首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The action of the natural ATPase inhibitor protein of Pullman and Monroy (Pullman, M. E., and Monroy, G. C. (1963) J. Biol. Chem. 238, 3762-3769) on the mechanisms of energy conservation of heart mitochondria has been explored. The synthesis and hydrolysis of ATP and the Pi-ATP exchange reaction were studied in submitochondrial particles that possess the ATPase-inhibitor protein complex in two distinguishable states. In addition to their different rates of hydrolysis, the two states of the complex have been identified from their different accessibility to antibodies directed against the inhibitor protein, and from the different action of antibodies and trypsin on the ATPase activity of the two types of particles studied. The steady state rates of hydrolysis and of the Pi-ATP exchange reaction of the particles are determined by the state in which the ATPase-inhibitor complex exists. Apparently by modifying the rate of one of the steps involved in the catalytic reaction of the ATPase, the inhibitor protein determines the extent to which the enzyme is able to catalyze ATP hydrolysis and the Pi-ATP exchange reaction. This action of the inhibitor protein also reflects the rate at which the particles carry out oxidative phosphorylation.  相似文献   

3.
The hydrolytic and phosphorylation activities of the ATPase complex of bovine heart mitochondria are regulated by the ATPase inhibitor of Pullman and Monroy [1]. The inhibiting action of the peptide on ATPase activity can be overcome by a proton-motive force. Submitochondrial particles that contain the inhibitor, either intrinsically or externally added, show a lag that precedes phosphorylation. Particles devoid of the inhibitor, of particles that are in an 'active' state fail to present the lag. Accordingly, the data indicate that, prior to the onset of phosphorylation, the ATPase complex undergoes a transition to an active state through a process that involves the inhibitor. The transition depends on the concentration of ATP, 50 microM ATP giving 50% inhibition of the proton-motive force-induced transition.  相似文献   

4.
L C Cantley  L Josephson 《Biochemistry》1976,15(24):5280-5287
We have examined slow changes in the rate of ATP hydrolysis for purified dog kidney Na+ and K+ stimulated adenosine triphosphatase [(Na-K)ATPase] at various concentrations of free Mg2+, Mg-ATP, K+, and Na+. The effect of these ligands on the rate of ATP hydrolysis is explained by a rapid binding step determining the initial rate of turnover followed by a slow conformational change. Inactivation of enzyme stored in the presence of ethylenediaminetetraacetic acid occurs upon adding free Mg2+, Mg-ATP, and K+; reactivation may be achieved if the concentration of these ligands is reduced. Because of the slow conformational change, the affinities for ligands affecting inactivation are time dependent. A model is presented to explain the effects of free Mg2+ and Ma-ATP on (Na-K)ATPase activity.  相似文献   

5.
The hydrolytic and phosphorylation activities of the ATPase complex of bovine heart mitochondria are regulated by the ATPase inhibitor of Pullman and Monroy [1]. The inhibiting action of the peptide on ATPase activity can be overcome by a proton-motive force. Submitochondrial particles that contain the inhibitor, either intrinsically or externally added, show a lag that precedes phosphorylation. Particles devoid of the inhibitor, or particles that are in an ‘active’ state fail to present the lag. Accordingly, the data indicate that, prior to the onset of phosphorylation, the ATPase complex undergoes a transition to an active state through a process that involves the inhibitor. The transition depends on the concentration of ATP, 50 μM ATP giving 50% inhibition of the proton-motive force-induced transition.  相似文献   

6.
The extraction of ubiquinone from mitochondrial membranes produces alterations of ATPase activity including a reversible loss of oligomycin sensitivity which is restored by long-chain Q-homologs. Short-chain ubiquinones like Q3 produce a loss of oligomycin and dicyclohexylcarbodiimide (DCCD) sensitivity in submitochondrial particles. The effect shows uncompetitive or noncompetitive kinetics with respect to oligomycin or DCCD respectively. Long-chain ubiquinones have a competitive effect with Q3, thus restoring oligomycin sensitivity; they behave, however, in about the same way as Q3 in lowering the DCCD sensitivity in submitochondrial particles. On the basis of these observations we suggest that ubiquinone may be a physiological modulator of ATPase activity in the mitochondrial membrane.Abbreviations used: BHM, beef heart mitochondria; DCCD, dicyclohexylcarbodiimide; ETP, electron transfer particles (submitochondrial particles); Q, ubiquinone.  相似文献   

7.
1. The naturally occurring mitochondrial ATPase inhibitor inhibits the mitochondrial ATPase (F1) non-competitively.2. The interaction between inhibitor and inhibitor-depleted F1 or submitochondrial particles is diminished when the ratio of ATP/ADP is low or when energy is generated by substrate oxidation.3. The dissociation of the inhibitor from coupled Mg-ATP particles is promoted when substrates are being oxidized. This results in the appearance of a large uncoupler-stimulated ATPase activity. Activation of the uncoupler-stimulated ATPase activity is also achieved by incubation of the particles with ADP.4. The ATPase activity of Mg-ATP particles is determined by the turnover capacity of F1. When endogenous inhibitor is removed, energy dissipation becomes the rate-limiting step. This energy dissipation can be activated by an uncoupler.5. Evidence is presented for the existence of a non-inhibited intermediate F1-inhibitor complex.  相似文献   

8.
9.
The role of the histidyl residue at position 49 (H49) of the bovine mitochondrial F1-ATPase inhibitor protein (F1I) was examined by site-directed mutagenesis. Six amino acids (Q, E, K, V, L, and I) were substituted for H49 and the activities of the resulting inhibitor proteins were characterized with respect to pH. Each of the six mutations abolished the pH sensitivity which is characteristic of wild-type F1I. At pH 8.0, each of the mutations caused an increase in apparent maximum inhibition and a decrease in apparent Ki relative to wild type. At pH 6.7 the hydrophilic substitutions had little effect on apparent Ki, while the hydrophobic substitutions caused increases of 3.5- to 8.5-fold relative to wild type. The ratios of apparent Ki at pH 8.0 to apparent Ki at pH 6.7 were in the range of 0.5 to 1.6 for the mutants, whereas the wild-type value is 15.0. The mutations appear to shift the equilibrium between active and inactive conformations of F1I toward the active state. We find that H49 is required by F1I for sensitivity to pH and that it may facilitate the transition between active and inactive states of F1I. A possible role for H49 in the stabilization of the inactive state through participation in a multivalent complex with Zn2+ is also discussed.  相似文献   

10.
11.
12.
Ascites hepatoma cell line AH-130 was tested for the ability to transport various amino acids and glutathione before and after γ-glutamyl transpeptidase of the cells was affinity-labeled and inactivated by 6-diazo-5-oxo-L-norleucine, a glutamine analog. The rate of uptake of alanine, glycine, leucine and glutamine by the cells remained unchanged after γ-glutamyl transpeptidase was inactivated by this affinity label. This indicated that γ-glutamyl transpeptidase of the cell was not involved in the transport process of these amino acids tested. The uptake of glutathione was also tested before and after affinity labeling the enzyme. The total amount of the radioactivity incorporated into the cells was not significantly affected by the enzyme inactivation. However, the relative amount of incorporated intact glutathione was found to be slightly but significantly increased after membraneous γ-glutamyl transpeptidase was inactivated by the affinity label, while that of component amino acid, glycine, was found to decrease. This indicated that glutathione was taken up by the cell in its intact form as well as in degraded forms into its component amino acids, and γ-glutamyl transpeptidase in the ascites tumor cell AH-130 seemed to be involved in the metabolic process via the latter system.  相似文献   

13.
Modification of histidine residue(s) by diethylpyrocarbonate treatment of submitochondrial particles obtained by sonication results in inhibition of ATPase activity and stimulation of oligomycin-sensitive H+ conduction. The inhibition of the ATPase (EC 3.6.1.3) activity persisted in F1 isolated from diethylpyrocarbonate-treated submitochondrial particles, which exhibited the absorbance spectrum of modified histidine. Thus the inhibition of the ATPase activity results from histidine modification in F1 subunits. Removal of the natural inhibitor protein from submitochondrial particles resulted in stimulation of proton conduction. After removal of F1 inhibitor protein from the particles the stimulatory effect exerted by diethylpyrocarbonate treatment on proton conduction was lost. Reconstitution experiments showed that purified F1 inhibitor protein lost, after histidine modification, its capacity to inhibit the ATPase activity and proton conduction. These observations show that the stimulation of proton conduction by the ATPase complex effected by diethylpyrocarbonate treatment results from histidine modification in F1 inhibitor protein.  相似文献   

14.
15.
16.
The interaction of soluble mitochondrial ATPase from beef heart with the natural ATPase inhibitor was studied. It was found that the phosphorylation of small amounts of ADP by phosphoenolpyruvate and pyruvate kinase, and an ensuing catalytic cycle supports the binding of the inhibitor to the enzyme. The association of the inhibitor with F1-ATPase does not increase the content of ATP in the F1-ATPase-inhibitor complex. The inhibitor of catalytic activity bathophenanthroline-Fe2+ chelate prevents the interaction, while the association of the inhibitor with F1-ATPase is delayed if the reaction is carried out in 2H2O. The date indicate that a transient state involved in the catalytic cycle is the form of the enzyme that interacts with the inhibitor. The proton-motive force-induced dissociation of the inhibitor from particulate ATPase is prevented by bathophenanthroline-Fe2+ chelate and nitrobenzofurazan chloride, which indicates that a functional catalytic (beta) subunit is required for the proton-motive force-induced release of the inhibitor. The data suggest a direct involvement of catalytic (beta) subunit in the mechanism by which the F1-ATPase senses the proton-motive force.  相似文献   

17.
T(1), a mutant yeast lacking three regulatory proteins of F(1)F(o)ATPase, namely ATPase inhibitor, 9K protein and 15K protein, grew on non-fermentable carbon source at the same rate as normal cells but was less viable when incubated in water. During the incubation, the cellular ATP content decreased rapidly in the T(1) cells but not in normal cells, and respiration-deficient cells appeared among the T(1) cells. The same mutation was also induced in D26 cells lacking only the ATPase inhibitor. Overexpression of the ATPase inhibitor in YC63 cells, which were derived from the D26 strain harboring an expression vector containing the gene of the ATPase inhibitor, prevented the decrease of cellular ATP level and the mutation. Isolated T(1) mitochondria exhibited ATP hydrolysis for maintenance of membrane potential when antimycin A was added to the mitochondrial suspension, while normal and YC63 mitochondria continued to show low hydrolytic activity and low membrane potential. Thus, it is likely that deletion of the ATPase inhibitor induces ATPase activity of F(1)F(o)ATPase to create a dispensable membrane potential under the non-nutritional conditions and that this depletes mitochondrial and cellular ATP. The depletion of mitochondrial ATP in turn leads to occurrence of aberrant DNA in mitochondria.  相似文献   

18.
The effect of the natural ATPase inhibitor and octylguanidine on the ATPase activity of soluble oligomycin-insensitive mitochondrial F1 were compared. Both compounds induced a maximal inhibition of 60-80% in various preparation of F1 studied. The inhibition was of the uncompetitive type with respect to MgATP, and the action of the compounds was partially additive. The data suggest that octylguanidine reproduces the action of the natural ATPase inhibitor. Alkylammonium salts also affect the ATPase activity in a similar form. F1 bound to Sepharose-hexylammonium is largely inactive, whilst free hexylammonium at higher concentrations induces only a partial inhibition of the activity. This suggests that the degree of immobilization of F1 is related to the magnitude of inhibition of ATPase activity induced by alkyl cations. The binding of F1 to Sepharose-hexylammonium is prevented by high concentrations of Na+ or K+.  相似文献   

19.
Interaction of the mitochondrial ATPase complex with phospholipids   总被引:1,自引:0,他引:1  
The interaction of bovine heart mitochondrial oligomycin-sensitive ATPase (Serrano, R., Kranner, B. L., and Racker, E. (1976) J. Biol. Chem. 251, 2453-2461) with phospholipids has been examined by labeling the subunits exposed to lipids with photoreactive radioactive phospholipids. A subunit of Mr = 29,000 and some polypeptides in the range of 6,000 to 13,000 daltons were labeled. F1-ATPase subunits did not interact with the photoactive probes. This result is compared with the different pattern of labeling obtained with another mitochondrial ATPase preparation (Galante, Y.M., Wong, S. Y., and Hatefi, Y. (1979) J. Biol. Chem. 254, 12372-12378), which is devoid of the 29,000 component.  相似文献   

20.
This paper demonstrates, by pulse-chase techniques, the binding to rat liver mitochondrial carbamoyl phosphate synthetase of the ATP molecule (ATPB) which transfers its gamma-phosphoryl group to carbamoyl phosphate. This bound APTB can react with NH3, HCO-3 and ATP (see below) to produce carbamoyl phosphate before it exchanges with free ATP. Mg2+ and N-acetylglutamate, but not NH3 or HCO-3, are required for this binding; the amount bound depends on the concentration of ATP (Kapp = 10--30 microns ATP) and the amount of enzyme. At saturation at least one ATPB molecule binds per enzyme dimer. Binding of ATPB follows a slow exponential time course (t1/2 8--16 s, 22 degrees C), independent of ATP concentration and little affected by NH3, NCO-3 or by incubation of the enzyme with unlabelled ATP prior to the pulse of [gamma-32P]ATP. Formation of carbamoyl phosphate from traces of NH3 and HCO-3 when the enzyme is incubated with ATP follows the kinetics expected if it were generated from the bound ATPB, indicating that the latter is a precursor of carbamoyl phosphate ('Cbm-P precursor') in the normal enzyme reaction. This indicates that the site for ATPB is usually inaccessible to ATP in solution but becomes accessible when the enzyme undergoes a periodical conformational change. Bound ATP becomes Cbm-P precursor when the enzyme reverts to the inaccessible conformation. Pulse-chase experiments in the absence of NH3 and HCO-3 (less than 0.2 mM) also demonstrate binding of ATPA (the molecule which yields Pi in the normal enzyme reaction), as shown by a 'burst' in 32Pi production. Therefore, (in accordance with our previous findings) both ATPA and ATPB can bind simultaneously to the enzyme and react with NH3 and HCO-3 in the chase solution before they can exchange with free ATP. However, at low ATP concentration (18 micron) in the pulse incubation, only ATPB binds since ATP is required in the chase (see above). Despite the presence of two ATP binding sites, the bifunctional inhibitor adenosine(5')pentaphospho(5')adenosine(Ap5A) fails to inhibit the enzyme significantly. A more detailed modification of the scheme previously published [Rubio, V. & Grisolia, S. (1977) Biochemistry, 16, 321--329] is proposed; it is suggested that ATPB gains access to the active centre when the products leave the enzyme and the active centre is in an accessible configuration. The transformation from accessible to inaccessible configuration appears to be part of the normal enzyme reaction and may represent to conformational change postulated by others from steady-state kinetics. The properties of the intermediates also indicate that hydrolysis of ATPA must be largely responsible for the HCO-3-dependent ATPase activity of the enzyme. The lack of inhibition of the enzyme by Ap5A indicates substantial differences between the Escherichia coli and the rat liver synthetase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号