首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Candida albicans is the most common cause of hematogenously disseminated and oropharyngeal candidiasis. Both of these diseases are characterized by fungal invasion of host cells. Previously, we have found that C. albicans hyphae invade endothelial cells and oral epithelial cells in vitro by inducing their own endocytosis. Therefore, we set out to identify the fungal surface protein and host cell receptors that mediate this process. We found that the C. albicans Als3 is required for the organism to be endocytosed by human umbilical vein endothelial cells and two different human oral epithelial lines. Affinity purification experiments with wild-type and an als3Δ/als3Δ mutant strain of C. albicans demonstrated that Als3 was required for C. albicans to bind to multiple host cell surface proteins, including N-cadherin on endothelial cells and E-cadherin on oral epithelial cells. Furthermore, latex beads coated with the recombinant N-terminal portion of Als3 were endocytosed by Chinese hamster ovary cells expressing human N-cadherin or E-cadherin, whereas control beads coated with bovine serum albumin were not. Molecular modeling of the interactions of the N-terminal region of Als3 with the ectodomains of N-cadherin and E-cadherin indicated that the binding parameters of Als3 to either cadherin are similar to those of cadherin–cadherin binding. Therefore, Als3 is a fungal invasin that mimics host cell cadherins and induces endocytosis by binding to N-cadherin on endothelial cells and E-cadherin on oral epithelial cells. These results uncover the first known fungal invasin and provide evidence that C. albicans Als3 is a molecular mimic of human cadherins.  相似文献   

2.
Candida albicans is the most common cause of hematogenously disseminated and oropharyngeal candidiasis. Both of these diseases are characterized by fungal invasion of host cells. Previously, we have found that C. albicans hyphae invade endothelial cells and oral epithelial cells in vitro by inducing their own endocytosis. Therefore, we set out to identify the fungal surface protein and host cell receptors that mediate this process. We found that the C. albicans Als3 is required for the organism to be endocytosed by human umbilical vein endothelial cells and two different human oral epithelial lines. Affinity purification experiments with wild-type and an als3Δ/als3Δ mutant strain of C. albicans demonstrated that Als3 was required for C. albicans to bind to multiple host cell surface proteins, including N-cadherin on endothelial cells and E-cadherin on oral epithelial cells. Furthermore, latex beads coated with the recombinant N-terminal portion of Als3 were endocytosed by Chinese hamster ovary cells expressing human N-cadherin or E-cadherin, whereas control beads coated with bovine serum albumin were not. Molecular modeling of the interactions of the N-terminal region of Als3 with the ectodomains of N-cadherin and E-cadherin indicated that the binding parameters of Als3 to either cadherin are similar to those of cadherin–cadherin binding. Therefore, Als3 is a fungal invasin that mimics host cell cadherins and induces endocytosis by binding to N-cadherin on endothelial cells and E-cadherin on oral epithelial cells. These results uncover the first known fungal invasin and provide evidence that C. albicans Als3 is a molecular mimic of human cadherins.  相似文献   

3.
Understanding the mechanisms that microbes exploit to invade host cells and cause disease is crucial if we are to eliminate their threat. Although pathogens use a variety of microbial factors to trigger entry into non-phagocytic cells, their targeting of the host cell process of endocytosis has emerged as a common theme. To accomplish this, microbes often rewire the normal course of particle internalization, frequently usurping theoretical maximal sizes to permit entry and reconfiguring molecular components that were once thought to be required for vesicle formation. Here, we discuss recent advances in our understanding of how toxins, viruses, bacteria, and fungi manipulate the host cell endocytic machinery to generate diseases. Additionally, we will reveal the advantages of using these organisms to expand our general knowledge of endocytic mechanisms in eukaryotic cells.  相似文献   

4.
Staphylococcus aureus is the primary etiological agent of several human diseases. S. aureus has classically been considered an extracellular pathogen; however, recent evidence indicates that S. aureus invades and persists in non-professional phagocytes. Experiments demonstrate that actin microfilaments, microtubules, receptor-mediated endocytosis, and protein tyrosine kinases play important roles in the uptake of S. aureus. Fibronectin-binding proteins and beta-integrins are implicated as critical cell surface molecules associated with internalization of S. aureus by non-phagocytic cells. Following invasion of eukaryotic cells, S. aureus induces the release of cytokines that have the potential to exacerbate disease and induce apoptosis. Finally, S. aureus has the ability to persist inside host cells as small colony variants, a phenotype associated with persistent and recurrent infections.  相似文献   

5.
单核细胞增生李斯特菌(Listeria monocytogenes)是一种革兰氏阳性食源性致病菌。在造成宿主食源性感染的过程中, 单核细胞增生李斯特菌能凭借其独特的表面蛋白入侵宿主的非吞噬细胞。内化素蛋白家族(Internalins)是介导单核细胞增生李斯特菌入侵宿主非吞噬细胞的主要因子。本文根据国内外一些最新的研究成果, 结合作者近几年的工作, 综述了在侵染宿主的过程中, 单核细胞增生李斯特菌主要的内化素蛋白InlA和InlB介导细菌入侵宿主细胞的分子机制, 以期为阐明食源性致病菌致病机理、预防和治疗食源性疾病提供理论基础。  相似文献   

6.
Bacterial pathogens have evolved a wide range of strategies to colonize and invade human organs, despite the presence of multiple host defense mechanisms. In this review, we will describe how pathogenic bacteria can adhere and multiply at the surface of host cells, how some bacteria can enter and proliferate inside these cells, and finally how pathogens may cross epithelial or endothelial host barriers and get access to internal tissues, leading to severe diseases in humans.  相似文献   

7.
Candida albicans Ssa1 and Ssa2 are members of the HSP70 family of heat shock proteins that are expressed on the cell surface and function as receptors for antimicrobial peptides such as histatins. We investigated the role of Ssa1 and Ssa2 in mediating pathogenic host cell interactions and virulence. A C. albicans ssa1Δ/Δ mutant had attenuated virulence in murine models of disseminated and oropharyngeal candidiasis, whereas an ssa2Δ/Δ mutant did not. In vitro studies revealed that the ssa1Δ/Δ mutant caused markedly less damage to endothelial cells and oral epithelial cell lines. Also, the ssa1Δ/Δ mutant had defective binding to endothelial cell N-cadherin and epithelial cell E-cadherin, receptors that mediate host cell endocytosis of C. albicans. As a result, this mutant had impaired capacity to induce its own endocytosis by endothelial cells and oral epithelial cells. Latex beads coated with recombinant Ssa1 were avidly endocytosed by both endothelial cells and oral epithelial cells, demonstrating that Ssa1 is sufficient to induce host cell endocytosis. These results indicate that Ssa1 is a novel invasin that binds to host cell cadherins, induces host cell endocytosis, and is critical for C. albicans to cause maximal damage to host cells and induce disseminated and oropharyngeal disease.  相似文献   

8.
《Microbiological research》2014,169(11):803-810
Interaction between host cells and invasive Candida plays a large role in the pathogenicity of Candida species. Fungal-induced endocytosis and active penetration are the two distinct, yet complementary invasion mechanisms of invasive candidiasis. Induced endocytosis is a microorganism-triggered, epithelial-driven, clathrin-mediated and actin-dependent process. During the fundamental pathological process of induced endocytosis, invasins (Als3 and Ssa1), which mediate the binding of host epithelial surface proteins, are expressed by Candida species on the hyphal surface. Sequentially, the interaction between invasins and host epithelial surface proteins stimulates the recruitment of clathrin, dynamin and cortactin to the sites where Candida enters epithelial cells, which in turn induce the actin cytoskeleton reorganization. Actin cytoskeleton provides the force required for fungal internalization. Parallely, active penetration of Candida can directly pass through epithelial cells possibly due to progressive elongation of hyphae and physical forces. Several molecules, such as secreted hydrolases and Als3, can affect the protective barrier of the epithelium and make Candida actively penetrate into epithelial cells through intercellular gaps of epithelial layers.  相似文献   

9.
10.
Candida albicans is a major cause of oropharyngeal, vulvovaginal and haematogenously disseminated candidiasis. Endocytosis of C. albicans hyphae by host cells is a prerequisite for tissue invasion. This internalization involves interactions between the fungal invasin Als3 and host E- or N-cadherin. Als3 shares some structural similarity with InlA, a major invasion protein of the bacterium Listeria monocytogenes . InlA mediates entry of L. monocytogenes into host cells through binding to E-cadherin. A role in internalization, for a non-classical stimulation of the clathrin-dependent endocytosis machinery, was recently highlighted. Based on the similarities between the C. albicans and L. monocytogenes invasion proteins, we studied the role of clathrin in the internalization of C. albicans . Using live-cell imaging and indirect immunofluorescence of epithelial cells infected with C. albicans , we observed that host E-cadherin, clathrin, dynamin and cortactin accumulated at sites of C. albicans internalization. Similarly, in endothelial cells, host N-cadherin, clathrin and cortactin accumulated at sites of fungal endocytosis. Furthermore, clathrin, dynamin or cortactin depletion strongly inhibited C. albicans internalization by epithelial cells. Finally, beads coated with Als3 were internalized in a clathrin-dependent manner. These data indicate that C. albicans , like L. monocytogenes, hijacks the clathrin-dependent endocytic machinery to invade host cells.  相似文献   

11.
The adhesion of fungi to host cells is an important area of study. Knowledge of the molecular mechanisms involved in these interactions can be used to devise methods to interfere with them. Similar to many pathogens, loss of fungal adhesion to epithelial or endothelial cell surfaces results in a marked decrease in virulence when evaluated in both in vivo and in vitro disease models. This review emphasizes literature from the past year and focuses on the molecular mechanisms by which fungi in the genera Candida, Cryptococcus, Sporothrix, Pneumocystis, and Aspergillus adhere to epithelial and/or endothelial host surfaces. The methodologies used to conduct these studies are also discussed.  相似文献   

12.
Microbial invasion: a covert activity?   总被引:2,自引:0,他引:2  
In contrast to nonpathogenic microorganisms that exist happily in biofilms on various organic and inorganic surfaces, many pathogenic microbes have the additional ability to invade host tissues by inducing their own endocytosis and transport across normally protective barriers. This phenomenon, designated "parasite-directed endocytosis," has been observed with a variety of surfaces (intestinal, genital, nasopharyngeal, and tracheal epithelium) as well as in endothelial cells. The mechanisms involved in invasion may involve a single factor as described for some species of Yersinia, or may require multiple factors as observed in Shigellae. For the majority of pathogens, the molecular mechanisms of invasion are not well understood (e.g., Neisseria gonorrhoeae). Because parasite-directed endocytosis is reminiscent of receptor-mediated endocytosis, it is quite possible that some pathogens engage in biologic mimicry by producing a molecule that resembles a natural host ligand, for which there is a host cell receptor. Such a masquerade may allow some microbes to enter the host's inner sanctum covertly in a manner analogous to the Trojan horse, rather than overtly by destroying the mucosa and entering host tissues directly. Whereas this hypothesis is speculative at present, bacteria that produce molecules resembling insulin, calmodulin, and chorionic gonadotropin have been described.  相似文献   

13.
Autophagy in innate immunity against intracellular bacteria   总被引:1,自引:0,他引:1  
Many pathogenic bacteria can invade phagocytic and non-phagocytic cells and colonize them intracellularly, then become disseminated to other cells. The endocytic degradation pathway is thought to be the only prevention against such intracellular pathogens. Autophagy, a fundamental cellular homeostasis pathway that operates with the intracellular degradation/recycling system, causes the turnover of cellular components by delivering portions of the cytoplasm and organelles to lysosomes. Recently, we reported that autophagic degradation is a previously unrecognized effector of host innate immunity. Streptococcus pyogenes (Group A Streptococcus; GAS) successfully enters human epithelial cells via endocytosis. GAS immediately escapes from the endosomes to the cytoplasm and gains a replicative niche, after which GAS in the cytoplasm is trapped in autophagosome-like compartments and degraded upon fusion with lysosomes. This process indicates that autophagy plays a protective role in infectious diseases. We also found that autophagic degradation was induced against Staphylococcus aureus, while methicillin-resistant S. aureus were resistant to autophagic degradation. The present review focuses on the protective function of autophagy against bacterial invasion of cells.  相似文献   

14.
Bacterial entry into cells: a role for the endocytic machinery   总被引:1,自引:0,他引:1  
Bonazzi M  Cossart P 《FEBS letters》2006,580(12):2962-2967
Increasing evidence indicates that pathogens have evolved highly efficient strategies to induce their internalization within host cells. Viruses and bacteria express and expose on their surface, molecules that mimic endogenous ligands to cell receptors, thereby inducing specific intracellular signalling cascades. More recently it has become clear that, as most viruses, bacteria can enter cells via the clathrin-mediated pathway, indicating a key role for endocytosis in pathogens entry into cells. Here we review the pathways followed by Listeria monocytogenes to enter into non-phagocytic cells, as a model for the subversion of cellular functions to induce pathogens internalization.  相似文献   

15.
Aspergillus fumigatus is an important human fungal pathogen and its conidia are constantly inhaled by humans. In immunocompromised individuals, conidia can grow out as hyphae that damage lung epithelium. The resulting invasive aspergillosis is associated with devastating mortality rates. Since infection is a race between the innate immune system and the outgrowth of A. fumigatus conidia, we use dynamic optimization to obtain insight into the recruitment and depletion of alveolar macrophages and neutrophils. Using this model, we obtain key insights into major determinants of infection outcome on host and pathogen side. On the pathogen side, we predict in silico and confirm in vitro that germination speed is an important virulence trait of fungal pathogens due to the vulnerability of conidia against host defense. On the host side, we found that epithelial cells, which have been underappreciated, play a role in fungal clearance and are potent mediators of cytokine release. Both predictions were confirmed by in vitro experiments on established cell lines as well as primary lung cells. Further, our model affirms the importance of neutrophils in invasive aspergillosis and underlines that the role of macrophages remains elusive. We expect that our model will contribute to improvement of treatment protocols by focusing on the critical components of immune response to fungi but also fungal virulence traits.  相似文献   

16.
Invasion of Edwardsiella ictaluri into cultured mammalian, fish and enzymatically harvested catfish enteric epithelial cells is described. Gentamicin survival assays were used to demonstrate the ability of this catfish pathogen to invade IEC-6 (origin: rat small intestinal epithelium), Henle 407 (origin: human embryonic intestinal epithelium), fathead minnow (FHM, minnow epithelial cells) and trypsin/pepsin-harvested channel catfish enteric epithelial cells. Invasion of all cell types occurred within 2 h of contact at 26 degrees C, in contrast to Escherichia coli DH5 alpha, which did not invade cells tested. Eight Edwardsiella ictaluri isolates from diseased catfish and the ATCC (American Type Culture Collection) strain were evaluated for invasion efficiency using FHM cells. All isolates were invasive, but at differing efficiencies. Invasion blocking assays using chemical blocking agents were performed on a single isolate (LA 89-9) using IEC-6 epithelial cells. Preincubation of IEC-6 cells with cytochalasin D (microfilament depolymerizer) and monodansylcadaverine (blocks receptor-mediated endocytosis) significantly reduced invasion by E. ictaluri, whereas exposure to colchicine (microtubule depolymerizer) had no effect on bacterial internalization. Results indicate that actin polymerization and receptor-mediated endocytosis are involved in uptake of E. ictaluri by IEC-6 epithelial cells. Invasion trials using freshly harvested cells from the intestine of the natural host, Ictalurus punctatus, show that invasion occurs, but at a low efficiency. This is possibly due to loss of outer membrane receptors during enzymatic cell harvest. This study provides the first documentation of the invasion of cultured mammalian and fish cells by E. ictaluri, and identifies possible mechanisms used for intracellular access. Additionally, the study describes several functional in vitro invasion models using commercially available cell lines as well as cells from the natural host (channel catfish, I. punctatus).  相似文献   

17.
Salmonella typhimurium, like many other intracellular pathogens, is capable of inducing its own uptake into non-phagocytic cells by a process termed invasion, and residing within a membrane-bound inclusion. During invasion it causes significant rearrangement of the host cytoskeleton, indicating that signals are transduced between the bacterium and the host cell cytoplasm, across the eukaryotic cell membrane. We found that intracellular inositol phosphate concentrations in HeLa cells increased during S. typhimurium entry and returned to normal levels after bacterial internalization. A chelator of intracellular calcium (BAPTA/AM) blocked S. typhimurium uptake into HeLa epithelial cells, but extracellular calcium chelators (BAPTA, EGTA, EDTA) had no effect on bacterial invasion. These results indicate that S. typhimurium may activate host cell phospholipase C activity to form inositol phosphates which in turn stimulate release of intracellular calcium stores to facilitate bacterial uptake.  相似文献   

18.
Yersinia virulence is dependent on the expression of plasmid-encoded secreted proteins called Yops. After bacterial adherence to receptors on the mammalian cell membrane, several Yops are transported by a type III secretion pathway into the host cell cytoplasm. Two Yops, YopH and YopE, prevent macrophages from phagocytosing Yersinia by disrupting the host cell cytoskeleton and signal transduction pathways. In contrast to this active inhibition of phagocytosis by Yersinia , other pathogens such as Salmonella , Shigella , Listeria and Edwardsiella actively promote their entry into mammalian cells by binding to specific host surface receptors and exploiting existing cell cytoskeletal and signalling pathways. We have tested whether Yersinia Yops can prevent the uptake of these diverse invasive pathogens. We first infected epithelial cells with Yersinia to permit delivery of Yops and subsequently with an invasive pathogen. We then measured the level of bacterial invasion. Preinfection with Yersinia inhibited invasion of Edwardsiella , Shigella and Listeria , but not Salmonella . Furthermore, we found that either YopE or YopH prevented Listeria invasion, whereas only YopE prevented Edwardsiella and Shigella invasion. We correlated the inhibitory effect of the Yops with the inhibitory action of the cell-signalling inhibitors Wortmannin, LY294002 and NDGA, and concluded that the four invasive pathogenic species enter epithelial cells using at least three distinct host cell pathways. We also speculate that YopE affects the rho pathway.  相似文献   

19.
The fungus, Candida albicans, interacts with epithelial cells in the human host both as a normal commensal and as an invasive pathogen. It has evolved multiple complementary mechanisms to adhere to epithelial cells. Adherent C. albicans cells can invade epithelial surfaces both by penetrating into individual epithelial cells, and by degrading interepithelial cell junctions and passing between epithelial cells. Invasion into epithelial cells is mediated by both induced endocytosis and active penetration, whereas degradation of epithelial cell junction proteins, such as E‐cadherin, occurs mainly via proteolysis by secreted aspartyl proteinases. C. albicans invasion of epithelial cells results in significant epithelial cell damage, which is probably induced by lytic enzymes, such as proteases and phospholipase secreted by the organism. Future challenges include identifying the epithelial cell targets of adhesins and invasins, and determining the mechanisms by which C. albicans actively penetrates epithelial cells and induces epithelial cell damage.  相似文献   

20.
Modulation of death is a pathogen strategy to establish residence and promote survival in host cells and tissues. Shigella spp. are human pathogens that invade colonic mucosa, where they provoke lesions caused by their ability to manipulate the host cell responses. Shigella spp. induce various types of cell death in different cell populations. However, they are equally able to protect host cells from death. Here, we have investigated on the molecular mechanisms and cell effectors governing the balance between survival and death in epithelial cells infected with Shigella. To explore these aspects, we have exploited both, the HeLa cell invasion assay and a novel ex vivo human colon organ culture model of infection that mimics natural conditions of shigellosis. Our results definitely show that Shigella induces a rapid intrinsic apoptosis of infected cells, via mitochondrial depolarization and the ensuing caspase-9 activation. Moreover, for the first time we identify the eukaryotic stress-response factor growth arrest and DNA damage 45α as a key player in the induction of the apoptotic process elicited by Shigella in epithelial cells, revealing an unexplored role of this molecule in the course of infections sustained by invasive pathogens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号