首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study evaluates the specificity of PCR isoepoxydon dehydrogenase (idh) primers on fungi associated with patulin production. The DNAs of 93 strains were extracted and analysed by PCR using primers of the idh gene of patulin biosynthesis. A single band at 620 bp was obtained on 17% of the analysed strains. Different molecular weight amplicons were observed in other strains. These were employed as binary characters for numerical analysis to obtain a dendrogram. Clusters were observed, which corresponded to morphological identifications in some cases. Amplicons at 400 and/or 500 bp were related to patulin non-detection for strains, whereas a 450 bp amplicon was associated with some Aspergillus and both of the Byssochlamys nivea strains tested. Hence, the idh primers are not specific for the gene and provide other amplicon products in other species. These results were useful providing (a) profiles of DNA to identify and classify fungi and (b) insights into patulin production. The DNA profiles in this study may be useful for determining patulin producing fungi. Obtaining multiple bands in culture-independent PCR of environmental samples by using the primers could indicate that more than one species is present.
View More Related Articles
View Record in Scopus
doi:10.1017/S095375620400142X
Copyright © 2004 British Mycological Society Published by Elsevier Ltd.
The isoepoxydon dehydrogenase gene of patulin biosynthesis in cultures and secondary metabolites as candidate PCR inhibitors
R. Russell Patersona,
aMicoteca do Universidade do Minho (MUM), Centro de Engenharia Biológica, Campus de Gualtar, 4710-057 Braga, Portugal.  相似文献   

2.
The iso-epoxy dehydrogenase gene of the patulin metabolic pathway was detected in environmental samples, Penicillium expansum and P. brevicompactum isolated from an organic orchard. Patulin was not detected from P. brevicompactum . Both traits were negative for other penicillia. In general, control of disease and mycotoxin reduction will be optimized only if all sites of infection and contamination are targeted.  相似文献   

3.
Interest in species of the genus Penicillium is related to their ability to produce the mycotoxin patulin and to cause spoilage of fruit products worldwide. The sequence of the isoepoxydon dehydrogenase (idh) gene, a gene in the patulin biosynthetic pathway, was determined for 28 strains representing 12 different Penicillium species known to produce the mycotoxin patulin. Isolates of Penicillium carneum, Penicillium clavigerum, Penicillium concentricum, Penicillium coprobium, Penicillium dipodomyicola, Penicillium expansum, Penicillium gladioli, Penicillium glandicola, Penicillium griseofulvum, Penicillium paneum, Penicillium sclerotigenum and Penicillium vulpinum were compared. Primer pairs for DNA amplification and sequencing were designed from the P. griseofulvum idh gene (GenBank AF006680). The two introns present were removed from the nucleotide sequences, which were translated to produce the IDH sequences of the 12 species for comparison. Phylogenetic relationships among the species were determined from rDNA (ITS1, 5.8 S, ITS2 and partial sequence of 28S rDNA) and from the idh nucleotide sequences minus the two introns. Maximum parsimony analysis showed trees based on rDNA and idh sequences to be congruent. It is anticipated that the genetic information obtained in the present study will aid in the design of probes, specific for patulin biosynthetic pathway genes, to identify the presence of these mycotoxigenic fungi. The U.S. Government's right to retain a non-exclusive, royalty-free license in and to any copyright is acknowledged.  相似文献   

4.
5.
The taxonomy of the asymmetric (predominantly terverticillate) penicillia is based on morphological differences that leave identification difficult. The application of physiological criteria facilitated the identification of the common asymmetric penicillia investigated. Changes in the placement of some strains of these penicillia made the connection to mycotoxin-producing ability clearer. The classical criterion of conidium color was deemphasized and replaced by the following criteria: (i) growth on nitrite-sucrose agar and (ii) growth and acid (and subsequent base) production on creatine-sucrose agar (containing bromocresol purple). Other criteria used or developed were: (iii) growth on sorbic acid plus benzoic acid agar (50 + 50 ppm, pH 3.8), (iv) growth on an agar containing 1,000 ppm propionic acid (pH 3.8), (v) growth on an agar containing 0.5% acetic acid, (vi) growth at 37 degrees C, (vii) growth rate on an agar containing 0.1% pentachloronitrobenzene, (viii) production of extracellular tricaproinase, and (ix) fasciculation on a medium containing 10 ppm botran (2,6-dichloro-4-nitroanilin). The pattern of extracellular metabolites after thin-layer chromatography was used as a chemotaxonomic criterion. The species investigated, the number of isolates investigated, and the toxins which some of these isolates produce were: Penicillium roqueforti (18) (patulin), P. citrinum (11) (citrinin), P. patulum (9) (patulin and griseofulvin), P. expansum (patulin and citrinin), P. hirsutum (13), P. brevicompactum (19), and P. chrysogenum (12). Widespread species of the P. cyclopium, P. viridicatum, and P. expansum series of Raper and Thom (A Manual of the Penicillia, 1949) were subdivided into four new groups: "P. crustosum pA" (29) (penitrem A), "P. melanochlorum" (29), "P. cyclopium p" (119) (penicillic acid and infrequently penitrem A), and "P. viridicatum o-c" (43) (ochratoxin A and citrinin). "P. viridicatum o-c" was separated from "P. cyclopium p" due to its ability to grow on nitrite as sole nitrogen source. The species and groups investigated were related to the new taxonomic classification of the genus Penicillium according to Pitt.  相似文献   

6.
AIMS: To assay sago starch from Papua New Guinea (PNG) for important mycotoxins and to test fungal isolates from sago for mycotoxin production in culture. METHODS AND RESULTS: Sago starch collected from Western and East Sepik Provinces was assayed for aflatoxins, ochratoxin A, cyclopiazonic acid, sterigmatocystin, citrinin and zearalenone and all 51 samples were negative. Frequently isolated species of Penicillium (13), Aspergillus (five) and Fusarium (one) were cultured on wheat grain, and tested for the production of ochratoxin A, cyclopiazonic acid, sterigmatocystin, citrinin, patulin and penicillic acid. All 12 isolates of P. citrinin and one of two A. flavipes isolates produced citrinin. A single isolate of A. versicolor produced sterigmatocystin. No other mycotoxins were detected in these cultures. CONCLUSIONS: No evidence was found of systemic mycotoxin contamination of sago starch. However, the isolation of several mycotoxigenic fungi shows the potential for citrinin and other mycotoxins to be produced in sago stored under special conditions. SIGNIFICANCE AND IMPACT OF THE STUDY: Sago starch is the staple carbohydrate in lowland PNG and the absence of mycotoxins in freshly prepared sago starch is a positive finding. However, the frequent isolation of citrinin-producing fungi indicates a potential health risk for sago consumers, and food safety is dependant on promoting good storage practices.  相似文献   

7.
Patulin is a mycotoxin produced by some species of the fungi Aspergillus and Penicillium, and is often detected in apple products. In this study spores from two fungal species that produce patulin were inoculated with a needle into apples about 1 mm below the skin. After incubation the apples were examined and then divided into 9 or 36 parts for patulin analysis. Patulin was analyzed by the UV–HPLC method. Apples inoculated with Penicillium griseofulvum showed no visual signs of decay and no patulin was detected. Extensive decay was observed on those apples that had been inoculated with Penicillium expansum and more than 1000 μg kg?1 patulin was detected from the site of inoculation. Over 100 μg kg?1 of patulin were detected in parts next to the inoculation site. However, only traces of patulin were detected in those areas where there were no visible signs of decay. Removal of the decayed part of the apple can significantly reduce patulin contamination in the final product.  相似文献   

8.
Mycotoxin production from fungi isolated from grapes   总被引:6,自引:0,他引:6  
AIMS: In order to assess the potential for producing mycotoxins, fungi were isolated from wine producing grapes. METHODS AND RESULTS: The isolates were identified and Penicillium expansum, the most well recognized mycotoxin producer, was analysed for mycotoxin production by TLC. Many of the strains produced patulin and/or citrinin, often depending on whether they were grown on a grape or yeast extract sucrose media. CONCLUSION: Citrinin was produced by all strains grown in the yeast extract sucrose medium, but only one strain (from 51) was able to produce this compound in grape juice medium. Patulin was produced in the yeast extract medium by 20 strains and in grape juice medium by 33 strains. SIGNIFICANCE AND IMPACT OF THE STUDY: The presence of mycotoxins in wine producing grapes is discussed. Grapes contamination with patulin seems not to contribute to wine contamination, and no ochratoxin producing fungi was identified.  相似文献   

9.
Patulin Production in Apples Decayed by Penicillium expansum   总被引:7,自引:5,他引:2       下载免费PDF全文
Sixty isolates of Penicillium expansum were tested for patulin production in decaying apples. All the isolates were found to produce the mycotoxin patulin as determined by thin-layer chromatography. Since patulin is known to be stable in many apple products, the results indicate that apple products made partially from apples decayed by P. expansum will contain patulin which may present a health hazard. The results also suggest that patulin may be important in the decay of apples by P. expansum.  相似文献   

10.
The occurrence of ochratoxin A and ochratoxigenic fungi in the commercial batches of various domestic grains (wheat, rye, barley, corn and rice) has been studied. Penicillium cyclopium, P. viridicatum and P. chrysogenum isolated from grain synthesized on a sucrose-yeast medium predominantly patulin, penicillic and kojic acids. Only 4.4% of the fungal isolates were able to synthesize ochratoxin A. The concentration of the mycotoxin accumulated by the fungi was less than 500 micrograms/kg. 230 samples of wheat and 502 samples of corn were examined. The analysis showed that ochratoxin A was present in 0.9% and 0.1% of samples tested, respectively. The mycotoxin accumulated in grain mainly during its spontaneous heating and was concentrated in mold-damaged kernels.  相似文献   

11.
To evaluate the potential for mycotoxin production by molds in dried beans, the mold flora of 114 samples was determined both before and after surface disinfection of the beans with 5% NaOCl. Surface disinfection substantially reduced mold incidence, indicating that contamination was mainly on the surface. The flora, both before and after disinfection, was dominated by species of the Aspergillus glaucus group, the toxicogenic species A ochracues, Penicillium cyclopium, and P. viridicatum, and species of Alternaria, Cladosporium, and Fusarium. The toxicogenic species Aspergillus flavis, A. versicolor, Penicillium Citrinum, P. expansum, P. islandicum, and P. urticae were encountered less frequently. Of 209 species of Aspergillus and Penicillium screened for mycotoxin production on sterile rice substrate, 114 produced one or more of the following mycotoxins: A. flavus, aflatoxins; A. ochraceus, ochratoxins; A. nidulans, A. unguis, and A. versicolor, sterigmatocystin; P. cyclopium, penicillic acid; P. citrinum and P. viridicatum, citrinin; P. urticae, patulin and griseofulvin. Sterigmatocystin production by A. unguis is reported for the first time.  相似文献   

12.
Penicillium expansum has been grown on Capek-Dox medium using glucose and fructose as carbon source. Preservatives used in fruit processing and introduced in the medium were sorbic acid, formic acid, benzoic acid, SO2 and saccharose. Sulphur dioxide had a most inhibitory effect on mycelium growth and patulin production, formic acid concentration of 0.025% increased the amount of patulin by about 30% as compared to the culture with no preservatives. However its higher concentrations inhibited synthesis of this mycotoxin. Sorbic acid concentration of 0.1% stimulated the fungus strains examined in patulin synthesis but its highest amounts were detected using 0.0125% benzoic acid increased patulin secretion from 8 to 50% as compared to the control, depending on the strain examined. Saccharose concentration up to 50% clearly decreased patulin content in the medium until its total disappearance.  相似文献   

13.
Penicillium expansum strains grown on Capek-Dox liquid medium excreted patulin to the medium. Its amount increased until day 12, then smaller amounts of the toxin were observed. Maximum patulin excretion took place at 25 degrees C, pH 6, although at 5 degrees C, pH 3 the presence of this mycotoxin was also observed. The highest amount of patulin produced was observed in medium containing fructose.  相似文献   

14.
15.
Aims: To assess the ability of fungi isolated from grapes to produce patulin and citrinin. Methods and Results: A total of 446 Aspergillus isolates belonging to 20 species and 101 Penicillium isolates were inoculated in Czapek yeast extract agar and yeast extract sucrose agar and incubated for 7 days at 25°C. Extracts were analysed for patulin and citrinin by thin‐layer chromatography. None of the isolates of Aspergillus spp. produced either patulin or citrinin. Patulin was produced by three isolates of Penicillium expansum and two of Penicillium griseofulvum. Citrinin was produced by five isolates of P. expansum, two of Penicillium citrinum and one of Penicillium verrucosum. Conclusions: Our results show that the Aspergillus and Penicillium species commonly isolated from grapes are not a source of the mycotoxins, patulin and citrinin. Significance and Impact of the Study: The possibility of co‐occurrence of patulin and citrinin with ochratoxin A in grapes and grape products remain low, owing to the low frequency of isolation of potentially producing species.  相似文献   

16.
Topsoil, herbage and faeces collected during an outbreak of ryegrass staggers in sheep were examined for tremorgenic penicillia. No such fungi were recovered from the plant material, but they were found among the predominant fungi in the soil and faecal samples. The commonest species of Penicillium, and almost the only tremorgenic species encountered, was Penicillium janthinellum Biourge. When fed to sheep, the mycelium of this fungus evoked a number of the clinical signs seen in field cases of ryegrass staggers. Two tremorgenic toxins were isolated from the mycelial felts and available evidence indicates that they are verruculogen and fumitremorgin A. P. janthinellum also produced these tremorgens when cultured in moist, autoclaved soil, but not in unheated soil. The results obtained from this study are in accord with the hypothesis that ryegrass staggers is caused by tremorgenic mycotoxins.  相似文献   

17.
The taxonomy of the important mycotoxigenic species Penicillium viridicatum and P. verrucosum was reviewed to clarify disagreements relating to the three P. viridicatum groups erected by Ciegler and coworkers (A. Ciegler, D. I. Fennell, G. A. Sansing, R. W. Detroy, and G. A. Bennett, Appl. Microbiol. 26:271-278, 1973) and the mycotoxins produced by them. Cultures derived from the types of these two species and authentic cultures from each group and from many other sources were examined culturally, microscopically, and for mycotoxin production. It was concluded that P. viridicatum group II has affinities with P. verrucosum and not with P. viridicatum, as indicated by J. I. Pitt in the 1979 monograph (The Genus Penicillium and Its Teleomorphic States Eupenicillium and Talaromyces). As a result of this study it can now be unequivocally stated that the mycotoxins ochratoxin A and citrinin are not produced by P. viridicatum. Of species in subgenus Penicillium, only P. verrucosum is known to produce ochratoxin A.  相似文献   

18.
The taxonomy of the important mycotoxigenic species Penicillium viridicatum and P. verrucosum was reviewed to clarify disagreements relating to the three P. viridicatum groups erected by Ciegler and coworkers (A. Ciegler, D. I. Fennell, G. A. Sansing, R. W. Detroy, and G. A. Bennett, Appl. Microbiol. 26:271-278, 1973) and the mycotoxins produced by them. Cultures derived from the types of these two species and authentic cultures from each group and from many other sources were examined culturally, microscopically, and for mycotoxin production. It was concluded that P. viridicatum group II has affinities with P. verrucosum and not with P. viridicatum, as indicated by J. I. Pitt in the 1979 monograph (The Genus Penicillium and Its Teleomorphic States Eupenicillium and Talaromyces). As a result of this study it can now be unequivocally stated that the mycotoxins ochratoxin A and citrinin are not produced by P. viridicatum. Of species in subgenus Penicillium, only P. verrucosum is known to produce ochratoxin A.  相似文献   

19.
The patulin biosynthesis is one of model pathways in an understanding of secondary metabolite biology and network novelties in fungi. However, molecular regulation mechanism of patulin biosynthesis and contribution of each gene related to the different catalytic enzymes in the biochemical steps of the pathway remain largely unknown in fungi. In this study, the genetic components of patulin biosynthetic pathway were systematically dissected in Penicillium expansum, which is an important fungal pathogen and patulin producer in harvested fruits and vegetables. Our results revealed that all the 15 genes in the cluster are involved in patulin biosynthesis. Proteins encoded by those genes are compartmentalized in various subcellular locations, including cytosol, nucleus, vacuole, endoplasmic reticulum, plasma membrane and cell wall. The subcellular localizations of some proteins, such as PatE and PatH, are required for the patulin production. Further, the functions of eight enzymes in the 10-step patulin biosynthetic pathway were verified in P. expansum. Moreover, velvet family proteins, VeA, VelB and VelC, were proved to be involved in the regulation of patulin biosynthesis, but not VosA. These findings provide a thorough understanding of the biosynthesis pathway, spatial control and regulation mechanism of patulin in fungi.  相似文献   

20.
Summary Conidia of Penicillium urticae were immobilized in Kappa-Carrageenan beads (2–3 mm) by a previously described procedure to yield an in situ grown immobilized cell population which could be induced to produce the antibiotic and mycotoxin, patulin. When repeatedly transferred into a nitrogen-free production medium every 2 days, the patulin productivity of these cells gradually decreased to 50% within 14 days while the total cell protein remained constant. This decline was due to the gradual loss of the cells' catalytic capacity for converting glucose to 6-methylsalicylic acid (6-MSA), the first metabolite of the patulin pathway, as well as for converting 6-MSA to patulin. When these 14 day-old cells were incubated in a nutrient rich growth medium for 2 days their patulin producing activity increased from 50% to 130%. On the other hand the addition of a protein synthesis inhibitor, cycloheximide, to the N-free production medium drastically reduced the patulin producing activity of the immobilized cells; in particular, their capacity for converting 6-MSA to patulin. The cells' patulin producing activity was maintained at >100% for longer than 15 days when the cells were repeatedly transferred into a yeast extract supplemented production medium or when they were occasionally transferred into 10 or 20% strength growth medium. Repeated transfers to a 10% strength growth medium appeared to stabilize the cells' capacity for converting 6-MSA to patulin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号