首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
The nematode Caenorhabditis elegans exhibits a complex behavior called thermotaxis in response to temperature. This behavior is defined as a form of associative learning, in which temperature pairs with the presence or absence of food. Different interpretations have been drawn from the diverse results obtained by several groups, mainly because of the application of different methodologies for the analysis of thermotaxis. To clarify the discrepancies in behavioral observations and subsequent interpretations by different laboratories, we attempted to systematize several parameters to observe thermotaxis behavior as originally defined by Hedgecock and Russell in 1975. In this study, we show clearly how C. elegans can show a conditioned migration toward colder or warmer areas on a thermal gradient, given certain criteria necessary for the observation of thermotaxis. We thus propose to distinguish thermotaxis from other temperature-related behaviors, such as the warm avoidance response displayed at temperature gradients of 1°C/cm and steeper.  相似文献   

2.
Mohri A  Kodama E  Kimura KD  Koike M  Mizuno T  Mori I 《Genetics》2005,169(3):1437-1450
Animals modify behavioral outputs in response to environmental changes. C. elegans exhibits thermotaxis, where well-fed animals show attraction to their cultivation temperature on a thermal gradient without food. We show here that feeding-state-dependent modulation of thermotaxis is a powerful behavioral paradigm for elucidating the mechanism underlying neural plasticity, learning, and memory in higher animals. Starved experience alone could induce aversive response to cultivation temperature. Changing both cultivation temperature and feeding state simultaneously evoked transient attraction to or aversion to the previous cultivation temperature: recultivation of starved animals with food immediately induced attraction to the temperature associated with starvation, although the animals eventually exhibited thermotaxis to the new temperature associated with food. These results suggest that the change in feeding state quickly stimulates the switch between attraction and aversion for the temperature in memory and that the acquisition of new temperature memory establishes more slowly. We isolated aho (abnormal hunger orientation) mutants that are defective in starvation-induced cultivation-temperature avoidance. Some aho mutants responded normally to changes in feeding state with respect to locomotory activity, implying that the primary thermosensation followed by temperature memory formation remains normal and the modulatory aspect of thermotaxis is specifically impaired in these mutants.  相似文献   

3.
Inada H  Ito H  Satterlee J  Sengupta P  Matsumoto K  Mori I 《Genetics》2006,172(4):2239-2252
The nematode Caenorhabditis elegans senses temperature primarily via the AFD thermosensory neurons in the head. The response to temperature can be observed as a behavior called thermotaxis on thermal gradients. It has been shown that a cyclic nucleotide-gated ion channel (CNG channel) plays a critical role in thermosensation in AFD. To further identify the thermosensory mechanisms in AFD, we attempted to identify components that function upstream of the CNG channel by a reverse genetic approach. Genetic and behavioral analyses showed that three members of a subfamily of gcy genes (gcy-8, gcy-18, and gcy-23) encoding guanylyl cyclases were essential for thermotaxis in C. elegans. Promoters of each gene drove reporter gene expression exclusively in the AFD neurons and, moreover, tagged proteins were localized to the sensory endings of AFD. Single mutants of each gcy gene showed almost normal thermotaxis. However, animals carrying double and triple mutations in these genes showed defective thermotaxis behavior. The abnormal phenotype of the gcy triple mutants was rescued by expression of any one of the three GCY proteins in the AFD neurons. These results suggest that three guanylyl cyclases function redundantly in the AFD neurons to mediate thermosensation by C. elegans.  相似文献   

4.
One of the adaptive behaviors of animals in their environment is thermotaxis, by which they migrate toward a preferred temperature. This sensorimotor integration is accomplished by choosing one of two behaviors depending on the surrounding temperature, namely thermophilic or cryophilic movement. Caenorhabditis elegans exhibits thermotaxis and its migration behavior has been analyzed experimentally at both the population and individual levels. However, some experimental data are inconsistent especially for thermophilic movement, which is expected to be observed in lower than favorable temperatures. There are no experimental analyzes that find thermophilic tendencies in the individual behavior of worms, despite multiple reports supporting thermophilic movement of the population. Although theoretical methods have been used to study thermotaxis of C. elegans, no mathematical model provides a consistent explanation for this discrepancy. Here we develop a simple biased random walk model, which describes population behavior, but which is based on the results of individual assays. Our model can integrate all previous experiments without any contradiction. We regenerate all the population patterns reported in past studies and give a consistent explanation for the conflicting results. Our results suggest that thermophilic movement is observed, even in individual movements, when the thermal gradient is sufficiently slight. On the contrary, thermophilic movement disappears when the thermal gradient is too steep. The thermal gradient is thus essential for a comprehensive understanding of the experimental studies of thermotaxis in C. elegans. Our model provides insight into an integrative understanding of the neural activity and thermotactic behavior in C. elegans.  相似文献   

5.
A thermotaxis chamber was constructed to quantitatively study thermotaxis in eukaryotic amoeboid cells. The apparatus provided either spatial or temporal temperature gradients in an observation chamber set in an inverted microscope. With an infrared video camera system, spatial thermal gradients were monitored directly and the temperature at the actual location of the cells could be estimated accurately. This enabled a precise determination of the strength of thermal stimuli. With this apparatus, we were able to simultaneously measure temperature and observe cellular behavior directly. This feature permits quantitative studies on stimulus-response relationships. The utility of the apparatus was demonstrated by thermotaxis assay under a spatial thermal gradient in polymorphonuclear leukocytes. Since this apparatus can also provide temporal thermal gradients, it may have several applications in studies of temperature-dependent phenomena in cell biology.  相似文献   

6.
Strongyloides stercoralis, a skin-penetrating nematode parasite of homeotherms, migrates to warmth. In nematodes, the amphids, anteriorly positioned, paired sensilla, each contain a bundle of sensory neurons. In the amphids of the free-living nematode Caenorhabditis elegans, a pair of neurons, each of which ends in a cluster of microvilli-like projections, are known to be the primary thermoreceptors, and have been named the finger cells (class AFD). A similar neuron pair in the amphids of the parasite Haemonchus contortus is also known to be thermosensory. Strongyloides stercoralis lacks finger cells but, in its amphids, it has a pair of neurons whose dendrites end in a multi-layered complex of lamellae, the so-called lamellar cells (class ALD). Consequently, it was hypothesised that these lamellar cells might mediate thermotaxis by the skin-penetrating infective larva of this species. To investigate this, first stage S. stercoralis larvae were anaesthetised and the paired ALD class neurons were ablated with a laser microbeam. The larvae were then cultured to the infective third stage (L3) and assayed for thermotaxis on a thermal gradient. L3 with ablated ALD class neuron pairs showed significantly reduced thermotaxis compared with control groups. The thermoreceptive function of the ALD class neurons (i) associates this neuron pair with the host-finding process of S. stercoralis and (ii) demonstrates a functional similarity with the neurons of class AFD in C. elegans. The structural and positional characteristics of the ALD neurons suggest that these neurons may, in fact, be homologous with one pair of flattened dendritic processes known as wing cells (AWC) in C. elegans, while their florid development and thermosensory function suggest homology with the finger cells (AFD) of that nematode.  相似文献   

7.
SYNOPSIS. The relationship to swimming velocity of the critical temperature gradient necessary for inducing thermotaxis in Paramecium caudatum was analyzed at various temperatures and viscosities. Since the critical temperature gradient was linearly proportional to the inverse of the swimming velocity, it is concluded that P. caudatum detects temperature changes by locomotion through space and thus exhibits thermotaxis, provided the rate of change is > 0.055 C/sec. The swimming velocity jump was observed when the ciliates were subjected to a stepwise temperature change toward an optimum with a rate > 0.05 C/sec; the jump was not observed, however, when they were subjected to a change toward an unpreferred temperature with the same rate. Hence, thermotaxis can be explained partly by the swimming velocity jump brought about when the cells are swimming toward an optimum temperature in a spatial gradient. It is suggested that thermotaxis might be a direct manifestation of the dynamic properties of membrane as a receptor.  相似文献   

8.
The estuarine goby Gillichthys mirabilis behaviorally thermoregulates when placed in a laboratory temperature gradient. Avoidance of temperatures above 23°C is the most evident component of this thermotaxis. Temperature preferences of non-acclimated fish do not vary significantly as a function of season; nor does temperature acclimation alter the preferendum. Varying the temperature range of the gradient apparently modifies thermotaxis. Negative phototaxis evidenced by this species is subjugated by thermal preferences. Temperature preference does not vary diurnally. The heat resistance of this species was determined; there is no apparent relationship between heat resistance and temperature preference.  相似文献   

9.
Newborn rabbits, like other altricial mammals, demonstrate thermotaxis and when placed on a thermal gradient locate and come to rest at physiologically appropriate temperatures. Little is known, however, about the sensory-motor components contributing to the in energetic terms important decision of the young to cease locomotion and come to rest. We investigated the behavior of newborn rabbits on two thermal gradients; linear in which pups could use tactile cues from the arena wall, and concentric in which pups were unable to use such cues. On both gradients pups located the warm, thermal-neutral area within the 200-s test time, thereby demonstrating their ability to orient appropriately using thermal cues alone. Unexpectedly, however, pups on the concentric gradient failed, or took significantly longer, to come to rest than pups on the linear gradient. Since the speed of locomotion of pups on the linear gradient was significantly slowed when they were in contact with the arena wall, and in most cases they came to rest in contact with it, we suggest that not only thermal but also tactile cues may be important in bringing young mammals to rest in a thermally appropriate environment.  相似文献   

10.
Neural signals are processed in nervous systems of animals responding to variable environmental stimuli. This study shows that a novel and highly conserved protein, macoilin (MACO-1), plays an essential role in diverse neural functions in Caenorhabditis elegans. maco-1 mutants showed abnormal behaviors, including defective locomotion, thermotaxis, and chemotaxis. Expression of human macoilin in the C. elegans nervous system weakly rescued the abnormal thermotactic phenotype of the maco-1 mutants, suggesting that macoilin is functionally conserved across species. Abnormal thermotaxis may have been caused by impaired locomotion of maco-1 mutants. However, calcium imaging of AFD thermosensory neurons and AIY postsynaptic interneurons of maco-1 mutants suggest that macoilin is required for appropriate responses of AFD and AIY neurons to thermal stimuli. Studies on localization of MACO-1 showed that C. elegans and human macoilins are localized mainly to the rough endoplasmic reticulum. Our results suggest that macoilin is required for various neural events, such as the regulation of neuronal activity.  相似文献   

11.
On a radial temperature gradient, C. elegans worms migrate, after conditioning with food, toward their cultivation temperature and move along this isotherm. This experience-dependent behavior is called isothermal tracking (IT). Here we show that the neuron-specific calcium sensor-1 (NCS-1) is essential for optimal IT. ncs-1 knockout animals show major defects in IT behavior, although their chemotactic, locomotor, and thermal avoidance behaviors are normal. The knockout phenotype can be rescued by reintroducing wild-type NCS-1 into the AIY interneuron, a key component of the thermotaxis network. A loss-of-function form of NCS-1 incapable of binding calcium does not restore IT, whereas NCS-1 overexpression enhances IT performance levels, accelerates learning (faster acquisition), and produces a memory with slower extinction. Thus, proper calcium signaling via NCS-1 defines a novel pathway essential for associative learning and memory.  相似文献   

12.
Bhopale, V. M., Kupprion, E. K., Ashton, F. T., Boston, R., and Schad, G. A. 2001. Ancylostoma caninum: The finger cell neurons mediate thermotactic behavior by infective larvae of the dog hookworm. Experimental Parasitology 97, 70-76. In the amphids (anteriorly positioned, paired sensilla) of the free-living nematode Caenorhabditis elegans, the so-called finger cells (AFD), a pair of neurons, each of which ends in a cluster of microvilli-like projections, are known to be the primary thermoreceptors. A similar neuron pair in the amphids of the parasitic nematode Haemonchus contortus is also known to be thermoreceptive. The hookworm of dogs, Ancylostoma caninum, has apparent structural homologs of finger cells in its amphids. The neuroanatomy of the amphids of A. caninum and H. contortus is strikingly similar, and the amphidial cell bodies in the lateral ganglia of the latter nematode have been identified and mapped. When the lateral ganglia of first-stage larvae (L1) of A. caninum are examined with differential interference contrast microscopy, positional homologs of the recognized amphidial cell bodies in the lateral ganglia of H. contortus L1 are readily identified in A. caninum. The amphidial neurons in A. caninum were consequently given the same names as those of their apparent homologs in H. contortus. It was hypothesized that the finger cell neurons (AFD) might mediate thermotaxis by the skin-penetrating infective larvae (L3) of A. caninum. Laser microbeam ablation experiments with A. caninum were conducted, using the H. contortus L1 neuronal map as a guide. A. caninum L1 were anesthetized and the paired AFD class neurons were ablated. The larvae were then cultured to L3 and assayed for thermotaxis on a thermal gradient. L3 with ablated AFD-class neuron pairs showed significantly reduced thermotaxis compared to control groups. The thermoreceptive function of the AFD-class neurons associates this neuron pair with the host-finding process of the A. caninum infective larva and shows functional homology with the neurons of class AFD in C. elegans and in H. contortus.  相似文献   

13.
The mechanism of temperature sensation is far less understood than the sensory response to other environmental stimuli such as light, odor, and taste. Thermotaxis behavior in C. elegans requires the ability to discriminate temperature differences as small as approximately 0.05 degrees C and to memorize the previously cultivated temperature. The AFD neuron is the only major thermosensory neuron required for the thermotaxis behavior. Genetic analyses have revealed several signal transduction molecules that are required for the sensation and/or memory of temperature information in the AFD neuron, but its physiological properties, such as its ability to sense absolute temperature or temperature change, have been unclear. We show here that the AFD neuron responds to warming. Calcium concentration in the cell body of AFD neuron is increased transiently in response to warming, but not to absolute temperature or to cooling. The transient response requires the activity of the TAX-4 cGMP-gated cation channel, which plays an essential role in the function of the AFD neuron. Interestingly, the AFD neuron further responds to step-like warming above a threshold that is set by temperature memory. We suggest that C. elegans provides an ideal model to genetically and physiologically reveal the molecular mechanism for sensation and memory of temperature information.  相似文献   

14.
On the basis of the finding that capacitated (ready to fertilize) rabbit and human spermatozoa swim towards warmer temperatures by directing their movement along a temperature gradient, sperm thermotaxis has been proposed to be one of the processes guiding these spermatozoa to the fertilization site. Although the molecular mechanism underlying sperm thermotaxis is gradually being revealed, basic questions related to this process are still open. Here, employing human spermatozoa, we addressed the questions of how wide the temperature range of thermotaxis is, whether this range includes an optimal temperature or whether spermatozoa generally prefer swimming towards warmer temperatures, whether or not they can sense and respond to descending temperature gradients, and what the minimal temperature gradient is to which they can thermotactically respond. We found that human spermatozoa can respond thermotactically within a wide temperature range (at least 29-41°C), that within this range they preferentially accumulate in warmer temperatures rather than at a single specific, preferred temperature, that they can respond to both ascending and descending temperature gradients, and that they can sense and thermotactically respond to temperature gradients as low as <0.014°C/mm. This temperature gradient is astonishingly low because it means that as a spermatozoon swims through its entire body length (46 μm) it can sense and respond to a temperature difference of <0.0006°C. The significance of this surprisingly high temperature sensitivity is discussed.  相似文献   

15.
Third-stage and fourth-stage Dirofilaria immitis larvae exhibited positive thermotaxis when placed in a thermal gradient. Negative thermotaxis was not observed. Positive thermotaxis may be important for the successful transmission and for directing third and fourth-stage larval migration toward predilection sites in the host.  相似文献   

16.
The thermotactic responses of Dictyostelium discoideum strain HL50 and mutants derived from this strain have been characterized by curves of stimulus-strength vs response. With gradient midpoint temperatures of 16 and 24 °C, these curves are typical of those of a single response, i.e., the strength of the response increases with increasing stimulus strength until at some strength the response saturates. However, with a gradient midpoint temperature close to the transition from negative to positive thermotaxis, the sign of the thermotactic response depends on gradient strength. These observations support the hypothesis that the transduction pathways for positive and negative thermotaxis act concurrently and contain separable elements. An investigation of the adaptation of thermotaxis indicated that the stimulus-strength-dependence and midpoint-temperature-dependence of both thermosensory responses was altered by shifting the growth and development temperature.  相似文献   

17.
In laboratory thermal gradients, newly hatched infective juveniles of the plant-parasitic root-knot nematode Meloidogyne incognita migrated toward a preferred temperature that was several degrees above the temperature to which they were acclimated. After shifting egg masses to a new temperature, the preferred temperature was reset in less than a day. Possible functions of this type of thermotaxis are discussed, including the use of thermal gradients around plant roots to locate hosts and to maintain a relatively straight path while ranging in the absence of other cues (a collimating stimulus).  相似文献   

18.
A temperature-gradient incubator (TGI) is described, which produces a thermal gradient over 34 aluminium modules (15x30x5 cm) intersected by 2-mm layers of partly insulating graphite foil (SigraFlex Universal). The new, sandwich-designed TGI has 30 rows of six replicate sample wells for incubation of 28-ml test tubes. An electric plate heats one end of the TGI, and the other end is cooled by thermoelectric Peltier elements in combination with a liquid cooling system. The TGI is equipped with 24 calibrated Pt-100 temperature sensors and insulated by polyurethane plates. A PC-operated SCADA (Supervisory Control And Data Acquisition) software (Genesis 4.20) is applied for temperature control using three advanced control loops. The precision of the TGI temperature measurements was better than +/-0.12 degrees C, and for a 0-40 degrees C gradient, the temperature at the six replicate sample wells varied less than +/-0.04 degrees C. Temperatures measured in incubated water samples closely matched the TGI temperatures, which showed a linear relationship to the sample row number. During operation for 8 days with a gradient of 0-40 degrees C, the temperature at the cold end was stable within +/-0.02 degrees C, while the temperatures at the middle and the warm end were stable within +/-0.08 degrees C (n=2370). Using the new TGI, it was shown that the fine-scale (1 degrees C) temperature dependence of S(o) oxidation rates in agricultural soil (0-29 degrees C) could be described by the Arrhenius relationship. The apparent activation energy (E(a)) for S(o) oxidation was 79 kJ mol(-1), which corresponded to a temperature coefficient (Q(10)) of 3.1. These data demonstrated that oxidation of S(o) in soil is strongly temperature-dependent. In conclusion, the new TGI allowed a detailed study of microbial temperature responses as it produced a precise, stable, and certifiable temperature gradient by the new and combined use of sandwich-design, thermoelectric cooling, and advanced control loops. The sandwich-design alone reduced the disadvantageous thermal gradient over individual sample wells by 56%.  相似文献   

19.
The nematode Caenorhabditis elegans has been reported to exhibit thermotaxis, a sophisticated behavioral response to temperature. However, there appears to be some inconsistency among previous reports. The results of population-level thermotaxis investigations suggest that C. elegans can navigate to the region of its cultivation temperature from nearby regions of higher or lower temperature. However, individual C. elegans nematodes appear to show only cryophilic tendencies above their cultivation temperature. A Monte-Carlo style simulation using a simple individual model of C. elegans provides insight into clarifying apparent inconsistencies among previous findings. The simulation using the thermotaxis model that includes the cryophilic tendencies, isothermal tracking and thermal adaptation was conducted. As a result of the random walk property of locomotion of C. elegans, only cryophilic tendencies above the cultivation temperature result in population-level thermophilic tendencies. Isothermal tracking, a period of active pursuit of an isotherm around regions of temperature near prior cultivation temperature, can strengthen the tendencies of these worms to gather around near-cultivation-temperature regions. A statistical index, the thermotaxis (TTX) L-skewness, was introduced and was useful in analyzing the population-level thermotaxis of model worms.  相似文献   

20.
The nematode Caenorhabditis elegans is an excellent model organism to study biological processes relevant to a wide variety of human and rodent disease systems. Previous studies have suggested that mutants of the insulin/insulin-like growth factor-1 pathway show life extension and increased stress resistance in various species, including C. elegans, the fruit fly, and the mouse. It has recently been shown that the life-extending mutants, including the age-1 phosphatidylinositol- 3 OH kinase mutants and the daf-2 insulin-like receptor mutants, display improvement in a type of associative learning behavior called thermotaxis learning behavior. The age-1 mutant shows a dramatic threefold extension of the health-span that ensures thermotaxis learning behavior, suggesting strong neuroprotective actions during aging. The age-1 and daf-2 mutants show resistance to multiple forms of stress and upregulates the genes involved in reactive oxygen species scavenging, heat shock, and P450 drug-detoxification. The life-extending mutants may confer resistance to various stress and diseases in neurons. Therefore, C. elegans provides an emerging system for the prevention of age-related deficits in the nervous system and in learning behaviors. This article discusses the aging of learning and memory and the neuroprotection effects of life-extending mutants on learning behaviors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号