首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
The results of a study of diatoms from surface sediments (0–1 cm) of Amurskiy Bay are presented for the first time. The specific composition (221 species and intraspecific taxa) and ecological structure of the diatom flora were determined. The diatom species composition of phytoplankton, periphyton, and surface sediments is compared.  相似文献   

2.
We conducted a field survey of periphyton cultivated on benthic mesh installations in freshwater aquatic systems, including two constructed wetlands and a pond, and also studied periphyton grown on a benthic mesh in laboratory mesocosms. The objectives of this study were to (1) determine if periphyton cultivated on benthic mesh denitrifies at higher rates than the underlying sediments and (2) determine if denitrification rates within periphyton vary with characteristics such as algal and bacterial community structure and biomass. We measured denitrification potential rates of field and laboratory periphyton by the acetylene inhibition method. We characterized algal community composition by algal identification and bacterial community composition by terminal restriction fragment length polymorphisms. Periphyton collected on benthic mesh from our field sites denitrified at significantly higher rates than the underlying sediments, regardless of sampling site or season. Results from both our field survey and laboratory studies indicated a significant, positive correlation between diatom presence and denitrification rate. In our laboratory studies, we found that periphyton with the highest diatom abundance showed the highest denitrification rates as well as a distinct bacterial community composition. These results suggest a synergistic relationship between diatoms and denitrifying bacteria that warrants further study.  相似文献   

3.
Periphyton plays an important role in stream ecology, and can be sensitive to macroinvertebrate grazers, near-bed current velocity, and bedload abrasion. We manipulated conditions to examine influences on periphytic accrual in the St. Anthony Falls Laboratory Outdoor StreamLab in Minneapolis, MN, USA. Macroinvertebrate grazers were excluded from 27 of 65 clay tiles using electric pulses. We examined periphytic biomass accrual as a function of grazer presence, sampling run, and near-bed current velocity using ANCOVA. We found significant temporal differences between sampling runs but no significant effect of grazer presence. Along with a strong association between bedload transport rates and mean periphytic biomass, our results suggest that grazers are relatively unimportant in stream systems with high levels of physical disturbance from floods and associated sand bedload. However, the interaction between grazer presence and velocity was marginally significant. Regression analyses showed no relation between velocity and periphyton in the absence of grazers but a negative relation when grazers were present, suggesting that mechanical dislodgement of periphyton by grazers may increase with velocity. We conclude that grazers can have subtle effects on periphyton, particularly in streams with high bedload transport rates.  相似文献   

4.
  • 1 The resistance and resilience of littoral zone communities to sedimentation will depend both on the extent to which sediment deposition affects productivity, and on interactions within the communities. A series of hypotheses were set up and tested to examine interactions and feedback mechanisms among deposited sediments, periphyton, macrophytes and grazers in a large oligotrophic lake subject to fluctuating sediment loadings.
  • 2 Although sediments incorporated into periphyton reduced light availability to macrophytes, periphytic algae were generally the dominant light absorbing component under natural conditions. When grazers were absent, both sediments incorporated in the periphyton and periphytic algal densities increased, and both were then important in reducing light available to macrophytes.
  • 3 Grazing rate and assimilation efficiency for the dominant grazer, the prosobranch gastropod Potamopyrgus antipodarum, increased with increasing sediment content under natural lake conditions to reach a maximum at 10 mg sediment cm?2.
  • 4 An increase in sediment incorporation into periphyton films resulted in an increased grazing rate and hence grooming of sediments from macrophytes.
  • 5 Grazing invertebrates can play a major role in maintenance of littoral communities by continuously grooming macrophyte hosts of periphytic algae and settled sediments.
  相似文献   

5.
Epilithic periphyton communities were sampled at three sites on the Minnesota shoreline of Lake Superior from June 2004 to August 2005 to determine if fecal coliforms and Escherichia coli were present throughout the ice-free season. Fecal coliform densities increased up to 4 orders of magnitude in early summer, reached peaks of up to 1.4x10(5) CFU cm-2 by late July, and decreased during autumn. Horizontal, fluorophore-enhanced repetitive-PCR DNA fingerprint analyses indicated that the source for 2% to 44% of the E. coli bacteria isolated from these periphyton communities could be identified when compared with a library of E. coli fingerprints from animal hosts and sewage. Waterfowl were the major source (68 to 99%) of periphyton E. coli strains that could be identified. Several periphyton E. coli isolates were genotypically identical (>or=92% similarity), repeatedly isolated over time, and unidentified when compared to the source library, suggesting that these strains were naturalized members of periphyton communities. If the unidentified E. coli strains from periphyton were added to the known source library, then 57% to 81% of E. coli strains from overlying waters could be identified, with waterfowl (15 to 67%), periphyton (6 to 28%), and sewage effluent (8 to 28%) being the major potential sources. Inoculated E. coli rapidly colonized natural periphyton in laboratory microcosms and persisted for several weeks, and some cells were released to the overlying water. Our results indicate that E. coli from periphyton released into waterways confounds the use of this bacterium as a reliable indicator of recent fecal pollution.  相似文献   

6.
Periphyton stoichiometry can vary substantially as a result of differences in stream nutrient availability. A decrease in the periphyton carbon to phosphorus (C:P) ratio should decrease the demand for new P to be immobilized from stream water, but no studies to our knowledge have explored the relationship between periphyton stoichiometry and net P immobilization and release by periphyton. We sought to model biological P immobilization and release (flux) in streams by measuring periphyton stoichiometry and light availability. We measured P flux to and from intact periphyton on stream cobbles (20–100 mm diameter) in 1 L microcosms incubated with streamwater under variable light conditions. Net P immobilization occurred in 75% of microcosms, net P release occurred in only 5% of microcosms, and 20% of microcosms had neither net immobilization nor net release. When normalized to stream conditions, net P immobilization was highest when light availability was high (<60% canopy attenuation) and the periphyton C:P ratio was also high. In contrast, net P release occurred only when light availability was low (>60% canopy attenuation) and the periphyton C:P ratio was also low. A multiple regression model that included both periphyton stoichiometry and light availability from the growing season only, and the interaction term of these two variables, explained 99% of the variation in daily periphyton P flux observed in the study. These results indicate that in order to predict periphyton P immobilization, periphyton stoichiometry and light availability should be considered together. Furthermore, the results indicate that net P immobilization occurs even in very P-rich periphyton, which can act as a P sink when light availability is high.  相似文献   

7.
Two stable isotopes δ13C and δ15N were used to identify the energy sources and trophic relationships of the main freshwater macroinvertebrates in a floodplain lake of the Beni River (Bolivian Amazonia). Four energy sources (seston, bottom sediment, periphyton, and aquatic macrophytes) and macroinvertebrate communities were collected during three periods of the river hydrological cycle. Macroinvertebrates showed greater temporal variation in isotope values than their food sources. Six trophic chains were identified: four were based on seston, periphyton, C3 macrophytes, and bottom sediments, and the last two chains on a combination of two carbon sources. One mixed seston and periphyton sources during the wet season while the other mixed periphyton and macrophytes sources during the wet and dry seasons. Periphyton was the most important energy source supporting the highest number of trophic levels and consumers. The macrophytic contribution was only significant during the dry season. Bottom sediments constituted a marginal energy source. As each season is associated with different physical and chemical conditions, processes organizing macroinvertebrate food web structure in the Beni floodplain seem strongly linked to hydrological seasonality.  相似文献   

8.
9.
In situ mesocosm experiments were performed under summer (1997) and winter (1999) conditions in the littoral zone of a subtropical lake in Florida, USA. The objective was to quantify phosphorus (P) accumulation by various components of the community after adding pulsed doses of dissolved inorganic P. A short-term experiment also was done to quantify the rate of P loss from the water column, with simultaneous use of an inert tracer to confirm that P depletion was not due to leakage of the tanks. In the experiments, added P was rapidly removed from the water; samples collected 3–4 days after adding spikes of near 100 μg l?1 P contained little or no soluble reactive P. In the short-term experiment, we documented that the half-life of added P was approximately 6–8 h in the water column, and that the tanks were not exchanging water with the surrounding lake. Little of the added P ended up in plankton, rooted vascular plants, or sediments. The main sink for P was periphyton, including surface algal mats, benthic algal mats and detritus, and epiphyton. In the summer 1997 experiment, the periphyton was intimately associated with a non-rooted plant (Utricularia), which also may have sequestered P from the water. Structure of the littoral community varied between summer and winter, and this influenced which periphyton component accounted for most of the P removal. In regard to P mass balances, we accounted for 54% of the added P in 1997, when coarse sampling was done. In 1999, when there was more detailed sampling of the community, 92% of the added P was located in various community components. Subtropical littoral periphyton can be a large sink for P, as long as depth and underwater irradiance conditions favor its growth.  相似文献   

10.
1. Perturbation pathways affecting interactions between feeding habitat, food supplies and diet of a lotic avian predator, blue duck (Hymenolaimus malacorhynchos Gemlin), were tracked in a New Zealand river following substantial inputs of sediment from a volcanic eruption. Sediment impacts were separated temporally into two distinct phases: (i) deposition of fine ash from volcanic fall‐out, and (ii) pulsed releases of volcanic sand and gravel retained by an upstream dam. 2. Levels of interstitial suspendable inorganic sediments increased by several orders of magnitude following ash inputs to the river, but returned to low levels within 3 months. Flushing of volcanic sand and gravel retained by the dam resulted in sediment deposition upstream of a large island where coarse material lodged firmly between larger benthic substratum elements in blue duck feeding habitat. 3. Changes in algal biomass appeared to largely reflect seasonal and hydrological influences, but the percentage inorganic content of periphyton increased significantly during both posteruption phases. 4. Diversity and abundance of blue duck food supplies on boulders and on the riverbed declined following the eruption, whereas significant impacts on biomass were only detected in benthic habitats which were more susceptible to sediment deposition. However, percent composition of the benthic and boulder invertebrate food resources appeared largely unaffected by the eruption. 5. There was no apparent association between the eruption and the composition or electivity (E*) of blue duck diet, but there was a significant increase in the percent inorganic content of faeces, suggesting a reduction in the quality of food rations. 6. Changes in food quantity and quality associated with deposition of volcanic sediments were linked to an observed decline in blue duck population density and fecundity following the eruption. An interacting continuum of adaptive responses to perturbation intensity and impact duration is proposed for blue duck, and potentially other long‐lived, riverine birds, that enable them to cope with disturbances in highly variable and heterogenous lotic environments.  相似文献   

11.
We examined the larval population densities and biomass of a caddisfly grazer, Micrasema quadriloba, and the abundance and community structures of periphyton at a segment scale (7.4 km with four study sites), along a second-to fourth-order Japanese mountain stream throughout the grazer’s life cycle. In the uppermost riffle of the study segment (site 1), periphyton abundance was kept at low levels when the larvae occurred. The larval distribution spread downstream as larvae developed from first instars in May to fifth instars in January. We performed multiple regression analyses to test the effects of environmental variables and larval biomass on periphyton abundance in both the riffle of site 1 and the study segment; the results revealed that the larval biomass was significantly negatively correlated with periphyton abundance similarly in both the riffle and the study segment. In addition, both the correlation and community analyses showed that the larval biomass was significantly negatively correlated to the relative abundance of large and/or filamentous microalgae, which appeared in the uppermost layer of the periphyton mat, and that larval biomass was significantly positively correlated to the relative abundance of small diatoms, which strongly adhered to the substrate. Thus, the present study implied that the grazing of M. quadriloba larvae would regulate the abundance of periphyton in a riffle and also regulate the abundance and community structure of periphyton at the segment scale with the expansion of their longitudinal distribution.  相似文献   

12.
SUMMARY 1. In situ experiments were conducted in a Washington stream to quantify the effects of grazing by a caddisfly larva, Dicosmoecus gilvipes (Trichoptera: Limnephilidae), and a mayfly nymph, Nixe rosea (Ephemeroptera: Heptageniidae) on periphyton biomass, structure, and function.
2. Dicosmoecus gilvipes reduced periphyton biomass from 92 mg m−2(as mean chlorophyll a ) to 33 mg m−2. The grazed assemblage was less diverse and composed of smaller, closely attached diatoms, whereas there was a higher proportion of overstorey and filamenttius algae in the diverse, ungrazed periphyton.
3. By maintaining the periphyton community as a thin layer of diatoms, grazing by D. gilvipes appeared to promote a healthier, more vigorous community relative to the ungrazed mat, which became senescent in the latter part of the experiment.
4. Nixe rosea had little measurable effect on any characteristics of the periphyton measured. These nymphs apparently preferred small diatoms, which resulted in only micro-scale alterations in periphyton characteristics that were difficult to detect.
5. Biomass accrual of ungrazed and grazed periphyton was described by the logistic growth equation. Loss of biomass due to grazing by D. gilvipes or to senescence and sloughing were incorporated in the model to account for changes in grazed and ungrazed periphyton. respectively. Proposed mechanisms which described biomass accumulation were largely sup ported by model predictions.  相似文献   

13.
Spatial and temporal variations of Cocconeis placentula var. euglypta in drift and periphyton were studied in mountain streams of the Córdoba Province (Argentina). The sampling program was conducted in study sites located on a confluence between different order streams during an annual cycle. Samples were also taken every two hours during the daylight period in high and low water conditions. The relationship between drift and cellular reproduction was evaluated by valve length biometrics analysis. C. placentula var. euglypta drift was continuous; its density was not always dependent on periphyton density in each locality. C. placentula var. euglypta drift could be related to abiotic factors such as temperature and flow during the annual cycle. There were significant differences between periphyton and drift valve lengths. Moreover, drift can be associated with cellular reproduction because density was higher when valve lengths were shorter at different hours of the day. C. placentula var. euglypta epiphytims on Cladophora glomerata also influenced drift density and size distribution, modifying the relationship between periphyton and drift during the late spring when C. placentula var. euglypta was detached from senescent mats.  相似文献   

14.
Species diversity of littoral periphyton sampled from Elk Lake (B. C., Canada) was dependent on station location and period of substrate exposure. Site differences were not statistically related to physico-chemical variables. However, diversity was negatively correlated with age of the communities and standing crop, and appeared to be associated with biological interaction or competition for available substrate surface. Further investigation revealed that the Shannon-Weaver index, as commonly applied, was inappropriate for data summarization since it reflected only the changes in evenness of the most abundant species. Components of the diversity index, as illustrated by the periphyton, were discussed.  相似文献   

15.
Three field experiments were performed in Lake Lacawac, PA to determine the importance of potentially limiting nutrients relative to other factors (grazing, depth) in structuring shallow water algal periphyton communities. All three experiments measured periphyton growth (as chlorophyll-a, AFDM or biovolumes of the algal taxa) on artificial clay flower pot substrates which released specified nutrients to their outer surfaces.Control of standing crop by nutrient supply rate vs. grazing was examined in Expt. I. Substrates releasing excess N and P, together with one of 4 levels of C (as bicarbonate) were placed either inside or outside exclosures designed to reduce grazer densities. Chlorophyll-a rose from 1.1–25.6 µg.cm–2, and some dominant taxa (e.g., Oedogonium, Nostoc, Anacystis) were replaced by others (e.g., Scenedesmus, Cryptomonas) as bicarbonate supply increased. Reductions in invertebrate density did not significantly affect chlorophyll-a at any of the nutrient levels.Reasons for the species shift were further evaluated in Expt. II, using a minielectrode to measure the elevation of pH within the periphyton mat through photosynthetic utilization of bicarbonate. The pH adjacent to pots diffusing N, P and large quantities of bicarbonate, and supporting high chlorophyll-a densities of 32 µg cm–2, averaged 10.0 compared to 6.3 in the water column. Pots diffusing only N and P supported 0.7 µg chlorophyll-a cm–2 and elevated pH to 8.2. We suspect that bicarbonate addition favored efficient bicarbonate users (e.g., Scenedesmus), while inhibiting other taxa (e.g., Oedogonium) because of the attendant high pH.Expt. III was designed to test effects of depth (0.1 m vs. 0.5 m) and N (NH4 + vs. NO3 ) upon the growth response to bicarbonate observed in Expts. I and II. Similar standing crop and species composition were noted on pots at 0.1 m vs. 0.5 m. Enrichment with NH4 + vs. NO3 also appeared to have little effect upon the periphyton community.Shallow water periphyton communities in Lake Lacawac, when supplied with sufficient N and P, appear to show a distinctive response to increasing bicarbonate concentration and pH which is robust to moderate variation in grazer densities, distance from the water surface, and the form of N enrichment.  相似文献   

16.
Periphyton was grown on transparent plastic substrata in the Kiel Fjord and used for short-term laboratory experiments to study the feeding selectivity of the periwinkle Littorina littorea in response to the vertical structure of the periphyton. The susceptibility of algae to periwinkle grazing was assessed by comparing the species-specific biomass within the grazing tracks of the snails to the biomass outside the tracks. After 3 weeks of incubation, the periphyton consisted of a scattered monolayer of algal cells without vertical structure. No apparent grazing could be found. After 6 weeks of incubation, periphyton consisted of a tightly attached undergrowth (mainly Cocconeis scutellum, Bacillariophyceae, and Myrionema sp., Phaeophyceae) and canopy of filamentous (Melosira moniliformis, Bacillariophyceae) and stalked forms (Achnanthes longipes, Bacillariophyceae). The unicellular diatoms Fragilaria tabulata and Stauroneis constricta grew partly on the primary substratum and partly as epiphytes on the canopy species. The canopy species and the epiphytes were decimated inside the grazing tracks, while the tightly attached undergrowth species appeared ungrazed.  相似文献   

17.
18.
The development of periphyton community structure by exchange of organisms between substratum and water column (noninteractive mechanism) and by interspecific competition for surface (interactive mechanism) was studied during seasonal succession in Akulovsky water supply channel (the Upper Volga basin). The influence of exchange was assumed by similarity between the species composition of plankton and periphyton. At early stages of succession when the diatoms dominated in periphyton the community was formed mainly by phytoplankton sedimentation, while the competition for substratum didn't result in decrease of species diversity because the poor competitors were partly displaced by new colonists from the water column. Later when the green filamentous algae abundantly developed in periphyton, their numbers were probably controlled by factors not related to exchange of propagules. At the same time, the species structure of secondary periphyton cover developing on the thallus of filamentous algae depended mainly on the plankton sedimentation. At the last stages of seasonal succession when periphyton was represented by colonies of cyanobacteria and diatoms closely covering the substratum, the exchange of organisms between substratum and water column was not so important as interspecific competition for surface. As one could suppose, increase in biomass in this period resulted in the decrease of specificity as it was predicted by hypothesis of interactive community. In such a way, both mechanisms (interactive and noninteractive ones) took part in development of periphyton structure. Their relative influence changed in the course of seasonal succession.  相似文献   

19.
Factors related to autochthonous production were investigated at several sites along a prairie stream at Konza Prairie Research Natural Area. Primary production, algal biomass, litter input, and ability of floods to move native substrate were measured. Additional experiments were conducted to establish the influence of light and water velocity on primary production rates and recovery of biomass following dry periods. The study period encompassed two extreme (> 50 year calculated return time) floods, thus we were able to analyze the effects of scour on periphyton biomass and productivity. Biomass of sedimentary algae was reduced greatly by flooding and did not reach preflood amounts during the 2 months following the first flood. Rates of primary production associated with sediments recovered to levels above preflood rates within 2 weeks. Biomass of epilithic periphyton was not affected as severely as that of sedimentary algae. Little relationship was observed between water velocity and photosythetic rates. Production reached maximum rates at 25% of full sun light. Epilithic chlorophyll levels recovered within eight days following a dry period, and chl a was an order of magnitude greater on rocks than sediments 51 days after re-wetting. Estimated annual rates of primary production were 2.6 times greater in the prairie than in the forest reaches of the stream. The ratio of annual autochthonous:allochthonous carbon input was 4.81 for prairie and 0.32 for the forest. Periphyton production in prairie streams is resilient with regard to flooding and drought and represents a primary carbon source for the system.  相似文献   

20.
Eutrophication caused by phosphorus (P) leads to water quality problems in aquatic systems, particularly freshwaters, worldwide. Processing of nutrients in shallow habitats removes P from water naturally and periphyton influences P removal from the water column in flowing waters and wetlands. Periphyton plays several roles in removing P from the water column, including P uptake and deposition, filtering particulate P from the water, and attenuating flow, which decreases advective transport of particulate and dissolved P from sediments. Furthermore, periphyton photosynthesis locally increases pH by up to 1 unit, which can lead to increased precipitation of calcium phosphate, concurrent deposition of carbonate-phosphate complexes, and long-term burial of P. Actively photosynthesizing periphyton can cause super-saturated O2 concentrations near the sediment surface encouraging deposition of metal phosphates. However, anoxia associated with periphyton respiration at night may offset this effect. Linking the small-scale functional role of periphyton to ecosystem-level P retention will require more detailed studies in a variety of ecosystems or large mesocosms. A case study from the Everglades illustrates the importance of considering the role of periphyton in P removal from wetlands. In general, periphyton tends to increase P retention and deposition. In pilot-scale constructed periphyton-dominated wetlands in South Florida, about half of the inflowing total P was removed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号