首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
NAD synthetase catalyzes the final step in the biosynthesis of NAD. In the present study, we obtained cDNAs for two types of human NAD synthetase (referred as NADsyn1 and NADsyn2). Structural analysis revealed in both NADsyn1 and NADsyn2 a domain required for NAD synthesis from ammonia and in only NADsyn1 an additional carbon-nitrogen hydrolase domain shared with enzymes of the nitrilase family that cleave nitriles as well as amides to produce the corresponding acids and ammonia. Consistent with the domain structures, biochemical assays indicated (i) that both NADsyn1 and NADsyn2 have NAD synthetase activity, (ii) that NADsyn1 uses glutamine as well as ammonia as an amide donor, whereas NADsyn2 catalyzes only ammonia-dependent NAD synthesis, and (iii) that mutant NADsyn1 in which Cys-175 corresponding to the catalytic cysteine residue in nitrilases was replaced with Ser does not use glutamine. Kinetic studies suggested that glutamine and ammonia serve as physiological amide donors for NADsyn1 and NADsyn2, respectively. Both synthetases exerted catalytic activity in a multimeric form. In the mouse, NADsyn1 was seen to be abundantly expressed in the small intestine, liver, kidney, and testis but very weakly in the skeletal muscle and heart. In contrast, expression of NADsyn2 was observed in all tissues tested. Therefore, we conclude that humans have two types of NAD synthetase exhibiting different amide donor specificity and tissue distributions. The ammonia-dependent synthetase has not been found in eucaryotes until this study. Our results also indicate that the carbon-nitrogen hydrolase domain is the functional domain of NAD synthetase to make use of glutamine as an amide donor in NAD synthesis. Thus, glutamine-dependent NAD synthetase may be classified as a possible glutamine amidase in the nitrilase family. Our molecular identification of NAD synthetases may prove useful to learn more of mechanisms regulating cellular NAD metabolism.  相似文献   

2.
Besides the synthesis of urea, ammonia detoxication at high concentrations can also be effected through enzyme reactions involved in glutamic acid metabolism. These mechanisms are also operative in extrahepatic tissues. Hyperammonemia is also found in the animal model of the portacaval shunt (PCS) rat. This model was chosen to study the activities of glutamate dehydrogenase, glutamine synthetase and glutaminase I in liver, brain and kidney 10, 20 and 30 days after PCS. In brain and kidney ammonia is detoxified mainly by the glutamate dehydrogenase and glutamine synthetase reactions whereas in the liver these enzyme reactions play a minor role.  相似文献   

3.
Many species of fishes have evolved mechanisms for coping with ammonia caused by either high ammonia environments or an inability to excrete nitrogenous wastes. Rainbow trout (Oncorhynchus mykiss), have not been known to have such a mechanism. The present study investigated whether rainbow trout can use amino acid synthesis and storage to cope with ammonia. Experiments were performed on fed and unfed rainbow trout under both control and elevated ammonia conditions (0 and 10 mgN/l (total ammonia nitrogen), pH 7.2). The results indicate that both feeding and ammonia exposure increased plasma ammonia significantly 6 h postprandial and post ammonia exposure. After 48 h the fed/ammonia exposed fish had plasma ammonia levels that were not significantly different than the fed/control fish. Plasma ammonia was reduced by more than 50%, attributable to ammonia being converted to glutamine in brain, liver and muscle tissue. Feeding alone also increased glutamine levels in brain tissue. Activity of glutamine synthetase in brain and liver was increased corresponding to an increase in glutamine concentrations when fish were exposed to ammonia. This is the first report showing that rainbow trout can detoxify endogenous and exogenous ammonia.  相似文献   

4.
The tilapia fish Oreochromis alcalicus grahami from Kenya has adapted to living in waters at pH 10.5 by excreting the end product of nitrogen metabolism as urea rather than as ammonia directly across the gills as occurs in most fish. The level of activity in liver of the first enzyme in the urea cycle pathway, carbamoyl-phosphate synthetase III (CPSase III), is too low to account for the observed high rates of urea excretion. We report here the surprising finding that CPSase III and all other urea cycle enzyme activities are present in muscle of this species at levels more than sufficient to account for the rate of urea excretion; in addition, the basic kinetic properties of the CPSase III appear to be different from those of other known type III CPSases. The sequence of the CPSase III cDNA is reported as well as the finding that glutamine synthetase activity is present in liver but not in muscle. This unusual form of adaptation may have occurred because of the apparent impossibility of packaging the needed amount of urea cycle enzymes in liver.  相似文献   

5.
The objective of this study was to determine the effects of feeding on the excretory nitrogen (N) metabolism of the aquatic Chinese soft-shelled turtle, Pelodiscus sinensis, with a special emphasis on the role of urea synthesis in ammonia detoxification. P. sinensis is ureogenic and possesses a full complement of ornithine-urea cycle enzymes in its liver. It is primarily ureotelic in water, and the estimated rate of urea synthesis in unfed animals was equivalent to only 1.5% of the maximal capacity of carbamoyl phosphate synthetase I (CPS I) in its liver. Approximately 72 h was required for P. sinensis to completely digest a meal of prawn meat. During this period, there were significant increases in ammonia contents in the stomach at hour 24 and in the intestine between hours 12 and 36, which could be a result of bacterial activities in the intestinal tract. However, ammonia contents in the liver, muscle, brain and plasma remained unchanged throughout the 72-h post-feeding. In contrast, at hour 24, urea contents in the stomach, intestine, liver, muscle, brain and plasma increased significantly by 2.9−, 3.5−, 2.6−, 2.9−, 3.4 and 3.0-fold, respectively. In addition, there was a 3.3- to 8.0−fold increase in the urea excretion rate between hours 0 and 36 post-feeding, which preceded the increase in ammonia excretion between hours 12 and 48. By hour 48, 68% of the assimilated N from the feed was excreted, 54% of which was excreted as urea-N. The rate of urea synthesis apparently increased sevenfold during the initial 24 h after feeding, which demanded only 10% of the maximal CPS I capacity in P. sinensis. The postprandial detoxification of ammonia to urea in P. sinensis effectively prevented postprandial surges in ammonia contents in the plasma and other tissues, as observed in other animals, during the 72-h period post-feeding. In addition, postprandial ammonia toxicity was ameliorated by increased transamination and synthesis of certain amino acids in the liver and muscle of P. sinensis. After feeding, a slight but significant increase in the glutamine content occurred in the brain at hour 24, indicating that the brain might experience a transient increase in ammonia and ammonia was detoxified to glutamine.  相似文献   

6.
The source of ammonia in the brain tissue of young rats treated with β-N-oxalyl-l -α, β-diaminopropionic acid (ODAP) has been studied. ODAP administration to 12-day-old rats causes a significant increase in the levels of adenylic acid deaminase in the brain. Glutaminase activity also shows an increase under these conditions. An increase in the levels of acid protease and transglutaminase is also observed in the brain of ODAP-treated animals. Glutamate dehydrogenase activity is decreased slightly. Glutamine synthetase enzyme is not affected. Aspartate-α-ketoglutarate transaminase and aspartate-pyruvate transaminase activities are enhanced in the brain tissue of ODAP-treated rats. It is held that protein degradation, especially the cleavage of free and protein-bound amide bonds, may be responsible for excess ammonia liberation in the brain of ODAP-treated young rats.  相似文献   

7.
This study was undertaken to determine whether gulf toadfish (Opsanus beta) could metabolize ammonia from their environment into other, less toxic products. To this end, gulf toadfish were exposed to 3.8 mM 15NH(4)Cl in seawater for 24 and 48 h. Liver, kidney, gill, brain and muscle samples were analyzed for distribution of 15N within the tissue and among various nitrogen-containing metabolites (ammonia, amino-N, glutamine-N, urea and protein). The data reported here show that the toadfish can indeed take up and metabolize ammonia. Analysis of individual metabolic products of ammonia indicates that the toadfish can convert this toxic chemical into other less toxic metabolites. Ammonia enrichment is significantly different over controls in the kidney, brain and muscle. Urea enrichment is most significant in the brain, with less significant enrichment occurring in the liver and muscle. While accumulation of ammonia into an amino acid pool was not a significant metabolic fate, protein synthesis was significantly enriched in all tissues (with the highest levels occurring in the gill) indicating that amino acid synthesis may be a pathway of ammonia detoxification en route to protein synthesis, and that environmental ammonia can be 'fixed' into protein. Finally, it was found that glutamine-N synthesis occurs at significant levels in the liver, brain and muscle.  相似文献   

8.
Monopterus albus has to deal with high environmental ammonia concentrations during dry seasons and agricultural fertilization in rice fields. In this study, NH4HCO3 (10 micromol per g fish) was injected into the peritoneal cavity of M. albus, raising the level of ammonia in the body, in order to elucidate the strategies involved in defense against the toxicity of exogenous ammonia. During the subsequent 24 h after NH4HCO3 injection, there was a significant increase in the ammonia excretion rate, which indicates that the main strategy adopted by M. albus was to remove the majority of the exogenous ammonia through enhanced ammonia excretion. Exogenous ammonia was not detoxified into urea for excretion or accumulation. Six hours post-injection of NH4HCO3, ammonia content in the tissues built up significantly, especially in the brain, which suggests that M. albus had high tolerance of ammonia toxicity at the cellular and sub-cellular levels. By hour 12 post-injection, there were significant increases in the activities of glutamine synthetase in the muscle, liver, and gut, accompanied by significant increases in glutamine contents in the muscle and the liver. There was also a significant increase in the glutamine content in the brain at hour 6 post-injection of NH4HCO3. These results confirm the capability of M. albus to detoxify ammonia through glutamine synthesis. Overall, injection of NH4HCO3 had only minor effects on the contents of FAAs, other than glutamine, in tissues of M. albus because the majority (70%) of the injected ammonia was excreted within the 24-h period.  相似文献   

9.
The incorporation of ammonia into glutamine, catalyzed by glutamine synthetase, is thought to be important in the detoxification of ammonia in animals. During early fish development, ammonia is continuously formed as yolk proteins and amino acids are catabolized. We followed the changes in ammonia and urea-nitrogen content, ammonia and urea-nitrogen excretion, glutamine synthetase activity, and mRNA expression of four genes coding for glutamine synthetase (Onmy-GS01-GS04) over 3-80 days post fertilization and in adult liver and skeletal muscle of the rainbow trout (Oncorhynchus mykiss). Both ammonia and urea-nitrogen accumulate before hatching, although the rate of ammonia excretion is considerably higher relative to urea-nitrogen excretion. All four genes were expressed during early development, but only Onmy-GS01 and -GS02 were expressed at appreciable levels in adult liver, and expression was very low in muscle tissue. The high level of expression of Onmy-GS01 and -GS03 prior to hatching corresponded to a linear increase in glutamine synthetase activity. We propose that the induction of glutamine synthetase genes early in development and the subsequent formation of the active protein are preparatory for the increased capacity of the embryo to convert the toxic nitrogen end product, ammonia, into glutamine, which may then be utilized in the ornithine-urea cycle or other pathways.  相似文献   

10.
In the post-absorptive state, ammonia is produced in equal amounts in the small and large bowel. Small intestinal synthesis of ammonia is related to amino acid breakdown, whereas large bowel ammonia production is caused by bacterial breakdown of amino acids and urea. The contribution of the gut to the hyperammonemic state observed during liver failure is mainly due to portacaval shunting and not the result of changes in the metabolism of ammonia in the gut. Patients with liver disease have reduced urea synthesis capacity and reduced peri-venous glutamine synthesis capacity, resulting in reduced capacity to detoxify ammonia in the liver.The kidneys produce ammonia but adapt to liver failure in experimental portacaval shunting by reducing ammonia release into the systemic circulation. The kidneys have the ability to switch from net ammonia production to net ammonia excretion, which is beneficial for the hyperammonemic patient. Data in experimental animals suggest that the kidneys could have a major role in post-feeding and post-haemorrhagic hyperammonemia.During hyperammonemia, muscle takes up ammonia and plays a major role in (temporarily) detoxifying ammonia to glutamine. Net uptake of ammonia by the brain occurs in patients and experimental animals with acute and chronic liver failure. Concomitant release of glutamine has been demonstrated in experimental animals, together with large increases of the cerebral cortex ammonia and glutamine concentrations. In this review we will discuss interorgan trafficking of ammonia during acute and chronic liver failure. Interorgan glutamine metabolism is also briefly discussed, since glutamine synthesis from glutamate and ammonia is an important alternative pathway of ammonia detoxification. The main ammonia producing organs are the intestines and the kidneys, whereas the major ammonia consuming organs are the liver and the muscle.  相似文献   

11.
The changes experienced by the glutamine synthetase activity in the liver, kidney, striated muscle, adipose tissue, brain, stomach, small intestine and skin of developing rats have been estimated. Skin and stomach enzymes attained the adult values in the late foetal period. Striated muscle, intestine and kidney glutamine synthetase belonged to the neonatal cluster, while liver and brain rose to values comparable to those of adults in late suckling. Glutamine synthesis between different organs of the rat during development matures soon after birth, gaining a considerable importance that helps to compensate the lack of availability of other nitrogen transport systems between peripheral and splanchnic bed organs in developing rats.  相似文献   

12.
After induction of a perivenous liver cell necrosis by CCl4 pretreatment of the rat, ammonia uptake by perfused liver is decreased. This was due to an inhibition of glutamine synthesis from added ammonia, whereas urea synthesis was not affected by CCl4 pretreatment. The data confirm recent findings on hepatocyte heterogeneity in ammonia metabolism and are explained by an impairment of perivenous glutamine synthetase, but not of periportal urea synthesis, by the perivenous liver cell necrosis induced by CCl4. Regarding the pathogenesis of hyperammonemia in acute severe liver disease like CCl4 poisoning, the data point to a role of an impaired glutamine synthesis, but not to an impairment of urea synthesis.  相似文献   

13.
It is now apparent that many of the subtleties of cellular metabolism are intrinsically associated with cell structure and that their physiological study requires techniques that respect the integrity of cells and organs. We have used 15N-substrates to examine urea synthesis in the intact perfused rat liver. This work permits us to determine the extent to which different amino acids donate nitrogen atoms to the two nitrogens of urea. It is apparent that alanine and the amino group of glutamine provide nitrogen for urea synthesis primarily via cytoplasmic aspartate, whereas mitochondrial ammonia is the preferred route of entry for nitrogen from pre-formed ammonia or from the amide nitrogen of glutamine. Most importantly, this methodology permits us to explore for the occurrence of metabolic channels in such a highly organised, physiological system. Our studies indicate that a metabolic channel does not exist between glutaminase and carbamoylphosphate synthetase 1.  相似文献   

14.
1. Rats were infused with 15NH4+ or L-[15N]alanine to induce hyperammonaemia, a potential cause of hepatic encephalopathy. HClO4 extracts of freeze-clamped brain, liver and kidney were analysed by 15N-n.m.r. spectroscopy in combination with biochemical assays to investigate the effects of hyperammonaemia on tissue concentrations of ammonia, glutamine, glutamate and urea. 2. 15NH4+ infusion resulted in a 36-fold increase in the concentration of blood ammonia. Cerebral glutamine concentration increased, with 15NH4+ incorporated predominantly into the gamma-nitrogen atom of glutamine. Incorporation into glutamate was very low. Cerebral ammonia concentration increased 5-10-fold. The results suggest that the capacity of glutamine synthetase for ammonia detoxification was saturated. 3. Pretreatment with the glutamine synthetase inhibitor L-methionine DL-sulphoximine resulted in 84% inhibition of [gamma-15N]glutamine synthesis, but incorporation of 15N into other metabolites was not observed. The result suggests that no major alternative pathway for ammonia detoxification, other than glutamine synthetase, exists in rat brain. 4. In the liver 15NH4+ was incorporated into urea, glutamine, glutamate and alanine. The specific activity of 15N was higher in the gamma-nitrogen atom of glutamine than in urea. A similar pattern was observed when [15N]alanine was infused. The results are discussed in terms of the near-equilibrium states of the reactions involved in glutamate and alanine formation, heterogeneous distribution in the liver lobules of the enzymes involved in ammonia removal and their different affinities for ammonia. 5. Synthesis of glutamine, glutamate and hippurate de novo was observed in kidney. Hippurate, as well as 15NH4+, was contributed by co-extracted urine. 6. The potential utility and limitations of 15N n.m.r. for studies of mammalian metabolism in vivo are discussed.  相似文献   

15.
Portocaval anastomosis (PCA) in the rat leads, within 4 weeks, to severe liver atrophy, sustained hyperammonemia, and increased brain ammonia. Because brain is not equipped with an effective urea cycle, removal of ammonia involves glutamine synthesis and PCA results in significantly increased brain glutamine. Glutamine synthetase activities, however, are decreased by 15% in cerebral cortex and are unchanged in brainstem of shunted rats. Administration of ammonium acetate to rats following PCA results in severe encephalopathy (loss of righting reflex and, ultimately, coma). Glutamine concentrations in brainstem of comatose rats are increased a further two-fold, whereas those of cerebral cortex are unchanged. Consequently, ammonia levels in cerebral cortex reach disproportionately high levels (of the order of 5 mM). These findings suggest a limitation in the capacity of cerebral cortex to remove additional blood-borne ammonia by glutamine formation following PCA. Such mechanisms may explain the hypersensitivity of rats with PCA and of patients with portal-systemic shunting to small increases of blood ammonia. Disproportionately high levels of brain ammonia in certain regions, such as cerebral cortex, may then result in alterations of inhibitory neurotransmission and, ultimately, loss of cellular (astrocytic) integrity.  相似文献   

16.
Lignoceroyl-CoA:sphingosine lignoceroyltransferase, which catalyzes synthesis of lignoceroylsphingosine, the ceramide that is a major component of sphingolipids in mammalian tissues, has been solubilized from microsomes of rat brain and liver and partially purified. The microsomes were treated with 1 M sodium thiocyanate in N,N-bis(2-hydroxyethyl)glycine (Bicine) buffer containing 20% glycerol. The supernatant fraction obtained after centrifugation was fractionated by Sepharose CL-4B gel filtration. The ceramide synthetase activity was recovered in a small fraction containing high molecular weight proteins. Analysis of proteins and lipids indicated that the fraction was not simply a fragment of microsomes. The activity for synthesis of lignoceroylsphingosine, which is abundant in nervous system, was compared with that for the synthesis of stearoylsphingosine, which is more enriched in extraneural sphingolipids, in brain and liver microsomes. Despite the difference in relative abundance of molecular species of ceramides in these tissues, the activity for lignoceroylsphingosine synthesis was not more enriched in brain than in liver.  相似文献   

17.
 The liver plays a central role in nitrogen metabolism. Nitrogen enters the liver as free ammonia and as amino acids of which glutamine and alanine are the most important precursors. Detoxification of ammonia to urea involves deamination and transamination. By applying quantitative in situ hybridization, we found that mRNA levels of the enzymes involved are mainly expressed in periportal zones of liver lobules. Free ammonia, that is not converted periportally, is efficiently detoxified in the small rim of hepatocytes around the central veins by glutamine synthetase preventing it from entering the systemic circulation. Detoxification of ammonia by glutamine synthetase may be limited due to a shortage of glutamate when the nitrogen load is high. Adaptations in metabolism that prevent release of toxic ammonia from the liver were studied in rats that were fed diets with different amounts of protein, thereby varying the nitrogen load of the liver. We observed that mRNA levels of periportal deaminating and transaminating enzymes increased with the protein content in the diet. Similarly, mRNA levels of pericentral glutamate dehydrogenase and ornithine aminotransferase, the main producers of glutamate in this zone, and pericentral glutamine synthetase all increased with increasing protein levels in the diet. On the basis of these changes in mRNA levels, we conclude that: (a) glutamate is produced pericentrally in sufficient amounts to allow ammonia detoxification by glutamine synthetase and (b) in addition to the catalytic role of ornithine in the periportally localized ornithine cycle, pericentral ornithine degradation provides glutamate for ammonia detoxification. Accepted: 16 March 1999  相似文献   

18.
19.
Cerebral Ammonia Metabolism in Hyperammonemic Rats   总被引:7,自引:7,他引:0  
The short-term metabolic fate of blood-borne [13N]ammonia was determined in the brains of chronically (8- or 14-week portacaval-shunted rats) or acutely (urease-treated) hyperammonemic rats. Using a "freeze-blowing" technique it was shown that the overwhelming route for metabolism of blood-borne [13N]ammonia in normal, chronically hyperammonemic and acutely hyperammonemic rat brain was incorporation into glutamine (amide). However, the rate of turnover of [13N]ammonia to L-[amide-13N]glutamine was slower in the hyperammonemic rat brain than in the normal rat brain. The activities of several enzymes involved in cerebral ammonia and glutamate metabolism were also measured in the brains of 14-week portacaval-shunted rats. The rat brain appears to have little capacity to adapt to chronic hyperammonemia because there were no differences in activity compared with those of weight-matched controls for the following brain enzymes involved in glutamate/ammonia metabolism: glutamine synthetase, glutamate dehydrogenase, aspartate aminotransferase, glutamine transaminase, glutaminase, and glutamate decarboxylase. The present findings are discussed in the context of the known deleterious effects on the CNS of high ammonia levels in a variety of diseases.  相似文献   

20.
Exposure of fish to alkaline conditions inhibits the rate of ammonia excretion, leading to ammonia accumulation and toxicity. The purpose of this study was to determine the role of ureogenesis via the urea cycle, to avoid the accumulation of ammonia to a toxic level during chronic exposure to alkaline conditions, for the air-breathing walking catfish, Clarias batrachus, where a full complement of urea cycle enzyme activity has been documented. The walking catfish can survive in water with a pH up to 10. At a pH of 10 the ammonia excretion rate by the walking catfish decreased by approximately 75% within 6 h. Although there was a gradual improvement of ammonia excretion rate by the alkaline-exposed fish, the rate remained 50% lower, even after 7 days. This decrease of ammonia excretion was accompanied by a significant accumulation of ammonia in plasma and body tissues (except in the brain). Urea-N excretion for alkaline-exposed fish increased 2.5-fold within the first day, which was maintained until day 3 and was then followed by a slight decrease to maintain a 2-fold increase in the urea-N excretion rate, even after 7 days. There was also a higher accumulation of urea in plasma and other body tissues (liver, kidney, muscle and brain). The activity of glutamine synthetase and three enzymes operating in the urea cycle (carbamyl phosphate synthetase, argininosuccinate synthetase, argininosuccinate lyase) increased significantly in hepatic and extra-hepatic tissue, such as the kidney and muscle in C. batrachus, during exposure to alkaline water. A significant increase in plasma lactate concentration noticed during alkaline exposure possibly helped in the maintenance of the acid-base balance. It is apparent that the stimulation of ureogenesis via the induced urea cycle is one of the major physiological strategies adopted by the walking catfish (C. batrachus) during chronic exposure to alkaline water, to avoid the in vivo accumulation of ammonia to a toxic level in body tissues and for the maintenance of pH homeostasis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号