. These included decreased LPA-induced activation of ERK and Rho, and the basal activities of Rac and Cdc42. However, ERK and Rho activation were not downstream targets of LPA-induced PLD(2) activity. We conclude that the intracellular actions of LPP1 play important functions in regulating LPA-induced fibroblast migration through PLD2. LPP1 also controls PDGF-induced phosphatidate formation. These results shed new light on the roles of LPP1 in controlling wound healing and the growth and metastasis of tumors. 相似文献