首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Transgenic Huntington's disease (HD) mice, expressing exon 1 of the HD gene with an expanded CAG repeat, are totally resistant to striatal lesion induced by excessive NMDA receptor activation. We now show that striatal lesions induced by the mitochondrial toxin malonate are reduced by 70-80% in transgenic HD mice compared with wild-type littermate controls. This occurred in 6- and 12-week-old HD mice with 150 CAG repeats (line R6/2) and in 18-week-old, but not 6-week-old, HD mice with 115 CAG repeats (line R6/1). Therefore, we show for the first time that the resistance to neurotoxin in transgenic HD mice is dependent on both the CAG repeat length and the age of the mice. Importantly, most HD patients develop symptoms in adulthood and exhibit an inverse relationship between CAG repeat length and age of onset. Transgenic mice expressing a normal CAG repeat (18 CAG) were not resistant to malonate. Although endogenous glutamate release has been implicated in malonate-induced cell death, glutamate release from striatal synaptosomes was not decreased in HD mice. Malonate-induced striatal cell death was reduced by 50-60% in wild-type mice when they were treated with either the NMDA receptor antagonist MK-801 or the caspase inhibitor zVAD-fmk. These two compounds did not reduce lesion size in transgenic R6/1 mice. This might suggest that NMDA receptor- and caspase-mediated cell death pathways are inhibited and that the limited malonate-induced cell death still occurring in HD mice is independent of these pathways. There were no changes in striatal levels of the two anti cell death proteins Bcl-X(L) and X-linked inhibitor of apoptosis protein (XIAP), before or after the lesion in transgenic HD mice. We propose that mutant huntingtin causes a sublethal grade of metabolic stress which is CAG repeat length-dependent and results in up-regulation over time of cellular defense mechanisms against impaired energy metabolism and excitotoxicity.  相似文献   

2.
Huntington disease (HD) is a genetically dominant condition caused by expanded CAG repeats coding for glutamine in the HD gene product huntingtin. Although HD symptoms reflect preferential neuronal death in specific brain regions, huntingtin is expressed in almost all tissues, so abnormalities outside the brain might be expected. Although involvement of nuclei and mitochondria in HD pathophysiology has been suggested, specific intracellular defects that might elicit cell death have been unclear. Mitochondria dysfunction is reported in HD brains; mitochondria are organelles that regulates apoptotic cell death. We now report that lymphoblasts derived from HD patients showed increased stress-induced apoptotic cell death associated with caspase-3 activation. When subjected to stress, HD lymphoblasts also manifested a considerable increase in mitochondrial depolarization correlated with increased glutamine repeats.  相似文献   

3.
Huntington's disease (HD) is caused by an abnormal expansion of CAG trinucleotide repeats encoding polyglutamine (polyQ) in the first exon of the huntingtin (htt) gene. Despite considerable efforts, the pathogenesis of HD remains largely unclear due to a paucity of models that can reliably reproduce the pathological characteristics of HD. Here, we report a neuronal cell model of HD using the previously established tetracycline regulated rat neuroprogenitor cell line, HC2S2. Stable expression of enhanced green fluorescence protein tagged htt exon 1 (referred to as 28Q and 74Q, respectively) in the HC2S2 cells did not affect rapid neuronal differentiation. However, compared to the cells expressing wild type htt, the cell line expressing mutant htt showed an increase in time-dependent cell death and neuritic degeneration, and displayed increased vulnerability to oxidative stress. Increased protein aggregation during the process of neuronal aging or when the cells were exposed to oxidative stress reagents was detected in the cell line expressing 74Q but not in its counterpart. These results suggest that the neuroprogenitor cell lines mimic the major neuropathological characteristics of HD and may provide a useful tool for studying the neuropathogenesis of HD and for high throughput screening of therapeutic compounds.  相似文献   

4.
Huntington's disease (HD) is an inherited neurodegenerative disorder caused by an expanded stretch of CAG trinucleotide repeats that results in neuronal dysfunction and death. Here, The HD Consortium reports the generation and characterization of 14 induced pluripotent stem cell (iPSC) lines from HD patients and controls. Microarray profiling revealed CAG-repeat-expansion-associated gene expression patterns that distinguish patient lines from controls, and early onset versus late onset HD. Differentiated HD neural cells showed disease-associated changes in electrophysiology, metabolism, cell adhesion, and ultimately cell death for lines with both medium and longer CAG repeat expansions. The longer repeat lines were however the most vulnerable to cellular stressors and BDNF withdrawal, as assessed using a range of assays across consortium laboratories. The HD iPSC collection represents a unique and well-characterized resource to elucidate disease mechanisms in HD and provides a human stem cell platform for screening new candidate therapeutics.  相似文献   

5.
Huntington’s disease (HD) is an autosomal dominant neurodegenerative disorder characterized by involuntary body movement, cognitive impairment and psychiatric disturbance. A polyglutamine expansion in the amino-terminal region of the huntingtin (htt) protein is the genetic cause of HD. Htt protein interacts with a wide variety of proteins, and htt mutation causes cell signaling alterations in various neurotransmitter systems, including dopaminergic, glutamatergic, and cannabinoid systems, as well as trophic factor systems. This review will overview recent findings concerning htt-promoted alterations in cell signaling that involve different neurotransmitters and trophic factor systems, especially involving mGluR1/5, as glutamate plays a crucial role in neuronal cell death. The neuronal cell death that takes place in the striatum and cortex of HD patients is the most important factor underlying HD progression. Metabotropic glutamate receptors (mGluR1 and mGluR5) have a very controversial role in neuronal cell death and it is not clear whether mGluR1/5 activation either protects or exacerbates neuronal death. Thus, understanding how mutant htt protein affects glutamatergic receptor signaling will be essential to further establish a role for glutamate receptors in HD and develop therapeutic strategies to treat HD.  相似文献   

6.
Accumulation of abnormal proteins occurs in many neurodegenerative diseases including Huntington's disease (HD). However, the precise role of protein aggregation in neuronal cell death remains unclear. We show here that the expression of N-terminal huntingtin proteins with expanded polyglutamine (polyQ) repeats causes cell death in neuronal PC6.3 cell that involves endoplasmic reticulum (ER) stress. These mutant huntingtin fragment proteins elevated Bip, an ER chaperone, and increased Chop and the phosphorylation of c-Jun-N-terminal kinase (JNK) that are involved in cell death regulation. Caspase-12, residing in the ER, was cleaved in mutant huntingtin expressing cells, as was caspase-3 mediating cell death. In contrast, cytochrome-c or apoptosis inducing factor (AIF) was not released from mitochondria after the expression of these proteins. Treatment with salubrinal that inhibits ER stress counteracted cell death and reduced protein aggregations in the PC6.3 cells caused by the mutant huntingtin fragment proteins. Salubrinal upregulated Bip, reduced cleavage of caspase-12 and increased the phosphorylation of eukaryotic translation initiation factor-2 subunit-alpha (eIF2alpha) that are neuroprotective. These results show that N-terminal mutant huntingtin proteins activate cellular pathways linked to ER stress, and that inhibition of ER stress by salubrinal increases cell survival. The data suggests that compounds targeting ER stress may be considered in designing novel approaches for treatment of HD and possibly other polyQ diseases.  相似文献   

7.
Hydnocarpin D (HD) is a bioactive flavonolignan compound that possesses promising anti-tumor activity, although the mechanism is not fully understood. Using T cell acute lymphoblastic leukemia (T-ALL) cell lines Jurkat and Molt-4 as model system, we found that HD suppressed T-ALL proliferation in vitro, via induction of cell cycle arrest and subsequent apoptosis. Furthermore, HD increased the LC3-II levels and the formation of autophagolysosome vacuoles, both of which are markers for autophagy. The inhibition of autophagy by either knockdown of ATG5/7 or pre-treatment of 3-MA partially rescued HD-induced apoptosis, thus suggesting that autophagy enhanced the efficacy of HD. Interestingly, this cytotoxic autophagy triggered ferroptosis, as evidenced by the accumulation of lipid ROS and decrease of GSH and GPX4, while inhibition of autophagy impeded ferroptotic cell death. Our study suggests that HD triggers multiple cell death processes and is an interesting compound that should be evaluated in future preclinical studies.  相似文献   

8.
Sulphur mustard (HD) is a blister agent for which no specific therapy exists. The mechanism of cell injury caused by HD is not well understood. This study examined DNA damage in thymocytes exposed to a range of HD concentrations over a time course of 1-24 h. Thymocytes incubated with HD showed an increase in the production of DNA fragments of the type frequently associated with apoptosis, namely, initial formation of large fragments of 30-50, 200-300 and > 700 kilobase pairs (kbp), followed by further degradation to produce an internucleosomal 'ladder' of oligomers of approximately 180 base pairs (bp). Pulsed field electrophoresis analysis of thymocytes incubated with HD detected breakdown of the chromatin up to 3 h before a corresponding increase in the low molecular weight (MW) oligonucleosomal fragments could be seen on conventional agarose gels. These results suggest that cells damaged by HD poisoning may be irretrievably committed to cell death sooner after exposure than previous studies suggested. The nature of the DNA fragments produced suggested that apoptosis may represent a component of the pathway of cell death induced by HD. These aspects may have implications for the search for specific therapeutic reagents effective in the prevention or treatment of HD poisoning.  相似文献   

9.
Huntington's disease (HD) is caused by a CAG expansion in the huntingtin gene. Expansion of the polyglutamine tract in the huntingtin protein results in massive cell death in the striatum of HD patients. We report that human induced pluripotent stem cells (iPSCs) derived from HD patient fibroblasts can be corrected by the replacement of the expanded CAG repeat with a normal repeat using homologous recombination, and that the correction persists in iPSC differentiation into DARPP-32-positive neurons in vitro and in vivo. Further, correction of the HD-iPSCs normalized pathogenic HD signaling pathways (cadherin, TGF-β, BDNF, and caspase activation) and reversed disease phenotypes such as susceptibility to cell death and altered mitochondrial bioenergetics in neural stem cells. The ability to make patient-specific, genetically corrected iPSCs from HD patients will provide relevant disease models in identical genetic backgrounds and is a critical step for the eventual use of these cells in cell replacement therapy.  相似文献   

10.
Huntington's disease (HD) is caused by a polyglutamine expansion in the protein huntingtin. In its terminal stage, HD is characterized by widespread neuronal death in the neocortex and the striatum. Classically, this neuronal death has been thought to underlie most of the symptoms of the disease. Accumulating evidence suggests, however, that cellular dysfunction is important in the pathogenesis of HD. We propose that specific impairment of the exocytosis and endocytosis machinery contributes to the development of HD. We also suggest that abnormal synaptic transmission underlies the early symptoms of HD and can contribute to the triggering of cell death in later stages of the disease.  相似文献   

11.
12.
This study was conducted to determine whether inhibitors of normal cellular functions can reduce cytotoxicity induced by sulfur mustard (HD). The compounds examined include inhibitors ofpoly(ADP-ribose) polymerase (PADPRP), inhibitors of mono(ADP-ribose) transferase (MADPRT), inhibitors of lipidperoxidation, and an inhibitor ofprotein synthesis. To determine the effects of these compounds on HD-induced cell death, human lymphocyte preparations were treated with known concentrations (0.1 M to 1000 M) of an inhibitor and exposed to an estimated 87% effect concentration (EC87) of HD (170 M) for loss in cell viability. Cell viability was determined at 24–26hr post-exposure to HD using a dye (propidium iodide) exclusion assay and a flow cytometer. All of the selected PADPRP inhibitors were found to be effective at reducing the cytotoxic effects of HD. These inhibitors were rank-ordered based on the concentration that gives 50% (EC50) reduction ofHD-induced cell death.A signijicant correlation (r=0.94) was observed between the compounds' ability to inhibit PADPRP and the compounds' ability to reduce HD- induced cell death, suggesting that PADPRP plays a role in HD-induced cell death. Inhibitors of MADPRT, lipid peroxidation, and protein synthesis were not effective at reducing HD-induced cell death.Abbreviations ATP adenosine triphosphate - DNA deoxyribonucleic acid - EC50 concentration which gives 50% of maximum effect - GSH glutathione - HD sulfur mustard (,-dichloroethyl sulfide) - HEPA high efficiency particulate adsorbing - HEGA high efficiency gas adsorbing - IC50 concentration that inhibits 50% of enzyme activity - MADPRT mono(ADP-ribose) transferase - NAD nicotinamide adenine dinucleotide - PADPRP poly(ADP-ribose) polymerase  相似文献   

13.
Huntington's disease (HD) is an autosomal dominant progressive neurodegenerative disorder resulting in selective neuronal loss and dysfunction in the striatum and cortex. The molecular pathways leading to the selectivity of neuronal cell death in HD are poorly understood. Proteolytic processing of full-length mutant huntingtin (Htt) and subsequent events may play an important role in the selective neuronal cell death found in this disease. Despite the identification of Htt as a substrate for caspases, it is not known which caspase(s) cleaves Htt in vivo or whether regional expression of caspases contribute to selective neuronal cells loss. Here, we evaluate whether specific caspases are involved in cell death induced by mutant Htt and if this correlates with our recent finding that Htt is cleaved in vivo at the caspase consensus site 552. We find that caspase-2 cleaves Htt selectively at amino acid 552. Further, Htt recruits caspase-2 into an apoptosome-like complex. Binding of caspase-2 to Htt is polyglutamine repeat-length dependent, and therefore may serve as a critical initiation step in HD cell death. This hypothesis is supported by the requirement of caspase-2 for the death of mouse primary striatal cells derived from HD transgenic mice expressing full-length Htt (YAC72). Expression of catalytically inactive (dominant-negative) forms of caspase-2, caspase-7, and to some extent caspase-6, reduced the cell death of YAC72 primary striatal cells, while the catalytically inactive forms of caspase-3, -8, and -9 did not. Histological analysis of post-mortem human brain tissue and YAC72 mice revealed activation of caspases and enhanced caspase-2 immunoreactivity in medium spiny neurons of the striatum and the cortical projection neurons when compared to controls. Further, upregulation of caspase-2 correlates directly with decreased levels of brain-derived neurotrophic factor in the cortex and striatum of 3-month YAC72 transgenic mice and therefore suggests that these changes are early events in HD pathogenesis. These data support the involvement of caspase-2 in the selective neuronal cell death associated with HD in the striatum and cortex.  相似文献   

14.
B-cell lymphoma 2 (Bcl-2) family proteins regulate survival, mitochondria morphology dynamics and metabolism in many cell types including neurons. Huntington''s disease (HD) is a neurodegenerative disorder caused by an expanded CAG repeat tract in the IT15 gene that encodes for the protein huntingtin (htt). In vitro and in vivo models of HD and HD patients'' tissues show abnormal mitochondrial function and increased cell death rates associated with alterations in Bcl-2 family protein expression and localization. This review aims to draw together the information related to Bcl-2 family protein alterations in HD to decipher their potential role in mutated htt-related cell death and mitochondrial dysfunction.  相似文献   

15.
Rictor associates with mTOR to form the mTORC2 complex, which activity regulates neuronal function and survival. Neurodegenerative diseases are characterized by the presence of neuronal dysfunction and cell death in specific brain regions such as for example Huntington’s disease (HD), which is characterized by the loss of striatal projection neurons leading to motor dysfunction. Although HD is caused by the expression of mutant huntingtin, cell death occurs gradually suggesting that neurons have the capability to activate compensatory mechanisms to deal with neuronal dysfunction and later cell death. Here, we analyzed whether mTORC2 activity could be altered by the presence of mutant huntingtin. We observed that Rictor levels are specifically increased in the striatum of HD mouse models and in the putamen of HD patients. Rictor-mTOR interaction and the phosphorylation levels of Akt, one of the targets of the mTORC2 complex, were increased in the striatum of the R6/1 mouse model of HD suggesting increased mTORC2 signaling. Interestingly, acute downregulation of Rictor in striatal cells in vitro reduced mTORC2 activity, as shown by reduced levels of phospho-Akt, and increased mutant huntingtin-induced cell death. Accordingly, overexpression of Rictor increased mTORC2 activity counteracting cell death. Furthermore, normalization of endogenous Rictor levels in the striatum of R6/1 mouse worsened motor symptoms suggesting an induction of neuronal dysfunction. In conclusion, our results suggest that increased Rictor striatal levels could counteract neuronal dysfunction induced by mutant huntingtin.  相似文献   

16.
Huntington''s disease (HD) is a neurodegenerative disorder characterized by progressive neuronal death in the basal ganglia and cortex. Although increasing evidence supports a pivotal role of mitochondrial dysfunction in the death of patients'' neurons, the molecular bases for mitochondrial impairment have not been elucidated. We provide the first evidence of an abnormal activation of the Bcl-2/adenovirus E1B 19-kDa interacting protein 3 (BNip3) in cells expressing mutant Huntingtin. In this study, we show an abnormal accumulation and dimerization of BNip3 in the mitochondria extracted from human HD muscle cells, HD model cell cultures and brain tissues from HD model mice. Importantly, we have shown that blocking BNip3 expression and dimerization restores normal mitochondrial potential in human HD muscle cells. Our data shed light on the molecular mechanisms underlying mitochondrial dysfunction in HD and point to BNip3 as a new potential target for neuroprotective therapy in HD.  相似文献   

17.
In the present work, we studied the mitochondrial function and cell death pathway(s) in heterozygous and homozygous immortalized cell lines from patients with Huntington's disease (HD). Heterozygosis was characterized by specific alterations in mitochondrial membrane potential, a constitutive hyperpolarization state of mitochondria, and was correlated with an increased susceptibility to apoptosis. Lymphoblasts from homozygous patients, on the other hand, were characterized by a significant percentage of cells displaying autophagic vacuoles. These cells also demonstrated a striking attitude towards significant cannibalistic activity. Considering the pathogenic role of cell death in HD, our study provides new and useful insights into the role of mitochondrial dysfunction, i.e. hyperpolarization, in hijacking HD heterozygous cells towards apoptosis and HD homozygous cells towards a peculiar phenotype characterized by both self- and xeno-cannibalism. These events can, however, be viewed as an ultimate attempt to survive rather than a way to die. The present work underlines the possibility that HD-associated mitochondrial defects could tentatively be by-passed by the cells by activating cellular 'phagic' activities, including so-called 'mitophagy' and 'cannibalism', that only finally lead to cell death.  相似文献   

18.
In Huh-7 hepatoma cells, low dose (LD) doxorubicin treatment induces cell death through mitotic catastrophe accompanying the formation of large cells with multiple micronuclei, whereas high dose (HD) doxorubicin induces apoptosis. In this study, we investigated the role of Cdc2 and Cdk2 kinase in the regulation of the two modes of cell death induced by doxorubicin. During HD doxorubicin-induced apoptosis, the histone H1-associated activities of Cdc2 and Cdk2 both progressively declined in parallel with reductions in cyclin A and cyclin B protein levels. In contrast, during LD doxorubicin-induced cell death through mitotic catastrophe, the Cdc2 and Cdk2 kinases were transiently activated 1 day post-treatment, with similar changes seen in the protein levels of cyclin A, cyclin B, and Cdc2. Treatment with roscovitine, a specific inhibitor of Cdc2 and Cdk2, significantly blocked LD doxorubicin-induced mitotic catastrophe and cell death, but did not affect HD doxorubicin-induced apoptosis in Huh-7, SNU-398, and SNU-449 hepatoma cell lines. Our results demonstrate that differential regulation of Cdc2 and Cdk2 activity by different doses of doxorubicin may contribute to the induction of two distinct modes of cell death in hepatoma cells, either apoptosis or cell death through mitotic catastrophe.  相似文献   

19.
Previous work suggests N-methyl-D-aspartate receptor (NMDAR) activation may be involved in degeneration of medium-sized spiny striatal neurons in Huntington's disease (HD). Here we show that these neurons are more vulnerable to NMDAR-mediated death in a YAC transgenic FVB/N mouse model of HD expressing full-length mutant huntingtin, compared with wild-type FVB/N mice. Excitotoxic death of these neurons was increased after intrastriatal injection of quinolinate in vivo, and after NMDA but not AMPA exposure in culture. NMDA-induced cell death was abolished by an NR2B subtype-specific antagonist. In contrast, NMDAR-mediated death of cerebellar granule neurons was not enhanced, consistent with cell-type and NMDAR subtype specificity. Moreover, increased NMDA-evoked current amplitude and caspase-3 activity were observed in transgenic striatal neurons. Our data support a role for NR2B-subtype NMDAR activation as a trigger for selective neuronal degeneration in HD.  相似文献   

20.
Animal models of Huntington's disease   总被引:3,自引:0,他引:3  
Huntington's disease (HD) is a neurological disorder caused by a genetic mutation in the IT15 gene. Progressive cell death in the striatum and cortex, and accompanying declines in cognitive, motor, and psychiatric functions, are characteristic of the disease. Animal models of HD have provided insight into disease pathology and the outcomes of therapeutic strategies. Earlier studies of HD most often used toxin-induced models to study mitochondrial impairment and excitotoxicity-induced cell death, which are both mechanisms of degeneration seen in the HD brain. These models, based on 3-nitropropionic acid and quinolinic acid, respectively, are still often used in HD studies. The discovery in 1993 of the huntingtin mutation led to the creation of newer models that incorporate a similar genetic defect. These models, which include transgenic and knock-in rodents, are more representative of the HD progression and pathology. An even more recent model that uses a viral vector to encode the gene mutation in specific areas of the brain may be useful in nonhuman primates, as it is difficult to produce genetic models in these species. This article examines the aforementioned models and describes their use in HD research, including aspects of the creation, delivery, pathology, and tested therapies for each model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号