首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A key step in amino sugar metabolism is the interconversion between fructose-6-phosphate (Fru6P) and glucosamine-6-phosphate (GlcN6P). This conversion is catalyzed in the catabolic and anabolic directions by GlcN6P deaminase and GlcN6P synthase, respectively, two enzymes that show no relationship with one another in terms of primary structure. In this study, we examined the catalytic properties and regulatory features of the glmD gene product (GlmD(Tk)) present within a chitin degradation gene cluster in the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1. Although the protein GlmD(Tk) was predicted as a probable sugar isomerase related to the C-terminal sugar isomerase domain of GlcN6P synthase, the recombinant GlmD(Tk) clearly exhibited GlcN6P deaminase activity, generating Fru6P and ammonia from GlcN6P. This enzyme also catalyzed the reverse reaction, the ammonia-dependent amination/isomerization of Fru6P to GlcN6P, whereas no GlcN6P synthase activity dependent on glutamine was observed. Kinetic analyses clarified the preference of this enzyme for the deaminase reaction rather than the reverse one, consistent with the catabolic function of GlmD(Tk). In T. kodakaraensis cells, glmD(Tk) was polycistronically transcribed together with upstream genes encoding an ABC transporter and a downstream exo-beta-glucosaminidase gene (glmA(Tk)) within the gene cluster, and their expression was induced by the chitin degradation intermediate, diacetylchitobiose. The results presented here indicate that GlmD(Tk) is actually a GlcN6P deaminase functioning in the entry of chitin-derived monosaccharides to glycolysis in this hyperthermophile. This enzyme is the first example of an archaeal GlcN6P deaminase and is a structurally novel type distinct from any previously known GlcN6P deaminase.  相似文献   

2.
We have identified an NiFe-hydrogenase exclusively localized in the cytoplasm of the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1 (T. kodakaraensis hydrogenase). A gene cluster encoding T. kodakaraensis hydrogenase was composed of four open reading frames (hyhBGSL(Tk)), where the hyhS(Tk) and hyhL(Tk) gene products corresponded to the small and the large subunits of NiFe-hydrogenase, respectively. A putative open reading frame for hydrogenase-specific maturation endopeptidase (hybD(Tk)) was found downstream of the cluster. Polyclonal antibodies raised against recombinant HyhL(Tk) were used for immunoaffinity purification of T. kodakaraensis hydrogenase, leading to a 259-fold concentration of hydrogenase activity. The purified T. kodakaraensis hydrogenase was composed of four subunits (beta, gamma, delta, and alpha), corresponding to the products of hyhBGSL(Tk), respectively. Each alphabetagammadelta unit contained 0.8 mol of Ni, 22.3 mol of Fe, 21.1 mol of acid-labile sulfide, and 1.01 mol of flavin adenine dinucleotide. The optimal temperature for the T. kodakaraensis hydrogenase was 95 degrees C for H(2) uptake and 90 degrees C for H(2) production with methyl viologen as the electron carrier. We found that NADP(+) and NADPH promoted high levels of uptake and evolution of H(2), respectively, suggesting that the molecule is the electron carrier for the T. kodakaraensis hydrogenase.  相似文献   

3.
The hyperthermophilic archaeon, Thermococcus kodakaraensis KOD1 harbors a structurally novel, Type III Rubisco (Rbc(Tk)). In terms of protein engineering of Rubiscos, the enzyme may provide an alternative target to the conventional Type I and Type II enzymes. With a future aim to improve the catalytic properties of Rbc(Tk), here we examined whether or not the enzyme could support growth of a mesophilic organism dependent on CO2 fixation. Via double-crossover homologous recombination, we first deleted three Rubisco genes present on the chromosome of the photosynthetic mesophile Rhodopseudomonas palustris No. 7. The mutant strain (delta3) could neither grow under photoautotrophic nor photoheterotrophic conditions. We introduced the rbc(Tk) gene into strain delta3 either on a plasmid, or by integrating the gene onto the chromosome. The two transformant strains harboring rbc(Tk) displayed growth under photoautotrophic and photoheterotrophic conditions, both dependent on CO2 fixation. Specific growth rates and Rubisco activity levels were compared under photoheterotrophic conditions among the two transformants and the wild-type strain. We observed that the levels of Rubisco activity in the respective cell-free extracts correlated well with the specific growth rates. Immunoprecipitation experiments revealed that Rubisco activity detected in the transformants was derived solely from Rbc(Tk). These results demonstrated that the Type III Rbc(Tk) from a hyperthermophile could support CO2 fixation in a mesophilic organism, and that the specific growth rate of the transformant can be used as a convenient parameter for selection of engineered proteins with improved Rubisco activity.  相似文献   

4.
We report here a novel selectable marker for the hyperthermophilic crenarchaeon Sulfolobus islandicus. The marker cassette is composed of the sac7d promoter and the hmg gene coding for the 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase (P(sac7d)-hmg), which confers simvastatin resistance to this crenarchaeon. The basic plasmid vector pSSR was constructed by substituting the pyrEF gene of the expression vector pSeSD for P(sac7d)-hmg with which the Sulfolobus expression plasmids pSSRlacS, pSSRAherA, and pSSRNherA were constructed. Characterization of Sulfolobus transformants carrying pSSRlacS indicated that the plasmid was properly maintained under selection. High-level expression of the His(6)-tagged HerA helicase was obtained with the cells harboring pSSRAherA. The establishment of two efficient selectable markers (pyrEF and hmg) was subsequently exploited for genetic analysis. A herA merodiploid strain of S. islandicus was constructed using pyrEF marker and used as the host to obtain pSSRNherA transformant with simvastatin selection. While the gene knockout (ΔherA) cells generated from the herA merodiploid cells failed to form colonies in the presence of 5-fluoroorotic acid (5-FOA), the mutant cells could be rescued by expression of the gene from a plasmid (pSSRNherA), because their transformants formed colonies on a solid medium containing 5-FOA and simvastatin. This demonstrates that HerA is essential for cell viability of S. islandicus. To our knowledge, this is the first application of an antibiotic selectable marker in genetic study for a hyperthermophilic acidophile and in the crenarchaeal lineage.  相似文献   

5.
We previously clarified that the chitinase from the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1 produces diacetylchitobiose (GlcNAc(2)) as an end product from chitin. Here we sought to identify enzymes in T. kodakaraensis that were involved in the further degradation of GlcNAc(2). Through a search of the T. kodakaraensis genome, one candidate gene identified as a putative beta-glycosyl hydrolase was found in the near vicinity of the chitinase gene. The primary structure of the candidate protein was homologous to the beta-galactosidases in family 35 of glycosyl hydrolases at the N-terminal region, whereas the central region was homologous to beta-galactosidases in family 42. The purified protein from recombinant Escherichia coli clearly showed an exo-beta-D-glucosaminidase (GlcNase) activity but not beta-galactosidase activity. This GlcNase (GlmA(Tk)), a homodimer of 90-kDa subunits, exhibited highest activity toward reduced chitobiose at pH 6.0 and 80 degrees C and specifically cleaved the nonreducing terminal glycosidic bond of chitooligosaccharides. The GlcNase activity was also detected in T. kodakaraensis cells, and the expression of GlmA(Tk) was induced by GlcNAc(2) and chitin, strongly suggesting that GlmA(Tk) is involved in chitin catabolism in T. kodakaraensis. These results suggest that T. kodakaraensis, unlike other organisms, possesses a novel chitinolytic pathway where GlcNAc(2) from chitin is first deacetylated and successively hydrolyzed to glucosamine. This is the first report that reveals the primary structure of GlcNase not only from an archaeon but also from any organism.  相似文献   

6.
Methionine sulfoxide reductase (Msr) catalyzes the thioredoxin-dependent reduction and repair of methionine sulfoxide (MetO). Although Msr genes are not present in most hyperthermophile genomes, an Msr homolog encoding an MsrA-MsrB fusion protein (MsrAB(Tk)) was present on the genome of the hyperthermophilic archaeon Thermococcus kodakaraensis. Recombinant proteins corresponding to MsrAB(Tk) and the individual domains (MsrA(Tk) and MsrB(Tk)) were produced, purified, and biochemically examined. MsrA(Tk) and MsrB(Tk) displayed strict substrate selectivity for Met-S-O and Met-R-O, respectively. MsrAB(Tk), and in particular the MsrB domain of this protein, displayed an intriguing behavior for an enzyme from a hyperthermophile. While MsrAB(Tk) was relatively stable at temperatures up to 80 degrees C (with a half-life of approximately 30 min at 80 degrees C), a 75% decrease in activity was observed after 2.5 min at 85 degrees C, the optimal growth temperature of this archaeon. Moreover, maximal levels of MsrB activity of MsrAB(Tk) were observed at the strikingly low temperature of 30 degrees C, which also was observed for MsrB(Tk). Consistent with the low-temperature-specific biochemical properties of MsrAB(Tk), the presence of the protein was greater in T. kodakaraensis cells grown at suboptimal temperatures (60 to 70 degrees C) and could not be detected at 80 to 90 degrees C. We found that the amount of intracellular MsrAB(Tk) protein increased with exposure to higher dissolved oxygen levels, but only at suboptimal growth temperatures. While measuring background rates of the Msr enzyme reactions, we observed significant levels of MetO reduction at high temperatures without enzyme. The occurrence of nonenzymatic MetO reduction at high temperatures may explain the specific absence of Msr homologs in most hyperthermophiles. Together with the fact that the presence of Msr in T. kodakaraensis is exceptional among the hyperthermophiles, the enzyme may represent a novel strategy for this organism to deal with low-temperature environments in which the dissolved oxygen concentrations increase.  相似文献   

7.
We have performed the first biochemical characterization of a putative archaeal signal peptide peptidase (SppA(Tk)) from the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1. SppA(Tk), comprised of 334 residues, was much smaller than its counterpart from Escherichia coli (618 residues) and harbored a single predicted transmembrane domain near its N terminus. A truncated mutant protein without the N-terminal 54 amino acid residues (deltaN54SppA(Tk)) was found to be stable against autoproteolysis and was examined further. DeltaN54SppA(Tk) exhibited peptidase activity towards fluorogenic peptide substrates and was found to be highly thermostable. Moreover, the enzyme displayed a remarkable stability and preference for alkaline pH, with optimal activity detected at pH 10. DeltaN54SppA(Tk) displayed a K(m) of 240 +/- 18 microM and a V(max) of 27.8 +/- 0.7 micromol min(-1) mg(-1) towards Ala-Ala-Phe-4-methyl-coumaryl-7-amide at 80 degrees C and pH 10. The substrate specificity of the enzyme was examined in detail with a FRETS peptide library. By analyzing the cleavage products with liquid chromatography-mass spectrometry, deltaN54SppA(Tk) was found to efficiently cleave peptides with a relatively small side chain at the P-1 position and a hydrophobic or aromatic residue at the P-3 position. The positively charged Arg residue was preferred at the P-4 position, while substrates with negatively charged residues at the P-2, P-3, or P-4 position were not cleaved. When predicted signal sequences from the T. kodakaraensis genome sequence were examined, we found that the substrate specificity of deltaN54SppA(Tk) was in good agreement with its presumed role as a signal peptide peptidase in this archaeon.  相似文献   

8.
We have identified and characterized a structurally novel succinyl-CoA synthetase (SCS) from the hyperthermophilic Archaea Thermococcus kodakaraensis. The presence of an SCS completes the metabolic pathway from glutamate to succinate in Thermococcales, which had not been clarified because of the absence of classical SCS homologs on their genomes. The SCS from T. kodakaraensis (SCS(Tk)) is a heteromeric enzyme (alpha(2)beta(2)) encoded by TK1880 (alpha-subunit) and TK0943 (beta-subunit). Although both SCS(Tk) and classical SCSs harbor the five domains present in enzymes of the acyl-CoA synthetase (nucleoside diphosphate-forming) superfamily, the domain order and distribution among subunits in SCS(Tk) (alpha-subunit, domains 1-2-5; beta-subunit, domains 3-4) are distinct from those of classical SCSs (alpha-subunit, domains 1-2; beta-subunit, domains 3-4-5) and instead resemble the acetyl-CoA synthetases from Pyrococcus furiosus (ACSs I(Pf) and II(Pf)). Comparison of the four Thermococcales genomes revealed that each strain harbors five alpha- and two beta-subunit homologs. Sequence similarity suggests that the beta-subunit of SCS(Tk) is also a component of the presumed ACS II from T. kodakaraensis (ACS II(Tk)). We coexpressed the alpha/beta-genes of SCS(Tk) (TK1880/TK0943) and of ACS II(Tk) (TK0139/TK0943). ACS II(Tk) recognizes a broad range of hydrophobic/aromatic acid compounds, as is the case with ACS II(Pf), whereas SCS(Tk) displays a distinct and relatively strict substrate specificity for several acids, including succinate. This indicates that the alpha-subunits are responsible for the distinct substrate specificities of SCS(Tk) and ACS II(Tk).  相似文献   

9.
10.
In contrast to the high accumulation in sequence data for hyperthermophilic archaea, methodology for genetically manipulating these strains is still at an early stage. This study aimed to develop a gene disruption system for the hyperthermophilic euryarchaeon Thermococcus kodakaraensis KOD1. Uracil-auxotrophic mutants with mutations in the orotidine-5'-monophosphate decarboxylase gene (pyrF) were isolated by positive selection using 5-fluoroorotic acid (5-FOA) and used as hosts for further transformation experiments. We then attempted targeted disruption of the trpE locus in the host strain by homologous recombination, as disruption of trpE was expected to result in tryptophan auxotrophy, an easily detectable phenotype. A disruption vector harboring the pyrF marker within trpE was constructed for double-crossover recombination. The host cells were transformed with the exogenous DNA using the CaCl(2) method, and several transformants could be selected based on genetic complementation. Genotypic and phenotypic analyses of a transformant revealed the unique occurrence of targeted disruption, as well as a phenotypic change of auxotrophy from uracil to tryptophan caused by integration of the wild-type pyrF into the host chromosome at trpE. As with the circular plasmid, gene disruption with linear DNA was also possible when the homologous regions were relatively long. Shortening these regions led to predominant recombination between the pyrF marker in the exogenous DNA and the mutated allele on the host chromosome. In contrast, we could not obtain trpE disruptants by insertional inactivation using a vector designed for single-crossover recombination. The gene targeting system developed in this study provides a long-needed tool in the research on hyperthermophilic archaea and will open the way to a systematic, genetic approach for the elucidation of unknown gene function in these organisms.  相似文献   

11.
T S Wu  J E Linz 《Applied microbiology》1993,59(9):2998-3002
Functional disruption of the gene encoding nitrate reductase (niaD) in Aspergillus parasiticus was conducted by two strategies, one-step gene replacement and the integrative disruption. Plasmid pPN-1, in which an internal DNA fragment of the niaD gene was replaced by a functional gene encoding orotidine monophosphate decarboxylase (pyrG), was constructed. Plasmid pPN-1 was introduced in linear form into A. parasiticus CS10 (ver-1 wh-1 pyrG) by transformation. Approximately 25% of the uridine prototrophic transformants (pyrG+) were chlorate resistant (Chlr), demonstrating their inability to utilize nitrate as a sole nitrogen source. The genetic block in nitrate utilization was confirmed to occur in the niaD gene by the absence of growth of the A. parasiticus CS10 transformants on medium containing nitrate as the sole nitrogen source and the ability to grow on several alternative nitrogen sources. Southern hybridization analysis of Chlr transformants demonstrated that the resident niaD locus was replaced by the nonfunctional allele in pPN-1. To generate an integrative disruption vector (pSKPYRG), an internal fragment of the niaD gene was subcloned into a plasmid containing the pyrG gene as a selectable marker. Circular pSKPYRG was transformed into A. parasiticus CS10. Chlr pyrG+ transformants were screened for nitrate utilization and by Southern hybridization analysis. Integrative disruption of the genomic niaD gene occurred in less than 2% of the transformants. Three gene replacement disruption transformants and two integrative disruption transformants were tested for mitotic stability after growth under nonselective conditions. All five transformants were found to stably retain the Chlr phenotype after growth on nonselective medium.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
A gene encoding a cyclodextrin glucanotransferase (CGTase) from Thermococcus kodakaraensis KOD1 (CGT(Tk)) was identified and characterized. The gene (cgt(Tk)) encoded a protein of 713 amino acid residues harboring the four conserved regions found in all members of the alpha-amylase family. However, the C-terminal domain corresponding to domain E of previously known CGTases displayed a completely distinct primary structure. In order to elucidate the catalytic function of the gene product, the recombinant enzyme was purified by anion-exchange chromatography, and its enzymatic properties were investigated. The enzyme displayed significant starch-degrading activity (750 U/mg of protein) with an optimal temperature and pH of 80 degrees C and 5.5 to 6.0, respectively. The presence of Ca(2+) enhanced the enzyme activity and elevated the optimum temperature to 85 to 90 degrees C. With the addition of Ca(2+), the enzyme showed extreme thermostability, with almost no loss of enzymatic activity after 80 min at 85 degrees C, and a half-life of 20 min at 100 degrees C. CGT(Tk) could hydrolyze soluble starch and glycogen but failed to hydrolyze pullulan. Most importantly, although CGT(Tk) harbored a unique C-terminal domain, we found that the protein also exhibited significant CGTase activity, with beta-cyclodextrin as the main product. In order to identify the involvement, if any, of the C-terminal region in the CGTase activity, we analyzed a truncated protein (CGT(Tk)DeltaC) with 23 C-terminal amino acid residues deleted. CGT(Tk)DeltaC displayed similar properties in terms of starch-binding activity, substrate specificity, and thermostability, but unexpectedly showed higher starch-degrading activity than the parental CGT(Tk). In contrast, the cyclization activity of CGT(Tk)DeltaC was abolished. The results indicate that the presence of the structurally novel C-terminal domain is essential for CGT(Tk) to properly catalyze the cyclization reaction.  相似文献   

13.
The gene cluster responsible for ML-236B (compactin) biosynthesis has recently been characterized from P. citrinum No. 41520. Here, we describe how the ML-236B-producing strain was improved using a cosmid-mediated recombination technique. The introduction of the cosmid pML48, which contains seven of the nine ML-236B biosynthetic genes, into P. citrinum No. 41520 resulted in transformants which produced increased amounts of ML-236B. Southern analysis showed that pML48 had been incorporated by a homologous recombination event, and all high producers possessed two copies of each of the seven genes, mlcA- mlcF and mlcR, suggesting that increased dosage of the biosynthetic gene cluster was responsible for the enhanced production of ML-236B. On the other hand, various kinds of mutants with decreased titers of ML-236B were also obtained. Characterization of one such mutant, designated as T48.28, which was more sensitive to ML-236B than the parental strain, suggested that one of the ML-236B biosynthetic genes, mlcD, which encodes a putative HMG-CoA reductase, was involved in conferring resistance to ML-236B.  相似文献   

14.
We have demonstrated that SC-435, an apical sodium codependent bile acid transporter (ASBT) inhibitor, lowers plasma low-density lipoprotein cholesterol (LDL-C) concentrations in guinea pigs. The purpose of this study was to further examine the hypocholesterolemic effects of SC-435, by measuring the activity and RNA expression of regulatory enzymes of hepatic cholesterol and lipoprotein metabolism. In addition, the use of a combination (COMBO) therapy with simvastatin, a 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase inhibitor, was also tested. Male Hartley guinea pigs were randomly allocated to one of three diets (n=10 per group), for 12 weeks. The control diet contained no ASBT inhibitor or simvastatin. The monotherapy diet (ASBTi) contained 0.1% of SC-435. The COMBO therapy consisted of a lower dose of SC-435 (0.03%) and 0.05% simvastatin. Cholesterol ester transfer protein (CETP) and HMG-CoA reductase mRNA abundance were determined using RT-PCR techniques. Hepatic HMG-CoA reductase and cholesterol 7-hydroxylase (CYP7) activities were measured by radioisotopic methods. Compared to the control group, CETP activity was 34% and 56% lower with ASBTi and COMBO, respectively. Similarly, CETP mRNA expression was reduced by 36% and 73% in ASBTi and COMBO groups, respectively. Cholesterol 7-hydroxylase and HMG-CoA reductase activities were increased 2-fold with ASBTi and COMBO treatments, respectively. Likewise, HMG-CoA reductase mRNA expression was increased 33% with ASBTi treatment. These results suggest that both SC-435 monotherapy and combination therapy lower LDL cholesterol concentrations by altering both hepatic cholesterol homeostasis and the intravascular processing of lipoproteins in guinea pigs.  相似文献   

15.
The pathway of sterol biosynthesis is highly conserved in all eucaryotic cells. We demonstrated structural and functional conservation of the rate-limiting enzyme of the mammalian pathway, 3-hydroxy-3-methyl-glutaryl coenzyme A reductase (HMG-CoA reductase), between the yeast Saccharomyces cerevisiae and humans. The amino acid sequence of the two yeast HMG-CoA reductase isozymes was deduced from DNA sequence analysis of the HMG1 and HMG2 genes. Extensive sequence similarity existed between the region of the mammalian enzyme encoding the active site and the corresponding region of the two yeast isozymes. Moreover, each of the yeast isozymes, like the mammalian enzyme, contained seven potential membrane-spanning domains in the NH2-terminal region of the protein. Expression of cDNA clones encoding either hamster or human HMG-CoA reductase rescued the viability of hmg1 hmg2 yeast cells lacking this enzyme. Thus, mammalian HMG-CoA reductase can provide sufficient catalytic function to replace both yeast isozymes in vivo. The availability of yeast cells whose growth depends on human HMG-CoA reductase may provide a microbial screen to identify new drugs that can modulate cholesterol biosynthesis.  相似文献   

16.
17.
The effect of lovastatin, simvastatin and pravastatin, which are competitive inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, was tested on PGD synthase purified to apparent homogeneity from the rat brain. Lovastatin and simvastatin, which reportedly cause insomnia in vivo, inhibited the PGD synthase activity dose-dependently and showed an IC50 value of 100 and 75 microM, respectively. On the other hand, pravastatin, which does not cause insomnia, showed no significant effect at 100 microM and only a slight effect up to 500 microM.  相似文献   

18.
OBJECTIVE: To investigate whether ScrF I polymorphism in the 2nd intron of the HMG-COA reductase gene (HMGCR) influences serum lipid levels and whether this polymorphism affects the efficiency of the cholesterol lowering HMG-CoA reductase inhibitor, simvastatin. METHODS: One hundred sixty-eight patients with type 2 diabetes mellitus (T2DM) prospectively received simvastatin as a single-agent therapy (20mg day-1 p.o.) for 12 weeks. Serum lipid levels were determined before and after simvastatin treatment. Genotyping was performed by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). RESULTS: Subjects with the AA homozygotes had significantly higher serum very low-density lipoprotein cholesterol (VLDL-C) levels than those with the aa homozygotes. In addition, in 168 patients with T2DM who took 20mg simvastatin, the VLDL-C lowering effect by simvastatin in subjects with the aa homozygotes was significantly lower than in those with the Aa heterozygotes and AA homozygotes. CONCLUSIONS: Simvastatin treatment significantly decreased plasma lipids in all patients (P<0.01). Importantly, we demonstrate that ScrF I polymorphism of the HMGCR gene in patients with T2DM groups is associated with significant elevation of serum VLDL-C levels. Subjects with the AA homozygotes had significantly higher serum high VLDL-C levels than those with the Aa heterozygotes and aa homozygotes (AA: 2.18+/-0.51; Aa: 2.04+/-0.59, aa: 1.86+/-0.43, P<0.05 for comparison among three genotypes and P<0.01 for difference between AA and aa). Furthermore, this polymorphism tends to show an enhanced response to an HMG-CoA reductase inhibitor in terms of the cholesterol-lowering effect. In 168 patients with T2DM who took 20mg simvastatin, the VLDL-C lowering effect by simvastatin in subjects with the AA homozygotes was significantly lower than in those with the Aa heterozygotes and aa homozygotes (the reduction in serum VLDL-C levels; 37.03+/-5.67 versus 28.97+/-4.96, P<0.01; 34.62+/-5.87 versus 28.97+/-4.96, P<0.05). These results suggest that the HMGCR gene may serve as a modifier gene for hypercholesterolemia in Chinese diabetic patients.  相似文献   

19.
Shuttle vectors that replicate stably and express selectable phenotypes in both Thermococcus kodakaraensis and Escherichia coli have been constructed. Plasmid pTN1 from Thermococcus nautilis was ligated to the commercial vector pCR2.1-TOPO, and selectable markers were added so that T. kodakaraensis transformants could be selected by DeltatrpE complementation and/or mevinolin resistance. Based on Western blot measurements, shuttle vector expression of RpoL-HA, a hemagglutinin (HA) epitope-tagged subunit of T. kodakaraensis RNA polymerase (RNAP), was approximately 8-fold higher than chromosome expression. An idealized ribosome binding sequence (5'-AGGTGG) was incorporated for RpoL-HA expression, and changes to this sequence reduced expression. Changing the translation initiation codon from AUG to GUG did not reduce RpoL-HA expression, but replacing AUG with UUG dramatically reduced RpoL-HA synthesis. When functioning as translation initiation codons, AUG, GUG, and UUG all directed the incorporation of methionine as the N-terminal residue of RpoL-HA synthesized in T. kodakaraensis. Affinity purification confirmed that an HA- plus six-histidine-tagged RpoL subunit (RpoL-HA-his(6)) synthesized ectopically from a shuttle vector was assembled in vivo into RNAP holoenzymes that were active and could be purified directly from T. kodakaraensis cell lysates by Ni(2+) binding and imidazole elution.  相似文献   

20.
The hyperthermophilic archaeon Thermococcus kodakaraensis harbors a type III ribulose 1,5-bisphosphate carboxylase/oxygenase (Rbc(Tk)). It has previously been shown that Rbc(Tk) is capable of supporting photoautotrophic and photoheterotrophic growth in a mesophilic host cell, Rhodopseudomonas palustris Delta3, whose three native Rubisco genes had been disrupted. Here, we have examined the enzymatic properties of Rbc(Tk) at 25 degrees C and have constructed mutant proteins in order to enhance its performance in mesophilic host cells. Initial sites for mutagenesis were selected by focusing on sequence differences in the loop 6 and alpha-helix 6 regions among Rbc(Tk) and the enzymes from spinach (mutant proteins SP1 to SP7), Galdieria partita (GP1 and GP2), and Rhodospirillum rubrum (RR1). Loop 6 of Rbc(Tk) is one residue longer than those found in the spinach and G. partita enzymes, and replacing Rbc(Tk) loop 6 with these regions led to dramatic decreases in activity. Six mutant enzymes retaining significant levels of Rubisco activity were selected, and their genes were introduced into R. palustris Delta3. Cells harboring mutant protein SP6 displayed a 31% increase in the specific growth rate under photoheterotrophic conditions compared to cells harboring wild-type Rbc(Tk). SP6 corresponds to a complete substitution of the original alpha-helix 6 of Rbc(Tk) with that of the spinach enzyme. Compared to wild-type Rbc(Tk), the purified SP6 mutant protein exhibited a 30% increase in turnover number (k(cat)) of the carboxylase activity and a 17% increase in the k(cat)/K(m) value. Based on these results, seven further mutant proteins were designed and examined. The results confirmed the importance of the length of loop 6 in Rbc(Tk) and also led to the identification of specific residue changes that resulted in an increase in the turnover number of Rbc(Tk) at ambient temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号