首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Previous studies suggest that alterations of brain glutamate synthesis and release occur in experimental thiamine deficiency. In order to assess the integrity of post-synaptic glutamatergic receptors in thiamine deficiency, binding sites for [3H]glutamate (displaced by NMDA), [3H]-kainate, and [3H]quisqualate (AMPA sites) were evaluated using Quantitative Receptor Autoradiography in rat brain following 14 days of treatment with the central thiamine antagonist pyrithiamine. Compared to pair-fed controls, brains of symptomatic thiamine-deficient animals contained significantly fewer NMDA-displaceable binding sites in cerebral cortex, medial septum and hippocampus. It has been suggested that NMDA-receptor mediated glutamate excitotoxicity plays a role in the pathogenesis of neuronal loss in thiamine deficiency. If such is the case, the selective loss of NMDA binding sites in cerebral cortex and hippocampus offers a possible explanation for the relative nonvulnerability of these brain regions to pyrithiamine-induced thiamine deficiency. [3H]quisqualate (AMPA) binding sites were unchanged in all brain regions of pyrithiamine-treated rats whereas [3H]kainate sites were significantly reduced in density in medial and lateral thalamus. The decline in these binding sites may be due to neuronal loss in pyrithiamine-induced thiamine deficiency. Alterations of glutamatergic synaptic function involving both NMDA and kainate receptor subclasses could contribute to the pathogenesis of neurological dysfunction in Wernicke's Encephalopathy in humans.  相似文献   

2.
Treatment of rats with the central thiamine antagonist, pyrithiamine, results in severe neurological symptoms such as loss of righting reflex. Measurement of gamma-aminobutyric acid (GABA) content of brain tissue from symptomatic pyrithiamine-treated (PT) rats revealed significant reductions in thalamus, cerebellum, and pons. GABA content of cerebral cortex, however, was unaltered. Activities of the thiamine-dependent enzyme alpha-ketoglutarate dehydrogenase (alpha KGDH) were reduced in parallel with the GABA changes. On the other hand, activities of the GABA-synthetic enzyme glutamic acid decarboxylase (GAD) remained within normal limits, with the exception of a small but significant decrease in thalamus of symptomatic PT rats. Affinities and densities of high-affinity [3H]muscimol binding sites on crude cerebral membrane preparations from symptomatic PT rats were unchanged. Thiamine administration to symptomatic animals resulted in correction of abnormal righting reflexes and in normalization of decreased GABA levels and reduced alpha KGDH activities in cerebellum and pons. Thalamic GABA levels and alpha KGDH activities, on the other hand, remained significantly lower than normal. These results suggest that the reversible symptoms of pyrithiamine treatment may result from imparied GABA synthesis in cerebellum and pons of these animals. Similar mechanisms may play a role in the pathogenesis of the reversible symptoms of Wernicke's encephalopathy in man.  相似文献   

3.
Thiamine deficiency (TD) results in region‐selective impairment of brain metabolism. Since thiamine is a cofactor for enzymes involved in glucose metabolism, 1H and 13C‐NMR was used to investigate metabolic fluxes through the major pathways of glucose metabolism in vulnerable (medial thalamus, MT; inferior colliculus, IC) and nonvulnerable brain structures of rats made thiamine deficient following treatment with the central thiamine antagonist pyrithiamine vs. pair‐fed controls. Symptomatic stages of TD resulted in decreased glutamate and GABA in MT an IC confirming previous biochemical studies. 13C‐isotopomer analysis revealed decreased de novo synthesis of [4–13C]glutamate (30%p < 0.02) and [2–13C]GABA (60%p < 0.01) in MT and IC consistent with decreased activities of pyruvate‐ and α‐ketoglutarate dehydrogenases. These changes were accompanied by decreased consumption of glucose and increased synthesis of lactate from [1–13C]glucose confirming decreased mitochondrial metabolism. Accumulation of glyceraldehyde‐3‐phosphate suggested inhibition of glucose flux through the thiamine‐deficient enzyme transketolase. Onset of symptoms of TD and significant cell death was accompanied by decreased neuronal marker molecules NAA and NAAG in MT. Focal lactate accumulation resulting from decreased activities of mitochondrial thiamine‐dependent enzymes appears to play a key role in the pathogenesis of selective neuronal cell death in TD. [funded by CIHR Canada].  相似文献   

4.
Although earlier studies on thiamine deficiency have reported increases in extracellular glutamate concentration in the thalamus, a vulnerable region of the brain in this disorder, the mechanism by which this occurs has remained unresolved. Treatment with pyrithiamine, a central thiamine antagonist, resulted in a 71 and 55% decrease in protein levels of the astrocyte glutamate transporters GLT-1 and GLAST, respectively, by immunoblotting in the medial thalamus of day 14 symptomatic rats at loss of righting reflexes. These changes occurred prior to the onset of convulsions and pannecrosis. Loss of both GLT-1 and GLAST transporter sites was also confirmed in this region of the thalamus at the symptomatic stage using immunohistochemical methods. In contrast, no change in either transporter protein was detected in the non-vulnerable frontal parietal cortex. These effects are selective; protein levels of the astrocyte GABA transporter GAT-3 were unaffected in the medial thalamus. In addition, astrocyte-specific glial fibrillary acidic protein (GFAP) content was unchanged in this brain region, suggesting that astrocytes are spared in this disorder. Loss of GLT-1 or GLAST protein was not observed on day 12 of treatment, indicating that down-regulation of these transporters occurs within 48 h prior to loss of righting reflexes. Finally, GLT-1 content was positively correlated with levels of the neurofilament protein alpha-internexin, suggesting that early neuronal drop-out may contribute to the down-regulation of this glutamate transporter and subsequent pannecrosis. A selective, focal loss of GLT-1 and GLAST transporter proteins provides a rational explanation for the increase in interstitial glutamate levels, and may play a major role in the selective vulnerability of thalamic structures to thiamine deficiency-induced cell death.  相似文献   

5.
Thiamine deficiency provides an effective model of selective neuronal cell death. 1H and 13C-NMR was used to investigate the effects of thiamine deficiency on the synthesis of amino acids derived from [1-13C]glucose in vulnerable (medial thalamus; MT) compared to non-vulnerable (frontal cortex; FC) brain regions. Following 11 days of thiamine deficiency, a time-point associated with the absence of significant neuronal cell death, regional concentrations of glutamate, glutamine and GABA remained unaffected in FC and MT; however, decreased levels of aspartate in MT at this time-point were a predictor of regional vulnerability. De novo synthesis of glutamate and GABA were unaffected at 11 days of thiamine deficiency, while synthesis of [2-13C]aspartate was significantly impaired. Glucose loading, which has been shown to exacerbate symptoms in patients with thiamine deficiency, resulted in further decreases of TCA cycle flux and reduced de novo synthesis of glutamate, aspartate and GABA in thiamine-deficient (TD) rats. Isotopomer analysis revealed that impaired TCA cycle flux and decreased aspartate synthesis due to thiamine deficiency occurred principally in neurons. Glucose loading deteriorated TD-related decreases in TCA cycle flux, and concomitantly reduced synthesis of aspartate and glutamate in MT.  相似文献   

6.
EFFECT OF γ-AMINOBUTYRIC ACID ON BRAIN SEROTONIN AND CATECHOLAMINES   总被引:1,自引:0,他引:1  
—Intraperitoneal injections of GABA (5 mg/kg) to rats lowered the level of norepinephrine in brain, heart and spleen but not suprarenals and raised that of serotonin in brain. Changes of these monoamines were most pronounced in the hypothalamic region after 20min. A reduction of hypothalamic norepinephrine was also observed 15min following the intracarotid administration of 0·5 mg/kg of GABA. In these experiments there was a concomitant increase in the level of free GABA in the anterior portion of the ventral hypothalamus. Brain dopamine level and 5-hydroxytryptophan decarboxylase, dihydroxyphenylalanine decarboxylase and monoamine oxidase activities were not affected. The 20 per cent increase of endogenous GABA observed in the midbrain 30 min following the administration of amino-oxyacetic acid was accompanied by a sharp fall in norepinephrine level (39 per cent) and an increase in serotonin (20 per cent). In in vitro studies 10–300 μg/ml of GABA were shown to release norepinephrine from cortical and hypothalamic slices, and to inhibit serotonin release without affecting 5-hydroxytryptophan uptake and to have no effect on the release of dopamine from slices of the region of the corpus striatum nor on the activity of the enzymes mentioned. Subcellular studies showed that the particulate:supernatant ratio for norepinephrine was reduced from a control value of 2·04 to 1·75 and that of serotonin was raised from 2·8 to 3·5. Following pretreatment with iproniazid, GABA reduced the raised level of brain norepinephrine to a greater extent than reserpine but not as intensively as amphetamine. The results obtained suggest that these monoamines may be involved in the mechanisms underlying the action of GABA in brain and that the effect of GABA on brain monoamines may be of certain significance in synaptic events.  相似文献   

7.
Chronic thiamine deprivation in the rat leads to selective neuropathological damage to pontine structures. Onset of neurological symptoms of thiamine deprivation (ataxia, loss of righting reflex) was accompanied by selective decreases (of the order of 30%) in the activity of -ketoglutarate dehydrogenase (KGDH) in lateral vestibular nucleus and hypothalamus. Enzyme activities were decreased to a lesser extent in medulla oblongata, striatum and hippocampus and were unchanged in other brain structures. No changes in KGDH occurred prior to the onset of neurological signs of thiamine deprivation. Administration of the central thiamine antagonist, pyrithiamine, results within 3 weeks in loss of righting reflex and convulsions and in more widespread neuropathological changes than those observed following thiamine deprivation. KGDH activities were found to be substantially diminished in all brain regions studied following pyrithiamine treatment with most severe changes occurring in brain regions found to be vulnerable to pyrithiamine (lateral vestibular nucleus, hypothalamus, midbrain, medullapons). In some cases, KGDH changes preceded the appearance of neurological symptoms of pyrithiamine treatment. Such decreases in KGDH may explain previous findings of region-selective changes in energy metabolism and of decreased synthesis of glucose-derived neurotransmitters (acetylcholine, GABA, glutamate) in pyrithiamine-treated rat brain. Thiamine administration to symptomatic pyrithiamine treated rats resulted in reversal of neurological signs of encephalopathy and in normalisation of defective KGDH activity in all brain regions. These findings suggest that the reversible neurological symptoms associated with Wernicke's Encephalopathy in man likely result from region-selective impairment of KGDH.  相似文献   

8.
Abstract— The loss of GABA, norepinephrine and serotonin and the uptake of GABA (in the presence of 1 mM-GABA) and the effect of GABA on the loss of norepinephrine and serotonin were investigated in rat midbrain slices incubated in media of various compositions. In a medium of low Na+ concentration the loss of serotonin from incubated slices was markedly inhibited while that of norepinephrine and GABA was significantly increased. Conversely the most pronounced loss of serotonin from slices was observed on the addition of ouabain to a medium of a balanced ionic composition. Whereas the loss of serotonin from slices increased in a medium of high K+ content, it was significantly reduced after 45 min incubation in a high K+-low Na+ medium. In all the modified media used, a significant loss of norepinephrine was observed while that of GABA was not affected by the omission of Ca2+ and was slightly reduced in the absence of K+. GABA enhanced the loss of norepinephrine and inhibited that of serotonin in a high-K+ medium and in one with a balanced ionic composition. A deficiency of Na+ in the medium had a differential effect on the loss of norepinephrine and serotonin similar to that observed with 1 mM-GABA. These results suggest that Na+ may be of crucial importance in the release of serotonin from midbrain slices and that an enhancement of the Na+ extrusion mechanism at the synaptosomal level may be involved in the effect of GABA on brain monoamines.  相似文献   

9.
Neurotoxic effects of methoxychlor (MTX) are poorly understood at present. This study was undertaken to evaluate the possible effects of MTX in norepinephrine, dopamine and amino acid contents and serotonin turnover in rat striatum. For this purpose, adult male Sprague-Dawley rats were administered 25 mg/kg/day of MTX in sesame oil or vehicle only for 30 days. The neurotransmitters of interest were measured in the striatum by HPLC. MTX decreased norepinephrine and 5-hydroxyindole acetic acid (5-HIAA) content and serotonin turnover (measured as 5-HIAA/serotonin ratio), and increased glutamate and GABA concentrations. However, the content of serotonin, aspartate, glutamine and taurine was not modified by MTX exposure. These data suggest that MTX exposure inhibits norepinephrine synthesis and serotonin metabolism. The inhibitory effect on norepinephrine could be explained, at least in part, by the increase of both GABA and glutamate contents. Further studies are needed to understand the effects of MTX on serotonin. Also a disruptive effect of MTX on the metabolisms of glutamate, aspartate, glutamine and GABA emerges.  相似文献   

10.
The effects of thiamine deficiency and of the antithiamine drug pyrithiamine on the C-6 glioma and the C-1300 neuroblastoma cell lines have been studied. Thiamine deficiency increased the doubling time of the neuroblastoma cells without affecting that of the glioma cells. Pyrithiamine prevented both cell lines from doubling even once. (hiamine deficiency had only slight effects on intracellular pyruvate and lactate levels or on efflux rates for the acids, but pyrithiamine treatment resulted in large increases in both the intracellular levels and the efflux in both cell lines. For comparison, the pyruvate and lactate levels in mouse brain were measured. The levels from thiamine-deficient mouse brain were essentially unchanged from controls while pyrithiamine treatment caused a significant elevation only of the pyruvate concentration.  相似文献   

11.
Abstract— Thiamine deficiency produced by administration of pyrithiamine to rats maintained on a thiamine-deficient diet resulted in a marked disturbance in amino acid and glucose levels of the brain. In the two pyrithiamine-treated groups of rats (Expt. A and Expt. B) there was a significant decrease in the levels of glutamate (23%, 9%) and aspartate (42%, 57%), and an increase in the levels of glycine (26%, 27%) in the brain, irrespective of whether the animals showed signs of paralysis (Expt. A) or not (Expt. B). as a result of thiamine deficiency. A significant decrease in the levels of γ-aminobutyrate (22%) and serine (28%) in the brain was also observed in those pyrithiamine-treated rats which showed signs of paralysis (Expt. A). Threonine content increased by 57% in Expt. A and 40% in Expt. B in the brain of pyrithiamine-treated rats, but these changes were not statistically significant. The utilization of [U-14C]glucose into amino acids decreased and accumulation of glucose and [U-14C]glucose increased significantly in the brain after injection of [U-14C]glucose to pyrithiamine-treated rats which showed abnormal neurological symptoms (Expt. A). The decrease in 14C-content of amino acids was due to decreased conversion of [U-14C]glucose into alanine, glutamate, glutamine, aspartate and γ-aminobutyrate. The flux of [14C]glutamate into glutamine and γ-aminobutyrate also decreased significantly only in the brain of animals paralysed on treatment with pyrithiamine. The decrease in the labelling of, amino acids was attributed to a decrease in the activities of pyruvate dehydrogenase and α-oxoglutarate dehydrogenase in the brain of pyrithiamine-treated rats. The measurement of specific radioactivity of glucose, glucose-6-phosphate and lactate also indicated a decrease in the activities of glycolytic enzymes in the brain of pyrithiamine-treated animals in Expt. A only. It was suggested that an alteration in the rate of oxidation in vivo of pyruvate in the brain of thiamine-deficient rats is controlled by the glycolytic enzymes, probably at the hexokinase level. The lack of neurotoxic effect and absence of significant decrease in the metabolism of [U-14C]glucose in the brain of pyrithiamine-treated animals in Expt. B were probably due to the fact that animals in Expt. B were older and weighed more than those in Expt. A, both at the start and the termination of the experiments.  相似文献   

12.
Brain levels of y-aminobutyric acid (GABA), glutamate and 2-oxoglutarate, activities of glutamate decarboxylase GABA-transaminase plus succinic semiaidehyde dehydrogenase and blood levels of glutamate and 2-oxoglutarate were determined in normal, thiamine-deprived, oxythiamine-treated and pyrithiamine-treated rats. Brain GABA levels were significantly reduced in thiamine-deprived and pyrithiamine-treated rats, but the activities of the enzymes of the GABA shunt pathway were not affected. Brain levels of glutamate were decreased and of 2-oxoglutarate increased in all three types of deficiency. This was associated with similar decreases in glutamate and increases in 2-oxoglutarate in the blood in all three deficient groups. Intraventricular injections of 2-[U-14C] oxoglutarate into the brain in these four groups of rats resulted in some significant differences in distribution of 14C in various TCA-pathway intermediates and satellite compounds in the brain. Increases in 14C-label were observed for glutamine and 2-oxoglutarate in all three deficient groups as compared to controls. The 14C content of succinate, fumarate and aspartate was decreased in the thiamine deprived and PTh-treated groups and [14C]glutamate was decreased in all three deficient groups. The 14C content of GABA was not significantly affected.  相似文献   

13.
Abstract— The effects of thiamine deprivation and of treatment with the thiamine antagonists, oxythiamine and pyrithiamine, on the storage and synthesis of acetylcholine were studied in rats. Rats treated with pyrithiamine always developed ataxia and convulsions, and they died in an average of 36 ± 5.0 hr after onset of convulsions. Injections of sublethal doses of eserine after onset of convulsions had no effect or shortened survival time. If injections were started before the onset of convulsions, the survival time was increased to 56 ± 3.3 hr. The content of total acetylcholine-like compounds, measured by bioassay, in the brain was decreased in all three types of thiamine deficiency. On the other hand, the amount of parenterally administered [14C]pyruvate converted to [14C]acetylcholine in vivo was affected only by treatment with pyrithiamine. The increase found was probably due to an increased permeability of the blood-brain barrier to the pyruvate. Conversion of [14C]pyruvate to [14C]acetylcholine in vitro was decreased significantly in homogenates of brains from both oxythiamine and pyrithiamine-treated animals.  相似文献   

14.
Abstract: Biochemical alterations of serotoninergic parameters have been demonstrated in experimental thiamine deficiency. In addition, hypophagia and hypothermia, two physiological processes associated with changes in the serotonin [5-hydroxytryptamine (5-HT)] system, are manifest early during the progression of thiamine deficiency. The binding of selected 5-HT radioligands was therefore investigated in discrete brain regions of pyrithiamine-induced thiamine-deficient rats. Using quantitative receptor autoradiography, the binding of 8-hydroxy-2-(di- n -[3H]propylamino)tetralin, a ligand used to label the somatodendritic 5-HT1A autoreceptor of the dorsal raphe nucleus, was found to be unaffected in this region, suggesting that the structural integrity of the 5-HT cell bodies is maintained throughout the course of pyrithiamine treatment. Increased binding of [3H]-ketanserin was observed in regions considered vulnerable as well as in some considered to be nonvulnerable during the course of thiamine deficiency. These binding changes, which appear to represent changes in the density of the postsynaptic 5-HT2A receptor population rather than the "tetrabenazine-sensitive" vesicular monoamine transporter, are evident before the appearance of histopathologic lesions and coincide with altered tissue concentrations of 5-HT. These data suggest that 5-HT neurons, although structurally intact, are functionally affected early during the progression of thiamine deficiency. These alterations, which are likely a part of adaptive neuronal change consequent to thiamine dysfunction, may be important in the physiological manifestations and the learning deficits commonly encountered in experimental thiamine deficiency.  相似文献   

15.
The current study measured extracellular fluid (ECF) levels of excitatory amino acids before and during the onset of thiamine deficiency-induced pathologic lesions. Male Sprague-Dawley rats were treated with daily pyrithiamine (0.25 mg/kg i.p.) and a thiamine-deficient diet (PTD). Microdialysates were simultaneously collected from probes inserted acutely via guide cannulae into right paracentral and ventrolateral nuclei of thalamus and left hippocampus of PTD and pair-fed controls. Hourly samples were collected from unanesthetized and freely moving animals. Basal levels obtained at a prelesion stage (day 12 of PTD treatment) were unchanged from levels in pairfed controls. In samples collected 4–5 h after onset of seizures (day 14 of PTD), the levels of glutamate were elevated an average 640% of basal levels in medial thalamus and 200% in hippocampus. Glutamine levels declined, taurine and glycine were elevated, and aspartate, GABA, and alanine were unchanged during this period. Within 7 h after seizure onset glutamine was undetectable in both areas, whereas glutamate had declined to ~200% in thalamus and 70% in hippocampus. No significant change in glutamate, aspartate, or other amino acids was observed in dialysates collected from probes located in undamaged dorsal-lateral regions of thalamus. Number of neurons within ventrolateral nucleus of thalamus was significantly greater in PTD animals in which the probe was dialyzed compared with nondialyzed, suggesting that removal of excitatory amino acids was protective. No significant pathologic damage was evident in hippocampus. Pretreatment with MK-801 completely blocked the rise of ECF glutamate and significantly reduced the pathologic damage within thalamus of PTD rats and produced a significant decrease in ECF glutamate in control rats.  相似文献   

16.
The encephalopathy caused by severe thiamine depletion of the mammalian CNS is accompanied by regionally selective changes in neurotransmitter function. Thiamine deficiency induced by administration of the central thiamine antagonist, pyrithiamine, causes more widespread lesions and accompanying changes in neurotransmitter function than does the deficiency state induced by chronic deprivation of the vitamin. There is convincing evidence for a central muscarinic cholinergic lesion in pyrithiamine-treated rats and neuropharmacological studies show that this lesion is partially responsible for the neurological deficit resulting from this treatment. There is also good evidence to suggest that thiamine deprivation selectively affects cerebellar afferent and efferent systems. Included in these are a loss of serotoninergic mossy fibres and of the functional integrity of glutamatergic granule cells. In addition, abnormalities of both nerve terminals and glial cells are found in lateral vestibular nucleus and it has been proposed that a loss of Purkinje cell terminals and concomitant decreases of pontine GABA may reflect these changes. The selective vulnerability of brain structures to thiamine deprivation is reflected in (i) the turnover rate of total thiamine in these areas and (ii) the selective decreases in activity of the thiamine pyrophosphate dependent enzyme pyruvate dehydrogenase.  相似文献   

17.
Previous studies describe decreased acetylcholine synthesis in brain as well as neurobehavioural evidence for a central muscarinic cholinergic deficit in pyrithiamine-induced thiamine-deficient rats. In order to further evaluate this possibility, quantitative autoradiographic procedures using [3H]quinuclidinyl benzilate (for total muscarinic binding sites), [3H]pirenzepine (for muscarinic M1 sites) and [3H]AF-DX 384 (for muscarinic M2 sites) were performed at early (presymptomatic) and late (symptomatic) stages of thiamine deficiency induced in rats by administration of the central thiamine antagonist, pyrithiamine. No significant alterations in densities of M1, M2 or total muscarinic binding sites were observed in any brain structure evaluated at either early or late stages of thiamine deficiency. These findings do not support a major role for modifications of muscarinic cholinergic function in the pathogenesis of the neurological symptoms of thiamine deficiency.  相似文献   

18.
Thiamine deficiency results in selective neuronal cell death in thalamic structures. Previous studies provide evidence for a role implicating nitric oxide (NO) in the pathogenesis of cell death due to thiamine deficiency. In order to ascertain the origin of increased NO in the thiamine deficient brain, expression of endothelial nitric oxide synthase isoform (eNOS), was measured in the medial thalamus and in the inferior colliculus and compared to the frontal cortex (a spared region) of rats in which thiamine deficiency was induced through a feeding protocol of thiamine-deficient diet concomitant with daily administration of pyrithiamine, a central thiamine antagonist. eNOS mRNA and protein expression were significantly increased as a function of the severity of neurological impairment and the degree of neuronal cell loss in the medial thalamus and in the inferior colliculus. These findings suggest that the vascular endothelium is a major site of NO production in the brain in thiamine deficiency and that eNOS-derived NO could account for the selective damage to the thalamic structures that are observed in this particular disorder.  相似文献   

19.
Chronic thiamine deprivation in the rat leads to selective neuropathological damage in brainstem structures whereas treatment with the central thiamine antagonist, pyrithiamine, results in more widespread damage. In order to further elucidate the neurochemical mechanisms responsible for this selective damage, the thiamine-dependent enzyme complex pyruvate dehydrogenase (PDHC) was measured in 10 brain structures in the rat during progression of thiamine deficiency produced by chronic deprivation or by pyrithiamine treatment. Feeding of a thiamine-deficient diet to adult rats resulted in 5–7 weeks in ataxia and loss of righting reflex accompanied by decreased blood transketolase activities. PDHC activities were selectively decreased by 15–30% in midbrain and pons (lateral vestibular nucleus). Thiamine treatment of symptomatic rats led to reversal of neurological signs and to concomitant reductions of the cerebral PDHC abnormalities. Daily pyrithiamine treatment led within 3 weeks to loss of righting reflex and convulsions and to decreased blood transketolase of a comparable magnitude to that observed in chronic thiamine-deprived rats. No significant regional alterations of PDHC, however, were observed in pyrithiamine-treated rats.  相似文献   

20.
A simple and rapid method based on the NADH-linked reduction of a tetrazolium dye was described for the determination of pyruvate dehydrogenase activity in rat brain homogenates. The method (method 3) gave a value of 36.06 +/- 1.24 nmol of pyruvate utilised/min/mg of whole brain protein. This value was higher than that obtained by measurement of the rate of decarboxylation of [1-14C]pyruvate (15.10 +/- 0.88 nmol/min/mg of protein; method 1) and was comparable with the rate of transfer of acetyl groups to an arylamine (39.04 +/- 1.32 nmol/min/mg of protein; method 2). A critique of the values reported by others by different methods was given. The pyruvate dehydrogenase activity in the mitochondria isolated from rat brain was in the "active" (nonphosphorylated) form. A deficiency of thiamine in rats was produced by treatment with pyrithiamine, an antagonist of thiamine. This treatment resulted in abnormal neurological signs, such as ataxia and convulsions. The measurement of the total activity of pyruvate dehydrogenase in the brain by all three methods showed no significant change in the enzymic activity in thiamine-deficient rats after treatment with pyrithiamine. The activities of the enzyme in the brains of pair-fed animals were similar to those in the controls.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号