首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Escherichia coli NZN111, which lacks activities for pyruvate-formate lyase and lactate dehydrogenase, and AFP111, a derivative which contains an additional mutation in ptsG (a gene encoding an enzyme of the glucose phophotransferase system), accumulate significant levels of succinic acid (succinate) under anaerobic conditions. Plasmid pTrc99A-pyc, which expresses the Rhizobium etli pyruvate carboxylase enzyme, was introduced into both strains. We compared growth, substrate consumption, product formation, and activities of seven key enzymes (acetate kinase, fumarate reductase, glucokinase, isocitrate dehydrogenase, isocitrate lyase, phosphoenolpyruvate carboxylase, and pyruvate carboxylase) from glucose for NZN111, NZN111/pTrc99A-pyc, AFP111, and AFP111/pTrc99A-pyc under both exclusively anaerobic and dual-phase conditions (an aerobic growth phase followed by an anaerobic production phase). The highest succinate mass yield was attained with AFP111/pTrc99A-pyc under dual-phase conditions with low pyruvate carboxylase activity. Dual-phase conditions led to significant isocitrate lyase activity in both NZN111 and AFP111, while under exclusively anaerobic conditions, an absence of isocitrate lyase activity resulted in significant pyruvate accumulation. Enzyme assays indicated that under dual-phase conditions, carbon flows not only through the reductive arm of the tricarboxylic acid cycle for succinate generation but also through the glyoxylate shunt and thus provides the cells with metabolic flexibility in the formation of succinate. Significant glucokinase activity in AFP111 compared to NZN111 similarly permits increased metabolic flexibility of AFP111. The differences between the strains and the benefit of pyruvate carboxylase under both exclusively anaerobic and dual-phase conditions are discussed in light of the cellular constraint for a redox balance.  相似文献   

3.
The effect of the introduction of a synthetic bypass, providing 2-ketoglutarate to succinate conversion via the intermediate succinate semialdehyde formation, on aerobic biosynthesis of succinic acid from glucose through the oxidative branch of the tricarboxylic acid cycle in recombinant Escherichia coli strains has been studied. The strain lacking the key pathways of acetic, lactic acid and ethanol formation from pyruvate and acetyl-CoA and possessing modified system of glucose transport and phosphorylation was used as a chassis for the construction of the target recombinants. The operation of the glyoxylate shunt in the strains was precluded resulting from the deletion of the aceA, aceB, and glcB genes encoding isocitrate lyase and malate synthases A and G. The constitutive activity of isocitrate dehydrogenase was ensured due to deletion of isocitrate dehydrogenase kinase/phosphatase gene, aceK. Upon further inactivation of succinate dehydrogenase, the corresponding strain synthesized succinic acid from glucose with a molar yield of 24.9%. Activation of the synthetic bypass by the induced expression of Mycobacterium tuberculosis 2-ketoglutarate decarboxylase gene notably increased the yield of succinic acid. Functional activity of the synthetic bypass in the strain with the inactivated glyoxylate shunt and opened tricarboxylic acid cycle led to 2.7-fold increase in succinate yield from glucose. As the result, the substrate to the target product conversion reached 67.2%. The respective approach could be useful for the construction of the efficient microbial succinic acid producers.  相似文献   

4.
Escherichia coli NZN111, which lacks activities for pyruvate-formate lyase and lactate dehydrogenase, and AFP111, a derivative which contains an additional mutation in ptsG (a gene encoding an enzyme of the glucose phophotransferase system), accumulate significant levels of succinic acid (succinate) under anaerobic conditions. Plasmid pTrc99A-pyc, which expresses the Rhizobium etli pyruvate carboxylase enzyme, was introduced into both strains. We compared growth, substrate consumption, product formation, and activities of seven key enzymes (acetate kinase, fumarate reductase, glucokinase, isocitrate dehydrogenase, isocitrate lyase, phosphoenolpyruvate carboxylase, and pyruvate carboxylase) from glucose for NZN111, NZN111/pTrc99A-pyc, AFP111, and AFP111/pTrc99A-pyc under both exclusively anaerobic and dual-phase conditions (an aerobic growth phase followed by an anaerobic production phase). The highest succinate mass yield was attained with AFP111/pTrc99A-pyc under dual-phase conditions with low pyruvate carboxylase activity. Dual-phase conditions led to significant isocitrate lyase activity in both NZN111 and AFP111, while under exclusively anaerobic conditions, an absence of isocitrate lyase activity resulted in significant pyruvate accumulation. Enzyme assays indicated that under dual-phase conditions, carbon flows not only through the reductive arm of the tricarboxylic acid cycle for succinate generation but also through the glyoxylate shunt and thus provides the cells with metabolic flexibility in the formation of succinate. Significant glucokinase activity in AFP111 compared to NZN111 similarly permits increased metabolic flexibility of AFP111. The differences between the strains and the benefit of pyruvate carboxylase under both exclusively anaerobic and dual-phase conditions are discussed in light of the cellular constraint for a redox balance.  相似文献   

5.
The composition and properties of the tricarboxylic acid cycle of the microaerophilic human pathogen Helicobacter pylori were investigated in situ and in cell extracts using [1H]- and [13C]-NMR spectroscopy and spectrophotometry. NMR spectroscopy assays enabled highly specific measurements of some enzyme activities, previously not possible using spectrophotometry, in in situ studies with H. pylori, thus providing the first accurate picture of the complete tricarboxylic acid cycle of the bacterium. The presence, cellular location and kinetic parameters of citrate synthase, aconitase, isocitrate dehydrogenase, alpha-ketoglutarate oxidase, fumarate reductase, fumarase, malate dehydrogenase, and malate synthase activities in H. pylori are described. The absence of other enzyme activities of the cycle, including alpha-ketoglutarate dehydrogenase, succinyl-CoA synthetase, and succinate dehydrogenase also are shown. The H. pylori tricarboxylic acid cycle appears to be a noncyclic, branched pathway, characteristic of anaerobic metabolism, directed towards the production of succinate in the reductive dicarboxylic acid branch and alpha-ketoglutarate in the oxidative tricarboxylic acid branch. Both branches were metabolically linked by the presence of alpha-ketoglutarate oxidase activity. Under the growth conditions employed, H. pylori did not possess an operational glyoxylate bypass, owing to the absence of isocitrate lyase activity; nor a gamma-aminobutyrate shunt, owing to the absence of both gamma-aminobutyrate transaminase and succinic semialdehyde dehydrogenase activities. The catalytic and regulatory properties of the H. pylori tricarboxylic acid cycle enzymes are discussed by comparing their amino acid sequences with those of other, more extensively studied enzymes.  相似文献   

6.
基因的表达受不同的转录调节因子调节。大肠杆菌中的异柠檬酸裂解酶调节因子(IclR)能够抑制编码乙醛酸支路酶的aceBAK操纵子的表达。本研究基于代谢物的13C同位体物质分布来定量解析代谢反应,主要研究了iclR基因在大肠杆菌生理和代谢中的作用。大肠杆菌iclR基因缺失突变株的生长速率、糖耗速率和乙酸的产量相对于原始菌株都有所降低,但菌体得率略有增加。通过代谢途径的流量比率分析发现基因缺失株的乙醛酸支路得到了激活,33%的异柠檬酸流经了乙醛酸支路;戊糖磷酸途径的流量变小,使得CO2的生成量减少。同时,乙醛酸支路激活,但草酰乙酸形成磷酸烯醇式丙酮酸的流量基本不变,说明磷酸烯醇式丙酮酸-乙醛酸循环没有激活,没有过多的碳原子在磷酸烯醇式丙酮酸羧化激酶反应中以CO2形式排出,从而确保了菌体得率。葡萄糖利用速率的降低、乙酰辅酶A的代谢效率提高等使得iclR基因敲除菌的乙酸分泌较原始菌株有所降低。  相似文献   

7.
The lipoate coenzyme is essential for function of the pyruvate (PDH) and 2‐oxoglutarate (OGDH) dehydrogenases and thus for aerobic growth of Escherichia coli. LipB catalyzes the first step in lipoate synthesis, transfer of an octanoyl moiety from the fatty acid synthetic intermediate, octanoyl‐ACP, to PDH and OGDH. E. coli also encodes LplA, a ligase that in presence of exogenous octanoate (or lipoate) can bypass loss of LipB. LplA imparts ΔlipB strains with a ‘leaky’ growth phenotype on aerobic glucose minimal medium supplemented with succinate (which bypasses the OGDH‐catalyzed reaction), because it scavenges an endogenous octanoate pool to activate PDH. Here we characterize a ΔlipB suppressor strain that did not require succinate supplementation, but did require succinyl‐CoA ligase, confirming the presence of alternative source(s) of cytosolic succinate. We report that suppression requires inactivation of succinate dehydrogenase (SDH), which greatly reduces the cellular requirement for succinate. In the suppressor strain succinate is produced by three enzymes, any one of which will suffice in the absence of SDH. These three enzymes are: trace levels of OGDH, the isocitrate lyase of the glyoxylate shunt and an unanticipated source, aspartate oxidase, the enzyme catalyzing the first step of nicotinamide biosynthesis.  相似文献   

8.
Enzymes of general metabolism have been determined in the latex of Papaver somniferum in an attempt to elucidate further the nature of the 1000 g130 min organelles and their role in alkaloid biogenesis. A number of enzymes involved in the glyoxylic acid and tricarboxylic acid cycles have been found, namely, aconitase, isocitrate dehydrogenase, succinate dehydrogenase, fumarase, malate dehydrogenase and isocitrate lyase. Two enzymes of glycolysis, namely, pyruvate kinase and lactate dehydrogenase, as well as enzymes associated with peroxisomes (glyoxylate reductase, catalase) and lysosomes (arylesterase, acid phosphatase) have been studied. Finally, some enzymes previously reported as occurring in poppy seedlings have been investigated, namely peroxidase, glutamate—oxaloacetate and glutamate-pyruvate transaminases, together with phenylalanine, tyrosine, DOPA and glutamic acid decarboxylases.  相似文献   

9.
Transfer of Euglena gracilis Klebs Z cells from phototrophic to organotrophic growth on acetate results in derepression of the key enzymes of the glyoxylate cycle, malate synthase and isocitrate lyase, which appear coordinately regulated. The derepression of malate synthase and isocitrate lyase was accompanied by increased specific activities of succinate dehydrogenase, fumarase, and malate dehydrogenase, but hydroxypyruvate reductase activity was unaltered.  相似文献   

10.
In order to improve the production of succinate and malate by the filamentous fungus Aspergillus niger the activity of the glyoxylate bypass pathway was increased by over-expression of the isocitrate lyase (icl) gene. The hypothesis was that when isocitrate lyase was up-regulated the flux towards glyoxylate would increase, leading to excess formation of malate and succinate compared to the wild-type. However, metabolic network analysis showed that an increased icl expression did not result in an increased glyoxylate bypass flux. The analysis did show a global response with respect to gene expression, leading to an increased flux through the oxidative part of the TCA cycle. Instead of an increased production of succinate and malate, a major increase in fumarate production was observed.The effect of malonate, a competitive inhibitor of succinate dehydrogenase (SDH), on the physiological behaviour of the cells was investigated. Inhibition of SDH was expected to lead to succinate production, but this was not observed. There was an increase in citrate and oxalate production in the wild-type strain. Furthermore, in the strain with over-expression of icl the organic acid production shifted from fumarate towards malate production when malonate was added to the cultivation medium.Overall, the icl over-expression and malonate addition had a significant impact on metabolism and on organic acid production profiles. Although the expected succinate and malate formation was not observed, a distinct and interesting production of fumarate and malate was found.  相似文献   

11.
Oxalic acid plays a pivotal role in the adaptation of the soil microbe Pseudomonas fluorescens to aluminum (Al) stress. Its production via the oxidation of glyoxylate necessitates a major reconfiguration of the enzymatic reactions involved in the tricarboxylic acid (TCA) cycle. The demand for glyoxylate, the precursor of oxalic acid appears to enhance the activity of isocitrate lyase (ICL). The activity of ICL, an enzyme that participates in the cleavage of isocitrate to glyoxylate and succinate incurred a 4-fold increase in the Al-stressed cells. However, the activity of isocitrate dehydrogenase, a competitor for the substrate isocitrate, appeared to be diminished in cells exposed to Al compared to the control cells. While the demand for oxalate in Al-stressed cells also negatively influenced the activity of the enzyme alpha-ketoglutarate dehydrogenase complex, no apparent change in the activity of malate synthase was recorded. Thus, it appears that the TCA cycle is tailored in order to generate the necessary precursor for oxalate synthesis as a consequence of Al-stress.  相似文献   

12.
The physiology and central metabolism of a ppc mutant Escherichia coli were investigated based on the metabolic flux distribution obtained by (13)C-labelling experiments using gas chromatography-mass spectrometry (GC-MS) and 2-dimensional nuclear magnetic resonance (2D NMR) strategies together with enzyme activity assays and intracellular metabolite concentration measurements. Compared to the wild type, its ppc mutant excreted little acetate and produced less carbon dioxide at the expense of a slower growth rate and a lower glucose uptake rate. Consequently, an improvement of the biomass yield on glucose was observed in the ppc mutant. Enzyme activity measurements revealed that isocitrate lyase activity increased by more than 3-fold in the ppc mutant. Some TCA cycle enzymes such as citrate synthase, aconitase and malate dehydrogenase were also upregulated, but enzymes of glycolysis and the pentose phosphate pathway were downregulated. The intracellular intermediates in the glycolysis and the pentose phosphate pathway, therefore, accumulated, while acetyl coenzyme A and oxaloacetate concentrations decreased in the ppc mutant. The intracellular metabolic flux analysis uncovered that deletion of ppc resulted in the appearance of the glyoxylate shunt, with 18.9% of the carbon flux being channeled via the glyoxylate shunt. However, the flux of the pentose phosphate pathway significantly decreased in the ppc mutant.  相似文献   

13.
Methylamine metabolism in a pseudomonas species   总被引:16,自引:0,他引:16  
The mechanism by which a nonphotosynthetic bacterium Pseudomonas sp. (Shaw Strain MA) grows on the one-carbon source, methylamine, was investigated by comparing enzyme levels of cells grown on methylamine, to cells grown on acetate or succinate. Cells grown on methylamine have elevated levels of the enzymes serine hydroxymethyl transferase, serine dehydratase, malic enzyme, glycerate dehydrogenase and malate lyase (CoA acetylating ATP-cleaving). These enzymes, in conjunction with a constitutive glyoxylate transaminase, can account for the net conversion of two one-carbon units into acetyl CoA. Cells grown on acetate or methylamine, but not succinate, contain the enzyme isocitrate lyase; while cells grown on acetate or succinate, but not methylamine, contain significant levels of malate synthetase. These findings suggest that the acetyl CoA derived from one-carbon units in methylamine grown cells, condenses with oxalacetate to yield citrate and then isocitrate, followed by cleavage to succinate and glyoxylate. Thus, growth on methylamine is accomplished by the net synthesis of succinate from two molecules of methyamine and two molecules of CO2.  相似文献   

14.
Enzymes of the tricarboxylic acid (TCA) cycle and glyoxylate pathway were investigated in adults and infective larvae of Ancylostoma ceylanicum and Nippostrongylus brasiliensis, and their activities were compared with those obtained in rat liver. A complete sequence of enzymes of the TCA cycle, with most of them showing activities quite similar to those in the rat liver homogenate, was detected in adults of both species. All the enzymes except fumarase and malate dehydrogenase were located predominantly in mitochondria where they showed a variable distribution of activities between the soluble and the membranes fractions. Malate dehydrogenase and fumarase were found in both the mitochondria and the 9,000-g supernatant fraction. Succinyl CoA synthetase, which was present in minimum activity, appeared rate limiting. Enzymes of the glyoxylate pathway, particularly isocitrate lyase, seemed to aid the functioning of the Krebs cycle by allowing the formation of succinate from isocitrate. The infective larvae of both species also were found equipped with all the enzymes of the Krebs cycle. Nonetheless, only isocitrate lyase of the glyoxylate pathway could be detected in these parasites.  相似文献   

15.
Yersinia pestis was found to utilize palmitic acid as a primary carbon and energy source. No inhibition of growth by palmitic acid was observed. Comparison of palmitic acid uptake by cells pregrown either with or without palmitic acid demonstrated that fatty acid uptake was constitutive. High basal levels of two enzymes of beta-oxidation, beta-hydroxyacyl-coenzyme A dehydrogenase and thiolase, and the two enzymes of the glyoxylate shunt, isocitrate lyase and malate synthase, were found in cells grown in defined medium with glucose. Elevated levels of all four enzymes were found when cells were grown with acetate as a primary carbon and energy source, and even higher levels were observed when palmitic acid was provided as a primary carbon and energy source. High-pressure liquid chromatography was used to demonstrate that, in the presence of glucose, uniformly labeled [14C]palmitic acid was converted to intermediates of the tricarboxylic acid cycle and glyoxylate shunt. Pregrowth with palmitic acid was not required for this conversion. Strains lacking the 6- or the 47-megadalton plasmid did not take up [3H]palmitic acid but did possess levels of enzyme activity comparable to those observed in the wild-type strain.  相似文献   

16.
Syntheses of the key enzymes of the glyoxylate cycle, in Candida lipolytica, were highly repressed by glucose. Syntheses of the key enzymes of the methylcitric acid cycle were also slightly repressed by glucose but the degrees of repression in the syntheses of these enzymes were nearly equal to those of repression in the syntheses of several enzymes of the citric acid cycle. All enzyme syntheses repressed by glucose were derepressed during incubation with succinate as well as with n-alkanes: enzyme syntheses of the methylcitric acid cycle did not necessitate the addition of propionate or odd-carbon n-alkanes. The enzymes of the methylcitric acid cycle seem to be constitutive, similarly as those of the citric acid cycle.

In the parent strain, the respective enzyme levels of the cells grown on an odd-numbered n-alkane were similar to those of the cells grown on an even-numbered n-alkane. But in the mutant strain lacking 2-methylisocitrate lyase, the cells grown on the odd-numbered alkane contained aconitate hydratase, NADP-Iinked isocitrate dehydrogenase, isocitrate lyase, 2- methylcitrate synthase and 2-methylaconitate hydratase all at higher levels than the cells grown on the even-numbered alkane. Both the parent cells and the mutant cells grown on the same carbon source contained at individually similar levels of the following six enzymes; citrate synthase, NAD-linked isocitrate dehydrogenase, succinate dehydrogenase, fumarate hydratase, malate dehydrogenase, and malate synthase. The pleiotropic changes of enzyme activities in the mutant cells grown on the odd-numbered alkane seem to be ascribable to direct or indirect stimulation caused by threo-ds-2-methylisocitric acid accumulation.  相似文献   

17.
Results are presented on the intracellular localization of some of the enzymes of gluconeogenesis, of the tricarboxylic acid cycle and of related enzymes in Astasia and Euglena grown with various substrates. The results indicate the particulate nature of at least part of the malate synthase of Astasia and of part of the malate synthase and isocitrate lyase in Euglena. However, the presence of glyoxysomes (microbodies) in Astasia and Euglena is still open to question, since it has not, so far, been possible to separate the enzymes of the glyoxylate cycle from succinate dehydrogenase in the particulate fraction.  相似文献   

18.
The productivity of Escherichia coli as a producer of recombinant proteins is affected by its metabolic properties, especially by acetate production. Two commercially used E. coli strains, BL21 (lambdaDE3) and JM109, differ significantly in their acetate production during batch fermentation at high initial glucose concentrations. E. coli BL21 grows to an optical density (OD, 600 nm) of 100 and produces no more than 2 g/L acetate, while E. coli JM109 grows to an OD (600 nm) of 80 and produces up to 14 g/L acetate. Even in fed-batch fermentation, when glucose concentration is maintained between 0.5 and 1.0 g/L, JM109 accumulates 4 times more acetate than BL21. To investigate the difference between the two strains, metabolites and enzymes involved in carbon utilization and acetate production were analyzed (isocitrate, ATP, phosphoenolpyruvate, pyruvate, isocitrate lyase, and isocitrate dehydrogenase). The results showed that during batch fermentation isocitrate lyase activity and isocitrate concentration were higher in BL21 than in JM109, while pyruvate concentration was higher in JM109. The activation of the glyoxylate shunt pathway at high glucose concentrations is suggested as a possible explanation for the lower acetate accumulation in E. coli BL21. Metabolic flux analysis of the batch cultures supports the activity of the glyoxylate shunt in E. coli BL21.  相似文献   

19.
Mutants of Escherichia coli K-12 constitutive for the synthesis of the enzymes of fatty acid degradation (fadR) have elevated levels of the glyoxylate shunt enzymes, isocitrate lyase and malate synthase. A temperature-sensitive fadR strain has high levels of glyoxylate shunt enzymes when grown at elevated temperatures but has low, inducible levels of glyoxylate shunt enzymes when grown at low temperatures. The increased activity of glyoxylate shunt enzymes did not appear to be due to the degradation of intracellular fatty acids in fadR strains or differences in allosteric effectors in fadR versus fadR+ strains. These studies suggest that the fadR gene product may be involved in the regulation of the glyoxylate operon.  相似文献   

20.
Synthesis of oxalic Acid by enzymes from lettuce leaves   总被引:3,自引:0,他引:3       下载免费PDF全文
A rapid purification of lactate dehydrogenase and glycolate oxidase from lettuce (Lactuca sativa) leaves is described. The kinetics of both enzymes are reported in relation to their possible roles in the production of oxalate. Lettuce lactate dehydrogenase behaves like mammalian dehydrogenase, catalyzing the dismutation of glyoxylate to glycolate and oxalate. A model is proposed in which glycolate oxidase in the peroxisomes and lactate dehydrogenase in the cytosol are involved in the production of oxalate. The effect of pH on the balance between oxalate and glycolate produced from glyoxylate suggests that in leaves lactate dehydrogenase may function as part of an oxalate-based biochemical, pH-stat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号