首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
BACKGROUND: Cdc42 and other Rho GTPases are conserved from yeast to humans and are thought to regulate multiple cellular functions by inducing coordinated changes in actin reorganization and by activating signaling pathways leading to specific gene expression. Direct evidence implicating upstream signals and components that regulate Cdc42 activity or for required roles of Cdc42 in activation of downstream protein kinase signaling cascades is minimal, however. Also, whereas genetic analyses have shown that Cdc42 is essential for cell viability in yeast, its potential roles in the growth and development of mammalian cells have not been directly assessed. RESULTS: To elucidate potential functions of Cdc42 mammalian cells, we used gene-targeted mutation to inactivate Cdc42 in mouse embryonic stem (ES) cells and in the mouse germline. Surprisingly, Cdc42-deficient ES cells exhibited normal proliferation and phosphorylation of mitogen- and stress-activated protein kinases. Yet Cdc42 deficiency caused very early embryonic lethality in mice and led to aberrant actin cytoskeletal organization in ES cells. Moreover, extracts from Cdc42-deficient cells failed to support phosphatidylinositol 4,5-bisphosphate (PIP(2))-induced actin polymerization. CONCLUSIONS: Our studies clearly demonstrate that Cdc42 mediates PIP(2)-induced actin assembly, and document a critical and unique role for Cdc42 in this process. Moreover, we conclude that, unexpectedly, Cdc42 is not necessary for viability or proliferation of mammalian early embryonic cells. Cdc42 is, however, absolutely required for early mammalian development.  相似文献   

2.
Many receptors that are employed for the engulfment of apoptotic cells are also used for the recognition and phagocytosis of bacteria. Tyro3, Axl, and Mertk (TAM) are important in the phagocytosis of apoptotic cells by macrophages. Animals lacking these receptors are hypersensitive to bacterial products. In this report, we examine whether the TAM receptors are involved in the phagocytosis of bacteria. We found that macrophages lacking Mertk, Axl, Tyro3 or all three receptors were equally efficient in the phagocytosis of Gram-negative E. coli. Similarly, the phagocytosis of E. coli and Gram-positive S. aureus bioparticles by macrophages lacking TAM receptors was equal to wild-type. In addition, we found that Mertk did not play a role in killing of extracellular E. coli or the replication status of intracellular Francisella tularensis. Thus, while TAM receptors may regulate signal transduction to bacterial components, they are not essential for the phagocytosis and killing of bacteria.  相似文献   

3.
Actin is one of the most conserved and ubiquitous proteins in eukaryotes. Its sequence has been highly conserved for its monomers to self-assemble into filaments that mediate essential cell functions such as trafficking, cell shape and motility. The malaria-causing parasite, Plasmodium, expresses a highly sequence divergent actin that is critical for its rapid motility at different stages within its mammalian and mosquito hosts. Each of Plasmodium actin’s four subdomains have divergent regions compared to canonical vertebrate actins. We previously identified subdomains 2 and 3 as providing critical contributions for parasite actin function as these regions could not be replaced by subdomains of vertebrate actins. Here we probed the contributions of individual divergent amino acid residues in these subdomains on parasite motility and progression. Non-lethal changes in these subdomains did not affect parasite development in the mammalian host but strongly affected progression through the mosquito with striking differences in transmission to and through the insect. Live visualization of actin filaments showed that divergent amino acid residues in subdomains 2 and 4 enhanced localization associated with filaments, while those in subdomain 3 negatively affected actin filaments. This suggests that finely tuned actin dynamics are essential for efficient organ entry in the mosquito vector affecting malaria transmission. This work provides residue level insight on the fundamental requirements of actin in highly motile cells.  相似文献   

4.
Mosquitoes are vectors of many deadly and debilitating pathogens. In the current study, we used light and electron microscopies to study the immune response of Aedes aegypti hemocytes to bacterial inoculations, Plasmodium gallinaceum natural infections, and latex bead injections. After challenge, mosquitoes mounted strong phagocytic and melanization responses. Granulocytes phagocytosed bacteria singly or pooled them inside large membrane-delimited vesicles. Phagocytosis of bacteria, Plasmodium sporozoites, and latex beads was extensive; we estimated that individual granulocytes have the capacity to phagocytose hundreds of bacteria and thousands of latex particles. Oenocytoids were also seen to internalize bacteria and latex particles, although infrequently and with low capacity. Besides phagocytosis, mosquitoes cleared bacteria and sporozoites by melanization. Interestingly, the immune response toward 2 species of bacteria was different; most Escherichia coli were phagocytosed, but most Micrococcus luteus were melanized. Similar to E. coli, most Plasmodium sporozoites were phagocytosed. The immune response was rapid; phagocytosis and melanization of bacteria began as early as 5 min after inoculation. The magnitude and speed of the cellular response suggest that hemocytes, acting in concert with the humoral immune response, are the main force driving the battle against foreign invaders.  相似文献   

5.
We examined the role of ATP hydrolysis by the Arp2/3 complex in building the leading edge of a cell by studying the effects of hydrolysis defects on the behavior of the complex in the lamellipodial actin network of Drosophila S2 cells and in a reconstituted, in vitro, actin-based motility system. In S2 cells, nonhydrolyzing Arp2 and Arp3 subunits expanded and delayed disassembly of lamellipodial actin networks and the effect of mutant subunits was additive. Arp2 and Arp3 ATP hydrolysis mutants remained in lamellipodial networks longer and traveled greater distances from the plasma membrane, even in networks still containing wild-type Arp2/3 complex. In vitro, wild-type and ATP hydrolysis mutant Arp2/3 complexes each nucleated actin and built similar dendritic networks. However, networks constructed with Arp2/3 hydrolysis-defective mutants were more resistant to disassembly by cofilin. Our results indicate that ATP hydrolysis on both Arp2 and Arp3 contributes to dissociation of the complex from the actin network but is not strictly necessary for lamellipodial network disassembly.  相似文献   

6.
During its life cycle the malarial parasite Plasmodium forms three invasive stages which have to invade different and specific cells for replication to ensue. Invasion is vital to parasite survival and consequently proteins responsible for invasion are considered to be candidate vaccine/drug targets. Plasmodium perforin-like proteins (PPLPs) have been implicated in invasion because they contain a predicted pore-forming domain. Ookinetes express three PPLPs, and one of them (PPLP3) has previously been shown to be essential for mosquito midgut invasion. In this study we show through phenotypic analysis of loss-of-function mutants that PPLP5 is equally essential for mosquito infection. Deltapplp5 ookinetes cannot invade midgut epithelial cells, but subsequent parasite development is rescued if the midgut is bypassed by injection of ookinetes into the hemocoel. The indistinguishable phenotypes of Deltapplp5 and Deltapplp3 ookinetes strongly suggest that these two proteins contribute to a common process.  相似文献   

7.
Malaria ookinetes invade midgut epithelial cells of the mosquito vector from the bloodmeal in the lumen of the mosquito midgut, but the cellular interactions of ookinetes with the mosquito vector remain poorly described. We describe here a novel morphology of Plasmodium gallinaceum ookinetes in which the central portion of the ookinete is an elongated narrow tube or stalk joining the anterior and posterior portions of the parasite. We propose that the previously undescribed stalkform ookinete may be an adaptation to facilitate parasite locomotion through the cytoplasm of mosquito midgut epithelial cells.  相似文献   

8.
Apicomplexan parasites critically depend on a unique form of gliding motility to colonize their hosts and to invade cells. Gliding requires different stage and species-specific transmembrane adhesins, which interact with an intracellular motor complex shared across parasite stages and species. How gliding is regulated by extracellular factors and intracellular signalling mechanisms is largely unknown, but current evidence suggests an important role for cytosolic calcium as a second messenger. Studying a Plasmodium berghei gene deletion mutant, we here provide evidence that a calcium-dependent protein kinase, CDPK3, has an important function in regulating motility of the ookinete in the mosquito midgut. We show that a cdpk3- parasite clone produces morphologically normal ookinetes, which fail to engage the midgut epithelium, due to a marked reduction in their ability to glide productively, resulting in marked reduction in malaria transmission to the mosquito. The mutant was successfully complemented with an episomally maintained cdpk3 gene, restoring mosquito transmission to wild-type level. cdpk3- ookinetes maintain their full genetic differentiation potential when microinjected into the mosquito haemocoel and cdpk3- sporozoites produced in this way are motile and infectious, suggesting an ookinete-limited essential function for CDPK3.  相似文献   

9.
Glycosyl-phosphatidylinositol (GPI)-anchored proteins (GPI-APs) are present at the surface of living cells in cholesterol dependent nanoscale clusters. These clusters appear to act as sorting signals for the selective endocytosis of GPI-APs via a Cdc42-regulated, dynamin and clathrin-independent pinocytic pathway called the GPI-AP-enriched early endosomal compartments (GEECs) pathway. Here we show that endocytosis via the GEECs pathway is inhibited by mild depletion of cholesterol, perturbation of actin polymerization or overexpression of the Cdc42/Rac-interactive-binding (CRIB) motif of neural Wiskott-Aldrich syndrome protein (N-WASP). Consistent with the involvement of Cdc42-based actin nanomachinery, nascent endocytic vesicles containing cargo for the GEEC pathway co-localize with fluorescent protein-tagged isoforms of Cdc42, CRIB domain, N-WASP and actin; high-resolution electron microscopy on plasma membrane sheets reveals Cdc42-labelled regions rich in green fluorescent protein-GPI. Using total internal reflection fluorescence microscopy at the single-molecule scale, we find that mild cholesterol depletion alters the dynamics of actin polymerization at the cell surface by inhibiting Cdc42 activation and consequently its stabilization at the cell surface. These results suggest that endocytosis into GEECs occurs through a cholesterol-sensitive, Cdc42-based recruitment of the actin polymerization machinery.  相似文献   

10.
Early Xenopus embryos are large, and during the egg to gastrula stages, when there is little extracellular matrix, the cytoskeletons of the individual blastomeres are thought to maintain their spherical architecture and provide scaffolding for the cellular movements of gastrulation. We showed previously that depletion of plakoglobin protein during the egg to gastrula stages caused collapse of embryonic architecture. Here, we show that this is due to loss of the cortical actin skeleton after depletion of plakoglobin, whereas the microtubule and cytokeratin skeletons are still present. As a functional assay for the actin skeleton, we show that wound healing, an actin-based behavior in embryos, is also abrogated by plakoglobin depletion. Both wound healing and the amount of cortical actin are enhanced by overexpression of plakoglobin. To begin to identify links between plakoglobin and the cortical actin polymerization machinery, we show here that the Rho family GTPase cdc42, is required for wound healing in the Xenopus blastula. Myc-tagged cdc42 colocalizes with actin in purse-strings surrounding wounds. Overexpression of cdc42 dramatically enhances wound healing, whereas depletion of maternal cdc42 mRNA blocks it. In combinatorial experiments we show that cdc42 cannot rescue the effects of plakoglobin depletion, showing that plakoglobin is required for cdc42-mediated cortical actin assembly during wound healing. However, plakoglobin does rescue the effect of cdc42 depletion, suggesting that cdc42 somehow mediates the distribution or function of plakoglobin. Depletion of alpha-catenin does not remove the cortical actin skeleton, showing that plakoglobin does not mediate its effect by its known linkage through alpha-catenin to the actin skeleton. We conclude that in Xenopus, the actin skeleton is a major determinant of cell shape and overall architecture in the early embryo, and that plakoglobin plays an essential role in the assembly, maintenance, or organization of this cortical actin.  相似文献   

11.
The subcellular localization of Plasmodium berghei circumsporozoite protein and thrombospondin-related adhesive protein (PbCTRP) in the invasive stage ookinete of P. berghei was studied in the midgut of Anopheles stephensi by immuno-electron microscopic observations using polyclonal antibodies and immuno-gold labeling. PbCTRP was found to be associated with the micronemes of a mature ookinete throughout the movement from the endoperitrophic space to the basal lamina of the midgut epithelium. PbCTRP was also observed in the electron-dense area outside the ookinete, which might have been secreted from the apical pore. PbCTRP is found most abundantly at the site of contact between the apical end of an ookinete and the basal lamina of an epithelial cell. These results suggest that PbCTRP functions as an adhesion molecule for ookinete movement into the midgut lumen and epithelial cell and for ookinete association with the midgut basal lamina and transformation into an oocyst.  相似文献   

12.
Ingestion of a blood meal by the female mosquito Anopheles gambiae (L., Diptera: Culicidae), results in a dramatic distention of the midgut epithelium. Here, we report that these events correlate with a transient increase of actin mRNA and protein abundance. The newly synthesized actin may provide a pool of actin protein needed to remodel epithelial cell cytoarchitecture. We also document changes in midgut epithelial cell morphology. Upon blood ingestion, the columnar cells flatten accompanied by the loss of microvilli on the lumenal side and the unfolding of the labyrinth on the basal side. These changes correlate with the large increase of epithelial surface area needed to accommodate the blood meal. Actin gene expression, actin synthesis and cell morphology all return to the pre-feeding state by 24 h after blood intake.  相似文献   

13.
We have constructed isotype-specific subclones from the 3' untranslated regions of alpha-skeletal, alpha-cardiac, beta-cytoskeletal, and gamma-cytoskeletal actin cDNAs. These clones have been used as hybridization probes to assay the number and organization of these actin isotypes in the human genome. Hybridization of these probes to human genomic actin clones (Engel et al., Proc. Natl. Acad. Sci. U.S.A. 78:4674-4678, 1981; Engel et al., Mol. Cell. Biol. 2:674-684, 1982) has allowed the unambiguous assignment of the genomic clones to isotypically defined actin subfamilies. In addition, only one isotype-specific probe hybridizes to each actin-containing gene, with a single exception. This result suggests that the multiple actin genes in the human genome are not closely linked. Genomic DNA blots probed with these subclones under stringent conditions demonstrate that the alpha-skeletal and alpha-cardiac muscle actin genes are single copy, whereas the cytoskeletal actins, beta and gamma, are present in multiple copies in the human genome. Most of the actin genes of other mammals are cytoplasmic as well. These observations have important implications for the evolution of multigene families.  相似文献   

14.
Phenoloxidases (POs) play key roles in various physiological functions in insects, e.g., cuticular sclerotization, wound healing, egg tanning, cuticle formation and melanotic encapsulaction of pathogens. Previously, we identified five POs, designated As-pro-PO I–V, from the mosquito Armigeres subalbatus and demonstrated that the functions of As-pro-PO I, II and III, were associated with filarial parasite melanization, blood feeding and cuticle formation, respectively. In the present study, we delineate the dual functions of As-pro-PO V. We found that the level of As-pro-PO V mRNA in mosquitoes was significantly increased after microfilaria challenge or blood feeding, and decreased to normal level after oviposition. Knockdown of As-pro-PO V by dsRNA resulted in significant decreases in the degree of microfilaria melanization, egg chronic melanization rates and egg hatching rates in Ar. subalbatus. Further transfection and electrophoretic mobility-shift assays verified the As-pro-PO V gene might regulated by both AP-1, a putative immune-related regulatory element and CdxA, a developmental regulatory element. The binding of AP-1 and CdxA motif with mosquito nuclear extracts was significantly enhanced after microfilaria challenge and blood-feeding in Ar. subalbatus, respectively. These results indicate that As-pro-PO V is a critical enzyme that is required for both an effective melanization immune response and egg chorion melanization in this mosquito.  相似文献   

15.

Background

Septins are a highly conserved family of GTP-binding proteins involved in multiple cellular functions, including cell division and morphogenesis. Studies of septins in fungal cells underpin a clear correlation between septin-based structures and fungal morphology, providing clues to understand the molecular frame behind the varied morphologies found in fungal world.

Methodology/Principal Findings

Ustilago maydis genome has the ability to encode four septins. Here, using loss-of-function as well as GFP-tagged alleles of these septin genes, we investigated the roles of septins in the morphogenesis of this basidiomycete fungus. We described that septins in U. maydis could assemble into at least three different structures coexisting in the same cell: bud neck collars, band-like structures at the growing tip, and long septin fibers that run from pole to pole near the cell cortex. We also found that in the absence of septins, U. maydis cells lost their elongated shape, became wider at the central region and ended up losing their polarity, pointing to an important role of septins in the morphogenesis of this fungus. These morphological defects were alleviated in the presence of an osmotic stabilizer suggesting that absence of septins affected the proper formation of the cell wall, which was coherent with a higher sensitivity of septin defective cells to drugs that affect cell wall construction as well as exocytosis. As U. maydis is a phytopathogen, we analyzed the role of septins in virulence and found that in spite of the described morphological defects, septin mutants were virulent in corn plants.

Conclusions/Significance

Our results indicated a major role of septins in morphogenesis in U. maydis. However, in contrast to studies in other fungal pathogens, in which septins were reported to be necessary during the infection process, we found a minor role of septins during corn infection by U. maydis.  相似文献   

16.
The Plasmodium ookinete produces chitinolytic activity that allows the parasite to penetrate the chitin-containing peritrophic matrix surrounding the blood meal in the mosquito midgut. Since the peritrophic matrix is a physical barrier that the parasite must cross to invade the mosquito, and the presence of allosamidin, a chitinase inhibitor, in a blood meal prevents the parasite from invading the midgut epithelium, chitinases (3.2.1.14) are potential targets of malaria parasite transmission-blocking interventions. We have purified a chitinase of the avian malaria parasite Plasmodium gallinaceum and cloned the gene, PgCHT1, encoding it. PgCHT1 encodes catalytic and substrate-binding sites characteristic of family 18 glycohydrolases. Expressed in Escherichia coli strain AD494 (DE3), recombinant PgCHT1 was found to hydrolyze polymeric chitin, native chitin oligosaccharides, and 4-methylumbelliferone derivatives of chitin oligosaccharides. Allosamidin inhibited recombinant PgCHT1 with an IC(50) of 7 microM and differentially inhibited two chromatographically separable P. gallinaceum ookinete-produced chitinase activities with IC(50) values of 7 and 12 microM, respectively. These two chitinase activities also had different pH activity profiles. These data suggest that the P. gallinaceum ookinete uses products of more than one chitinase gene to initiate mosquito midgut invasion.  相似文献   

17.
T‐cell antigen receptor (TCR) engagement induces formation of multi‐protein signalling complexes essential for regulating T‐cell functions. Generation of a complex of SLP‐76, Nck and VAV1 is crucial for regulation of the actin machinery. We define the composition, stoichiometry and specificity of interactions in the SLP‐76, Nck and VAV1 complex. Our data reveal that this complex can contain one SLP‐76 molecule, two Nck and two VAV1 molecules. A direct interaction between Nck and VAV1 is mediated by binding between the C‐terminal SH3 domain of Nck and the VAV1 N‐terminal SH3 domain. Disruption of the VAV1:Nck interaction deleteriously affected actin polymerization. These novel findings shed new light on the mechanism of actin polymerization after T‐cell activation.  相似文献   

18.
19.
Mutations in the budding yeast myosins-I (MYO3 and MYO5) cause defects in the actin cytoskeleton and in the endocytic uptake. Robust evidence also indicates that these proteins induce Arp2/3-dependent actin polymerization. Consistently, we have recently demonstrated, using fluorescence microscopy, that Myo5p is able to induce cytosol-dependent actin polymerization on the surface of Sepharose beads. Strikingly, we now observed that, at short incubation times, Myo5p induced the formation of actin foci that resembled the yeast cortical actin patches, a plasma membrane-associated structure that might be involved in the endocytic uptake. Analysis of the machinery required for the formation of the Myo5p-induced actin patches in vitro demonstrated that the Arp2/3 complex was necessary but not sufficient in the assay. In addition, we found that cofilin was directly involved in the process. Strikingly though, the cofilin requirement seemed to be independent of its ability to disassemble actin filaments and profilin, a protein that closely cooperates with cofilin to maintain a rapid actin filament turnover, was not needed in the assay. In agreement with these observations, we found that like the Arp2/3 complex and the myosins-I, cofilin was essential for the endocytic uptake in vivo, whereas profilin was dispensable.  相似文献   

20.
Parturition is associated with myometrial and cervical inflammation. The causes and consequences of this inflammatory response are not clear. Mast cells (MCs) are important inducers of allergic and non-allergic inflammation, and their secreted products can induce myometrial contractions. Thus, mast cell activation has been hypothesized to have a role in initiating labor and/or driving labor-associated inflammation. We report that small numbers of MCs expressing chymase and tryptase are present in the myometrium and cervix of pregnant women. Labor did not lead to any change in mast cell abundance in these tissues, but was associated with reduced expression of the mast-cell regulator FcεR1A, indicative of a change in mast cell properties. This coincided with contraction-dependent myocyte production of interleukin-10 (IL-10), a known suppressor of FcεR1A expression. MCs were also found in the uterine horn and cervical region of pregnant C57BL/6 mice, increasing in number in the cervix, but not the myometrium, with labor. As expected, these cells were absent from mast-cell-deficient Kit(W-sh) mice. Nonetheless, pregnant Kit(W-sh) mice showed no defects in the timing of labor induction or in the upregulation of leukocyte markers during labor. Thus, MCs are present in the uterus and cervix of humans and mice, and our mouse studies suggest that they do not have a vital role in the induction of labor, or in the promotion of labor-associated inflammation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号