首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Transverse tubule membranes isolated from rabbit skeletal muscle consist mainly of sealed vesicles that are oriented primarily inside out. These membranes contain a high density of binding sites for 1,4-dihydropyridine calcium channel antagonists. The presence of functional voltage-dependent calcium channels in these membranes has been demonstrated by their ability to mediate 45Ca2+ efflux in response to changes in membrane potential. Fluorescence changes of the voltage-sensitive dye, 3,3'-dipropyl-2,2'-thiadicarbocyanine, have shown that transverse tubule vesicles may generate and maintain membrane potentials in response to establishing potassium gradients across the membrane in the presence of valinomycin. A two-step procedure has been developed to measure voltage-dependent calcium fluxes. Vesicles loaded with 45Ca2+ are first diluted into a buffer designed to generate a membrane potential mimicking the resting state of the cell and to reduce the extravesicular Ca2+ to sub-micromolar levels. 45Ca2+ efflux is then measured upon subsequent depolarization. Flux responses are modulated with appropriate pharmacological specificity by 1,4-dihydropyridines and are inhibited by other calcium channel antagonists such as lanthanum and verapamil.  相似文献   

2.
The effect of membrane potential on the passive 45Ca2+ uptake by cardial sarcolemmal vesicles was investigated. Membrane potentials were generated by the K+ gradient in the presence of valinomycin and were measured using fluorescent dye diS-C3-(5). It was shown that the 45Ca2+ influx into vesicles increased twice after membrane depolarization. Evaluation of the 45Ca2+ influx over a wide range of membrane potentials produced a profile similar to that of current-voltage relationships for single calcium channels in isolated cardiomyocytes. Passive 45Ca2+ transport was inhibited by 1 mM Cd2+ and Co2+. It is suggested that the voltage-dependent Ca2+ influx into vesicles occurs through Ca2+-channels.  相似文献   

3.
Vesicular sarcolemmal preparations isolated from rat hearts were characterized by high total ATPase (4.32 +/- 0.57 mumol/min per mg), adenylate cyclase (121 +/- 11 pmol/min per mg) and creatine kinase (1.73 +/- 0.35 mumol/min per mg) activities as well as Na-Ca exchange specific to sodium. ATPase activity was inhibited with digitoxigenin by 50-70% and was not changed by ouabain, ionophore A23187 or oligomycin. Sarcolemmal vesicles bound [3H]digitoxigenin and [3H]ouabain in isotonic medium in the presence of Pi and Mg2+. The number of binding sites for hydrophobic digitoxigenin (N = 237 pmol/mg) was several-times higher than that for hydrophilic ouabain (N = 32.7 pmol/mg). These data show that sarcolemmal preparations were not significantly contaminated by mitochondria and sarcoplasmic reticulum and consisted mostly of inside-out vesicles. Incubation of these vesicles with 45Ca2+ (0.5-10 mM) led to penetration of the latter into the vesicles with the following binding characteristics: number of binding sites (N = 20.5 +/- 4.6 nmol/mg, Kd approximately equal to 2.0 mM). Ca2+ binding to the inner surface of vesicles was proved by the following facts: (1) Ca2+ ionophore A23187 increased slightly total intravesicular Ca2+ content but markedly accelerated Ca2+ efflux along its concentration gradient; (2) gramicidin and osmotic shock showed a similar accelerating effect. Ca2+ efflux from the vesicles along its concentration gradient ([Ca2+]i/[Ca2+]e = 2.0 mM/0.1 microM) was inhibited by Mn2+, Co2+, and verapamil when they acted inside the vesicles. The rate of Ca2+ efflux was hyperbolically dependent on intravesicular Ca2+ concentration (Km approximately equal to 2.9 mM). These data reveal that Ca2+ efflux from sarcolemmal vesicles is controlled by Ca2+ binding to the sarcolemmal membrane. Ca2+ efflux from the vesicles was stimulated 1.7--times after incubation of vesicles with 0.2 mM MgATP or MgADP and 15-times after treatment with 0.2 mM adenylyl beta, gamma-imidodiphosphate. Enhancement in the rate of Ca2+ efflux correlated with the increase in the intravesicular Ca2+ content. ATP-stimulated Ca2+ efflux was suppressed by verapamil and was nonmonotonically dependent upon the transmembrane potential created by the K+ concentration gradient in the presence of valinomycin, Ca2+ efflux being slower at extreme values of membrane potential (+/- 80 mV).  相似文献   

4.
Inside-out plasma-membrane vesicles isolated from rat liver [Prpic, Green, Blackmore & Exton (1984) J. Biol. Chem. 259, 1382-1385] accumulated a substantial amount of 45Ca2+ when they were incubated in a medium whose ionic composition and pH mimicked those of cytosol and which contained MgATP. The Vmax of the initial 45Ca2+ uptake rate was 2.9 +/- 0.6 nmol/min per mg and the Km for Ca2+ was 0.50 +/- 0.08 microM. The ATP-dependent 45Ca2+ uptake by inside-out plasma-membrane vesicles was about 20 times more sensitive to saponin than was the ATP-dependent uptake by a microsomal preparation. The 45Ca2+ efflux from the inside-out vesicles, which is equivalent to the Ca2+ influx in intact cells, was increased when the free Ca2+ concentration in the medium was decreased. The Ca2+ antagonists La3+ and Co2+ inhibited the 45Ca2+ efflux from the vesicles. Neomycin stimulated the Ca2+ efflux in the presence of either a high or a low free Ca2+ concentration. These results confirm that polyvalent cations regulate Ca2+ fluxes through the plasma membrane.  相似文献   

5.
Vesicular preparations of sarcolemma isolated from rat myocardium possessed high ATPase (4.32 +/0 0.57 micromole/min per mg), adenylate cyclase (121 +/- 11 pmole/min per mg) and creatine kinase (1.74 +/- 0.35 micromole/min per mg) activities and a Na-Ca exchange activity specific for sodium. The ATPase activity was inhibited by digitoxigenin by 50-70% and was not changed by ouabain, EGTA, ionophore A23187 and oligomycin, thus showing the absence of mitochondrial and sarcoplasmic reticulum contaminations in the sarcolemmal preparations. The preparations consisted mostly of closed inside-out vesicles. The preparation was used to study the mechanism of Ca2+ penetration across the sarcolemmal membrane. For this purpose the vesicles were load with 45Ca2+, which relatively slowly diffused from the medium into the vesicles, and which was bound to the binding sites inside the vesicles (n = 20.5 +/- 4.6 nmoles per mg of protein, Kd approximately equal to 1.8 +/- 0.21 mM). The transmembrane movement of Ca2+ was demonstrated by the following findings: 1) the ionophore A23187 only insignificantly increased the total vesicular Ca2+ content, but strongly accelerated Ca2+ efflux from the vesicles along its concentration gradient; 2) gramicidin and osmotic shock caused a similar acceleration of Ca2+ efflux. Ca2+ efflux from these vesicles along Ca2+ concentration gradient was studied under conditions, when the extravesicular Ca2+ content was lowered due to its binding to EGTA and by dilution. The gradient of Ca2+ concentration was from 2.0 mM inside to approximately 0.1 micro M outside. The rate of 45Ca2+ efflux depended hyperbolically on the intravesicular Ca2+ efflux from the vesicles was inhibited by Mn2+, Co2+ and verapamil when they acted from the inside of the vesicles. An increase in ionophore A23187 concentration increased the efflux of Ca2+ hyperbolically and enhanced only the maximal rate of the efflux. It is concluded that the passive permeability of Ca2+ across the sarcolemmal membrane along its concentration gradient is controlled by Ca2+ binding to the membrane.  相似文献   

6.
The membrane sidedness of Pi interaction in reactions which characterize reversal of the Ca2+ pump of sarcoplasmic reticulum vesicles isolated from rabbit skeletal muscle was investigated. Vesicles previously loaded with calcium [32P]phosphate were incubated with 0.1 mM ADP and different concentrations of nonradioactive Pi. Alternatively, vesicles loaded with nonradioactive calcium phosphate were incubated in a medium containing 32Pi. The rates of Ca2+ efflux and ATP synthesis were siginficantly activated only when Pi was included in the assay medium. Although the Pi contained by the vesicles crosses the membrane at a rate proportional to the Ca2+ efflux, [gamma-32P]ATP was synthesized only when 32Pi interacted with the outer surface of the membrane. Similarly, ATP in equilibrium 32Pi or ITP in equilibrium 32Pi exchange could be measured only when the external pool of Pi was labeled. Both for ATP synthesis and for the ITP in equilibrium Pi exchange reaction, membrane phosphorylation by 32Pi was negligible unless the external pool of Pi was labeled. The ionophore X-537 A increased the rate of Ca2+ efflux but inhibited the synthesis of ATP. During reversal of the Ca2+ pump, Pi apparently interacts with the membrane only at the outer surface, and at a site different from that where Ca2+ crosses the membrane.  相似文献   

7.
A delayed rectifier potassium current in Xenopus oocytes.   总被引:5,自引:0,他引:5       下载免费PDF全文
A delayed voltage-dependent K+ current endogenous to Xenopus oocytes has been investigated by the voltage-clamp technique. Both activation and inactivation of the K+ current are voltage-dependent processes. The K+ currents were activated when membrane potential was depolarized from a holding potential of -90 to -50 mV. The peak current was reached within 150 ms at membrane potential of +30 mV. Voltage-dependent inactivation of the current was observed by depolarizing the membrane potential from -50 to 0 mV at 10-mV increments. Voltage-dependent inactivation was a slow process with a time constant of 16.5 s at -10 mV. Removal of Ca2+ from the bath has no effect on current amplitudes, which indicates that the current is Ca2+)-insensitive. Tail current analysis showed that reversal potentials were shifted by changing external K+ concentration, as would be expected for a K(+)-selective channel. The current was sensitive to quinine, a K+ channel blocker, with a Ki of 35 microM. The blockade of quinine is voltage-independent in the range of -20 to +60 mV. Whereas oocytes from the same animal have a relatively homogeneous current distribution, average amplitude of the K+ current varied among oocytes from different animals from 30 to 400 nA at membrane potential of +30 mV. Our results indicate the presence of the endogenous K+ current in Xenopus oocytes with characteristics of the delayed rectifier found in some nerve and muscle cells.  相似文献   

8.
Patch-clamp studies were carried out in villus enterocytes isolated from the guinea pig proximal small intestine. In the whole-cell mode, outward K+ currents were found to be activated by depolarizing command pulses to -45 mV. The activation followed fourth order kinetics. The time constant of K+ current activation was voltage-dependent, decreasing from approximately 3 ms at -10 mV to 1 ms at +50 mV. The K+ current inactivated during maintained depolarizations by a voltage- independent, monoexponential process with a time constant of approximately 470 ms. If the interpulse interval was shorter than 30 s, cumulative inactivation was observed upon repeated stimulations. The steady state inactivation was voltage-dependent over the voltage range from -70 to -30 mV with a half inactivation voltage of -46 mV. The steady state activation was also voltage-dependent with a half- activation voltage of -22 mV. The K+ current profiles were not affected by chelation of cytosolic Ca2+. The K+ current induced by a depolarizing pulse was suppressed by extracellular application of TEA+, Ba2+, 4-aminopyridine or quinine with half-maximal inhibitory concentrations of 8.9 mM, 4.6 mM, 86 microM and 26 microM, respectively. The inactivation time course was accelerated by quinine but decelerated by TEA+, when applied to the extracellular (but not the intracellular) solution. Extracellular (but not intracellular) applications of verapamil and nifedipine also quickened the inactivation time course with 50% effective concentrations of 3 and 17 microM, respectively. Quinine, verapamil and nifedipine shifted the steady state inactivation curve towards more negative potentials. Outward single K+ channel events with a unitary conductance of approximately 8.4 pS were observed in excised inside-out patches of the basolateral membrane, when the patch was depolarized to -40 mV. The ensemble current rapidly activated and thereafter slowly inactivated with similar time constants to those of whole-cell K+ currents. It is concluded that the basolateral membrane of guinea pig villus enterocytes has a voltage-gated, time-dependent, Ca(2+)-insensitive, small-conductance K+ channel. Quinine, verapamil, and nifedipine accelerate the inactivation time course by affecting the inactivation gate from the external side of the cell membrane.  相似文献   

9.
Two-microelectrode voltage clamp studies were performed on the somata of Hermissenda Type B photoreceptors that had been isolated by axotomy from all synaptic interaction as well as any impulse-generating (i.e., active) membrane. In the presence of 2-10 mM 4-aminopyridine (4-AP) and 100 mM tetraethylammonium ion (TEA), which eliminated two previously described voltage-dependent potassium currents (IA and the delayed rectifier), a voltage-dependent outward current was apparent in the steady state responses to command voltage steps more positive than -40 mV (absolute). This current increased with increasing external Ca++. The magnitude of the outward current decreased and an inward current became apparent following EGTA injection. Substitution of external Ba++ for Ca++ also made the inward current more apparent. This inward current, which was almost eliminated after being exposed for approximately 5 min to a solution in which external Ca++ was replaced with Cd++, was maximally activated at approximately 0 mV. Elevation of external potassium allowed the calcium (ICa++) and calcium-dependent K+ (IC) currents to be substantially separated. Command pulses to 0 mV elicited maximal ICa++ but no IC because no K+ currents flowed at their new reversal potential (0 mV) in 300 mM K+. At a holding potential of -60 mV, which was now more negative than the potassium equilibrium potential, EK+, in 300 mM K+, IC appeared as an inward tail current after positive command steps. The voltage dependence of ICa++ was demonstrated with positive steps in 100 mM Ba++, 4-AP, and TEA. Other data indicated that in 10 mM Ca++, IC underwent pronounced and prolonged inactivation whereas ICa++ did not. When the photoreceptor was stimulated with a light step (with the membrane potential held at -60 mV), there was also a prolonged inactivation of IC. In elevated external Ca++, ICa++ also showed similar inactivation. These data suggest that IC may undergo prolonged inactivation due to a direct effect of elevated intracellular Ca++, as was previously shown for a voltage-dependent potassium current, IA. These results are discussed in relation to the production of training-induced changes of membrane currents on retention days of associative learning.  相似文献   

10.
The action of isoproterenol and BAY K 8644 on voltage-dependent Ca2+ currents in isolated ground squirrel cardiac myocytes was studied in two (active and hibernating) states of the animal. In cardiac myocytes of active animals the effect of both drugs was shown to depend on the holding potential. At Vh of about -50 mV both isoproterenol and BAY K 8644 increased the Ca2+ current and their action was additive. At Vh of about -20 mV, both drugs inhibited the Ca2+ current. In cardiac myocytes from hibernating animals, isoproterenol increased the Ca2+ current at any holding potentials, while the effect of BAY K 8644 did not differ significantly from its effect on active animals. The combined action of the two drugs caused the inhibition of the Ca2+ current at high holding potentials. In terms of the two-site Ca2+ channel model, this means that one of the two pathways of channel phosphorylation is blocked in hibernating animal cardiac cells, and BAY K 8644 restores this pathway.  相似文献   

11.
Transverse tubule vesicles isolated from frog skeletal muscle display sodium-calcium exchange activity, which was characterized measuring 45Ca influx in vesicles incubated with sodium. The initial rates of exchange varied as a function of the membrane diffusion potentials imposed across the membrane vesicles, increasing with positive intravesicular potentials according to an electrogenic exchange with a stoichiometry greater than 2 sodium ions per calcium ion transported. The exchange activity was a saturable function of extravesicular free calcium, with an apparent K0.5 value of 3 microM and maximal rates of exchange ranging from 3 to 5 nmol/mg protein per 5 s. The exchange rate increased when intravesicular sodium concentration was increased; saturation was approached when vesicles were incubated with concentrations of 160 mM sodium. The isolated transverse tubule vesicles, which are sealed with the cytoplasmic side out, had a luminal content of 112 +/- 39 nmol calcium per mg protein. In the absence of sodium, the exchanger carried out electroneutral calcium-calcium exchange, which was stimulated by increasing potassium concentrations in the intravesicular side. Calcium-calcium exchange showed an extravesicular calcium dependence similar to the calcium dependence of the sodium-calcium exchange, with an apparent K0.5 of 6 microM. Sodium-calcium and calcium-calcium exchange were both inhibited by amiloride. The sodium-calcium exchange system operated both in the forward and in the reverse mode; sodium, as well as calcium, induced calcium efflux from 45Ca-loaded vesicles. This system may play an important role in decreasing the intracellular calcium concentration in skeletal muscle following electrical stimulation.  相似文献   

12.
The effect of the plant alkaloid ryanodine on the skeletal muscle sarcoplasmic reticulum Ca2+ release channel was studied by determining the Ca2+ permeability of "heavy" vesicles passively loaded with 45Ca2+ in the presence or absence of ryanodine. Depending on the experimental conditions, ryanodine either stimulated or inhibited Ca2+ efflux. Vesicles were rendered permeable to 45Ca2+ at a ryanodine concentration of 0.01 microM when diluted into a medium containing the two Ca2+ release channel inhibitors Mg2+ and ruthenium red. At ryanodine concentrations greater than 10 microM, 45Ca2+ efflux was inhibited in channel-activating (5 microM Ca2+) or -inhibiting (10 mM Mg2+ plus 10 microM ruthenium red) media. An optimal stimulatory effect was observed when vesicles were incubated with ryanodine at 37 degrees C and in media that caused partial opening of the channel. Similar results to those described above were obtained using cardiac sarcoplasmic reticulum vesicles that were capable of rapid 45Ca2+ efflux. Use of the slowly permeating molecule L-[3H]glucose allowed measurement of channel-mediated efflux rates from vesicles in the presence and absence of ryanodine. At low activating concentrations, ryanodine did not appreciably change the regulation of L-glucose efflux rates by external Ca2+, Mg2+, and adenine nucleotide. These results suggested two possible modes of action of ryanodine: 1) a change in the gating mechanism of the channel which is not readily detected using the slowly permeating molecule L-glucose or 2) a change in channel structure which prevents its complete closing.  相似文献   

13.
Yamashita M  Sugioka M  Ogawa Y 《The FEBS journal》2006,273(15):3585-3597
Ca2+ release from Ca2+ stores is a 'quantal' process; it terminates after a rapid release of stored Ca2+. To explain the quantal nature, it has been supposed that a decrease in luminal Ca2+ acts as a 'brake' on store release. However, the mechanism for the attenuation of Ca2+ efflux remains unknown. We show that Ca2+ release is controlled by voltage- and Ca2+-activated potassium channels in the Ca2+ store. The potassium channel was identified as the big or maxi-K (BK)-type, and was activated by positive shifts in luminal potential and luminal Ca2+ increases, as revealed by patch-clamp recordings from an exposed nuclear envelope. The blockage or closure of the store BK channel due to Ca2+ efflux developed lumen-negative potentials, as revealed with an organelle-specific voltage-sensitive dye [DiOC5(3); 3,3'-dipentyloxacarbocyanine iodide], and suppressed Ca2+ release. The store BK channels are reactivated by Ca2+ uptake by Ca2+ pumps regeneratively with K+ entry to allow repetitive Ca2+ release. Indeed, the luminal potential oscillated bistably by approximately 45 mV in amplitude. Our study suggests that Ca2+ efflux-induced store BK channel closures attenuate Ca2+ release with decreases in counter-influx of K+.  相似文献   

14.
Uptake of 22Na+ and 45Ca2+ into everted membrane vesicles from Escherichia coli was measured with imposed transmembrane pH gradients, acid interior, as driving force. Vesicles loaded with 0.5 M KCl were diluted into 0.5 M choline chloride to create a potassium gradient. Addition of nigericin to produce K+/H+ exchange resulted in formation of a pH gradient. This imposed gradient was capable of driving 45Ca2+ accumulation. In another method vesicles loaded with 0.5 M NH4Cl were diluted into 0.5 M choline chloride, creating an ammonium diffusion potential. A gradient of H+ was produced by passive efflux of NH3. With an ammonium gradient as driving force, everted vesicles accumulated both 45Ca2+ and 22Na+. The data suggest that 22Na+ uptake was via the sodium/proton antiporter and 45Ca2+ via the calcium/proton antiporter. Uptake of both cations required alkaline pHout. A minimum pH gradient of 0.9 unit was needed for transport of either ion, suggesting gating of the antiporters. Octyl glucoside extracts of inner membrane were reconstituted with E. coli phospholipids in 0.5 M NH4Cl. NH4+-loaded proteoliposomes accumulated both 22Na+ and 45Ca2+, demonstrating that the sodium/proton and calcium/proton antiporters could be solubilized and reconstituted in a functional form.  相似文献   

15.
Ca2+ influx via voltage-dependent Ca2+ channels is known to be elicited during action potentials but possibly also occurs at the resting potential. The steady-state current through voltage-dependent Ca2+ channels and its role for the electrical activity was, therefore, investigated in pituitary GH3 cells. Applying the recently developed 'nystatin-modification' of the patch-clamp technique, most GH3 cells (18 out of 23 cells) fired spontaneous action potentials from a baseline membrane potential of 43.7 +/- 4.6 mV (mean +/- s.d., n = 23). The frequency of action potentials was stimulated about twofold by Bay K 8644 (100 nM), a Ca(2+)-channel stimulator, and action potentials were completely suppressed by the Ca(2+)-channel blocker PN 200-110 (100 nM). Voltage clamping GH3 cells at fixed potentials for several minutes and with 1 mM Ba2+ as divalent charge carrier, we observed steady-state Ca(2+)-channel currents that were dihydropyridine-sensitive and displayed a U-shaped current-voltage relation. The results strongly suggest that the observed long lasting, dihydropyridine-sensitive Ca(2+)-channel currents provide a steady-state conductivity for Ca2+ at the resting potential and are essential for the generation of action potentials in GH3 pituitary cells.  相似文献   

16.
Lanthanides (La3+, Pr3+ and Tb3+) inhibit Na+-gradient-dependent Ca2+ influx into synaptic plasma membrane vesicles. 50% inhibition is obtained by 7 microM lanthanide concentration. The inhibition of the Na+-gradient-dependent Ca2+ uptake exhibits competitive kinetic behaviour. The apparent Km of the Ca2+ influx is increased from 50 microM in the absence of lanthanides to 118 microM in the presence of La3+, 170 microM in the presence of Pr3+ and 130 microM in the presence of Tb3+. The maximal reaction velocity is not altered (8.35 nmol Ca2+ transported per mg protein per min in the absence of lanthanides and 8.16 nmol/mg per min in the presence of lanthanides). Lanthanides also inhibited Na+-gradient-dependent Ca2+ efflux from synaptic plasma membrane vesicles that were preloaded with Ca2+ in a Na+-gradient-dependent manner. Introduction of La3+ into the interior of the synaptic plasma membrane vesicles by rapid freezing of the vesicles in liquid N2 and slow thawing had no effect on either Na+-gradient-dependent Ca2+ influx or efflux. Synaptic plasma membrane vesicles can be preloaded with Ca2+ also in an ATP-dependent manner. This form of Ca2+ uptake is also inhibited by La3+ though at higher concentrations than the Na+-gradient-dependent Ca2+ uptake. Na+-gradient-dependent efflux from synaptic plasma membrane vesicles preloaded in an ATP-dependent fashion ('inside-out' vesicles) unlike efflux from synaptic plasma membrane vesicles preloaded in a Na+-gradient-dependent manner was not inhibited by La3+. These findings suggest that the inhibition by La3+ is manifested asymmetrically on both sides of the synaptic plasma membrane. Lanthanides are probably not transported via the Na+-Ca2+ exchanger since Tb3+ entry measured by fluorescence of Tb3+-dipicolinic acid complex formation occurred at high Tb3+ concentrations only (1.5 mM or above) and was not Na+-gradient dependent.  相似文献   

17.
A branchial epithelial membrane fraction, more than 20-fold enriched in Na+/K+-ATPase activity when compared with the crude homogenate of the tissue, was obtained from adult freshwater American eels. In a membrane vesicle preparation that consisted of 33% inside-out, 23% right-side-out and 44% leaky vesicles, the accumulation of 45Ca2+ was stimulated by ATP, but not by ADP. Accumulation of 45Ca2+ was prevented when vesicles were pretreated with detergent or the Ca2+ ionophore A23187; Ca2+ efflux was observed when the ionophore was added to actively 45Ca2+-loading vesicles. Oxalate did not affect Ca2+ accumulation in these vesicles. Kinetic analysis of the Ca2+-transport process by an Eadie-Hofstee plot revealed that the process is homogeneous; its kinetic parameters are a K0.5 for Ca2+ of 0.053 microM and a Vmax of 2.25 nmol Ca2+/min.mg protein (at 37 degrees C). The calmodulin dependency of this Ca2+ transporting process was shown by the inhibitory action of calmodulin antagonists and by the stimulatory effect of calmodulin repletion after EGTA treatment of the membranes. We conclude that an ATP-energized Ca2+ pump is present in the plasma membranes of branchial epithelium, that resembles the Ca2+ pumps of e.g. mammalian intestinal or renal plasma membranes, and propose its involvement in branchial Ca2+-uptake from the water.  相似文献   

18.
The relationship between Ca2+ current amplitudes and myoplasmic Ca2+ transients was studied in single muscle fibers. Segments of muscle fibers were voltage-clamped in a double Vaseline gap chamber. Ca2+ transients were measured as an optical signal derived from the interaction between Ca2+ and the dye antipyrylazo III. The cells were maintained at -90 mV. Ca2+ currents were detected at pulse potentials to -50 mV, reached a maximum value at 0 mV, were reduced in size for larger depolarizations, and reversed at about 40 mV. Ca2+ transients were also detected at -50 Mv and progressively increased in size with larger pulse potentials up to 10 mV. Depolarizations to voltages greater than 10 mV did not further increase the size of the transient. The magnitude and time course of transients from 10 to 70 mV were almost identical Ca2+ fluxes into the myoplasm (Ca2+ input fluxes) were calculated from the Ca2+ transients applying a removal model. The size of the input fluxes increased with depolarization up to 0 mV. Between 0 and 70 mV the peak input flux slightly increased, while the flux measured at 200 ms remained unchanged. In conclusion, Ca2+ transients and input fluxes were not reduced during pulses to large positive potentials, even though a drastic reduction of Ca2+ current occurred at these potentials. These observations make it very unlikely that a voltage-dependent Ca2+ entry is the triggering signal for contraction.  相似文献   

19.
Calcium-dependent potassium (BK-type) Ca2+ and voltage-dependent K+ channels in chromaffin cells exhibit an inactivation that probably arises from coassembly of Slo1 alpha subunits with auxiliary beta subunits. One goal of this work was to determine whether the Ca2+ dependence of inactivation arises from any mechanism other than coupling of inactivation to the Ca2+ dependence of activation. Steady-state inactivation and the onset of inactivation were studied in inside-out patches and whole-cell recordings from rat adrenal chromaffin cells with parallel experiments on inactivating BK channels resulting from cloned alpha + beta2 subunits. In both cases, steady-state inactivation was shifted to more negative potentials by increases in submembrane [Ca2+] from 1 to 60 microM. At 10 and 60 microM Ca2+, the maximal channel availability at negative potentials was similar despite a shift in the voltage of half availability, suggesting there is no strictly Ca2+-dependent inactivation. In contrast, in the absence of Ca2+, depolarization to potentials positive to +20 mV induces channel inactivation. Thus, voltage-dependent, but not solely Ca2+-dependent, kinetic steps are required for inactivation to occur. Finally, under some conditions, BK channels are shown to inactivate as readily from closed states as from open states, indicative that a key conformational change required for inactivation precedes channel opening.  相似文献   

20.
The apparent values of intravesicular volume (45 microliter/mg of protein), maximal capacity of adsorbed calcium binding on the inner surface of the vesicles (4.5 nmol/mg of protein) and dissociation constants for the Ca2+-binding site complexes (36 microM) were determined from the analysis of peculiarities of passive transport of 45Ca2+ into cow myometrium sarcolemmal vesicles. The kinetics of passive efflux of ionized Ca2+ from the vesicles is described by a two-phase exponential curve. Dilution of the vesicles with a dilution medium is associated with a rapid efflux of ionized Ca2+ from the intravesicular space resulting in dissociation of the Ca2+-binding site complexes on the inner surface of the vesicles and, correspondingly, in the passage from a rapid to the slow phase of Ca2+ efflux from the vesicles which is limited by the dissociation of the Ca2+-binding site complexes. The values of the apparent rate constants for the transmembrane transfer of Ca2+ and dissociation of the Ca2+-binding site complexes (0.73 and 0.02 min-1, respectively) and the permeability of sarcolemmal vesicles for the cation (10(-15) mol of Ca2+/cm2.s) were determined. Alkalinization of the dilution medium stimulates 45Ca2+ release from the vesicles. The blockers of passive Co2+ and Mn2+ transport injected into the vesicles inhibit the efflux of 45Ca2+ from the vesicles. The data obtained were used to analyze the role of sarcolemma in the Ca2+ control of myometrium contraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号