首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A protein assay based on colloidal gold conjugates with trypsin   总被引:2,自引:0,他引:2  
The standard sol particle immunoassay (SPIA) is based on a biospecific aggregation of gold nanoparticle conjugates, followed by conventional spectrophotometry. Here we propose a novel SPIA format that uses microtitration immunological plates and an enzyme-linked immunosorbent assay reader. The novel and standard assays are exemplified by determination of immunoglobulin G by using 15-nm colloidal gold-protein A conjugates. We also describe a novel sol particle-trypsin assay using conjugates of gold nanoparticles with trypsin. The method is based on measuring spectral extinction changes caused by the addition of protein to a conjugate solution. The changes in the extinction spectra are presumed to be related to aggregation of gold nanoparticles caused by polyvalent binding of protein molecules to the trypsin molecules of the conjugates.  相似文献   

2.
We present a new type of enzyme-antibody conjugate that simplifies the labeling procedure and increases the sensitivity of enzyme-linked immunosorbent assay (ELISA). The conjugates were prepared through layer-by-layer immobilization of enzyme and antibody on a silica nanoparticle scaffold. A maximal amount of enzyme was immobilized on the nanoparticle, followed by antibody linkage through Dextran 500. The conjugate could be easily purified from unreacted reagents by simple centrifugations. In comparison with the conventional antibody-enzyme conjugate used in ELISA, which often has one or two enzyme molecules per antibody, the new type of conjugate contained more enzyme molecules per antibody and provided a much higher signal and increased sensitivity. When used in an ELISA detection of the hepatitis B surface antigen (HBsAg), the detection limit was three times lower than that of the commercially available ELISA kit.  相似文献   

3.
Phthalocyanine-nanoparticle conjugates have been designed and synthesised for the delivery of hydrophobic photosensitizers for photodynamic therapy (PDT) of cancer. The phthalocyanine photosensitizer stabilized gold nanoparticles have an average diameter of 2-4 nm. The synthetic strategy interdigitates a phase transfer reagent between phthalocyanine molecules on the particle surface that solubilises the hydrophobic photosensitizer in polar solvents enabling delivery of the nanoparticle conjugates to cells. The phthalocyanine is present in the monomeric form on the nanoparticle surface, absorbs radiation maximally at 695 nm and catalytically produces the cytotoxic species singlet oxygen with high efficiency. These properties suggest that the phthalocyanine-nanoparticle conjugates are ideally suited for PDT. In a process that can be considered as cancer therapy using a 'Trojan horse', when the nanoparticle conjugates are incubated with HeLa cells (a cervical cancer cell line), they are taken up thus delivering the phthalocyanine photosensitizer directly into the cell interior. Irradiation of the nanoparticle conjugates within the HeLa cells induced substantial cell mortality through the photodynamic production of singlet oxygen. The PDT efficiency of the nanoparticle conjugates, determined using colorimetric assay, was twice that obtained using the free phthalocyanine derivative. Following PDT with the nanoparticle conjugates, morphological changes to the HeLa cellular structure were indicative of cell mortality via apoptosis. Further evidence of apoptosis was provided through the bioluminescent assay detection of caspase 3/7. Our results suggest that gold nanoparticle conjugates are an excellent vehicle for the delivery of surface bound hydrophobic photosensitizers for efficacious photodynamic therapy of cultured tumour cells.  相似文献   

4.
In this investigation, studies were conducted to determine if size exclusion HPLC could be used to assess relative association rates (on-rates) and dissociation rates (off-rates) of biotin derivatives from avidin (Av) and streptavidin (SAv). For easy detection and quantification of biotin derivatives, molecules that can be detected by UV absorbance were conjugated to biotin. Concern that conjugation of the chromophoric moieties (dyes) might affect biotin binding with Av and SAv or might interact with the HPLC column led to evaluation of 10 biotin-dye conjugates. The dyes conjugated with biotin included dansyl, cyanocobalamin (CN-Cbl), coumarin 343, Lissamine-rhodamine, fluorescein, Cascade Blue, Lucifer Yellow, Oregon Green, tetramethylrhodamine, and Alexa Fluor 594. The biotin-dye conjugates were initially evaluated to determine their peak characteristics on two different size exclusion HPLC columns. Measurement of the percent of biotin-dye conjugate bound with Av in the presence of an equal quantity of biotin provided an association rate relative to biotin. All of the biotin-dyes tested had association rates within a factor of 3x (slower) that of biotin. The relative dissociation rate of biotin-dye conjugates was assessed by challenging the biotin conjugate bound to Av or SAv with a large excess of biotin. All of the initial biotin-dye conjugates tested bound Av and SAv tightly resulting in very slow dissociation rates. From the biotin-dye conjugates studied, biotin-CN-Cbl, 6b, was selected as the best conjugate for the HPLC assay. To test the HPLC assay, an iminobiotin-CN-Cbl conjugate, 13a, and a biotin-sarcosine-CN-Cbl conjugate, 13b, were synthesized. The fact that the iminobiotin does not bind with Av at physiological pH was easily detected in the size exclusion HPLC assay. The biotin-sarcosine-CN-Cbl conjugate was expected to have a more rapid dissociation rate than the other biotin-dye conjugates. This was confirmed in that HPLC assay. Although 13b bound tightly with Av in the absence of added biotin, it was completely released within 1 h when challenged by an excess of biotin. A slower dissociation of 13b was noted with SAv. The results obtained indicate that CN-Cbl conjugates of biotin derivatives can be used to determine relative on-rates and off-rates of biotin derivatives with Av and SAv. The studies also demonstrated that the biotin-CN-Cbl conjugate, 6b, can be used as a reference compound to compare on-rates and off-rates of nonchromophoric biotin derivatives.  相似文献   

5.
Use of antimicrobial enzymes covalently attached to nanoparticles is of great interest as an antibiotic-free approach to treat microbial infections. Intrinsic properties of nanoparticles can also be used to add functionality to their conjugates with biomolecules. Here, we show in a model system that nanoparticle charge can be used to enhance delivery and increase bactericidal activity of an antimicrobial enzyme, lysozyme. Hen egg lysozyme was covalently attached to two types of polystyrene latex nanoparticles: positively charged, containing aliphatic amine surface groups, and negatively charged, containing sulfate and chloromethyl surface groups. In the case of bacterial lysis assay with a Gram-positive bacteria Micrococcus lysodeikticus, activity of lysozyme conjugated to positively charged nanoparticles was approximately twice as large as that of free lysozyme, while lysozyme conjugated to negatively charged nanoparticles showed little detectable activity. At the same time, when assayed using a low-molecular weight oligosaccharide substrate, lysozyme attached to both positively and negatively charged nanoparticles showed slightly lower activity than free enzyme. A possible explanation of these results is that lysozyme attached to negatively charged nanoparticles cannot be effectively targeted to the bacteria because of the electrostatic Coulombic repulsion from the negatively charged bacterial cell walls, whereas lysozyme conjugated to positively charged nanoparticles was targeted better than free enzyme due to stronger electrostatic attraction to bacteria. Zeta potential measurements confirmed the validity of this hypothesis. Thus, nanoparticle charge is an important factor that can be used to control targeting and activity of protein-nanoparticle conjugates.  相似文献   

6.
Targeted metallic nanoparticles have shown promise as contrast agents for molecular imaging. To obtain molecular specificity, the nanoparticle surface must be appropriately functionalized with probe molecules that will bind to biomarkers of interest. The aim of this study was to develop and characterize a flexible approach to generate molecular imaging agents based on gold nanoparticles conjugated to a diverse range of probe molecules. We present two complementary oligonucleotide-based approaches to develop gold nanoparticle contrast agents which can be functionalized with a variety of biomolecules ranging from small molecules, to peptides, to antibodies. The size, biocompatibility, and protein concentration per nanoparticle are characterized for the two oligonucleotide-based approaches; the results are compared to contrast agents prepared using adsorption of proteins on gold nanoparticles by electrostatic interaction. Contrast agents prepared from oligonucleotide-functionalized nanoparticles are significantly smaller in size and more stable than contrast agents prepared by adsorption of proteins on gold nanoparticles. We demonstrate the flexibility of the oligonucleotide-based approach by preparing contrast agents conjugated to folate, EGF peptide, and anti-EGFR antibodies. Reflectance images of cancer cell lines labeled with functionalized contrast agents show significantly increased image contrast which is specific for the target biomarker. To demonstrate the modularity of this new bioconjugation approach, we use it to conjugate both fluorophore and anti-EGFR antibodies to metal nanoparticles, yielding a contrast agent which can be probed with multiple imaging modalities. This novel bioconjugation approach can be used to prepare contrast agents targeted with biomolecules that span a diverse range of sizes; at the same time, the bioconjugation method can be adapted to develop multimodal contrast agents for molecular imaging without changing the coating design or material.  相似文献   

7.
Metallic nanoparticles of gold functionalized with oligonucleotides conventionally use a terminal thiol modification and have been used in a wide range of applications. Although readily available, the oligonucleotide–nanoparticle conjugates prepared in this way suffer from a lack of stability when exposed to a variety of small molecules or elevated temperatures. If silver is used in place of gold then this lack of stability is even more pronounced. In this study we report the synthesis of highly stabilized oligonucleotide–nanoparticle conjugates using a simple oligonucleotide modification. A modified solid support was used to generate 3′-thioctic acid modified oligonucleotides by treatment with an N-hydroxysuccimidyl ester of thioctic acid. Unusually, both gold and silver nanoparticles have been investigated in this study and show that these disulphide-modified oligonucleotide probes offer significant improvements in nanoparticle stability when treated with dithiothreitol (DTT) compared with monothiol analogues. This is a significant advance in oligonucleotide–nanoparticle conjugate stability and for the first time allows silver nanoparticles to be prepared that are more stable than standard gold-thiol functionalized nanoparticles. This opens up the possibility of using silver nanoparticles functionalized with oligonucleotides as an alternative to gold.  相似文献   

8.
The possibility of increasing the effectiveness of antitumor drugs such as doxorubicin by preparing its complex with ultrafine magnetic iron oxide nanoparticles is considered. A method for binding doxorubicin molecules to magnetic nanoparticles via citric acid is proposed. The main magnetic properties of the obtained conjugates were studied by proton relaxometry and Mössbauer spectroscopy, while their cytotoxic activity was evaluated via spectrophotometric MTT assay in HeLa cells. It was shown that the conjugates of magnetite nanoparticles with doxorubicin are characterized by a high level of contrast in magnetic resonance imaging. The magnetic properties of doxorubicin-free and bound magnetite nanoparticles are mainly determined by the average size of nanoobjects and the phase composition and slightly depend on the composition of the stabilizing shell. The cytotoxic effect of the synthesized conjugates of magnetite nanoparticles with doxorubicin is higher than that of unbound doxorubicin. This makes it possible to increase the antitumor effect of doxorubicin and control the dynamics of its delivery in the form of a conjugate into the disease focus due to the magnetic contrast properties of nanoparticles.  相似文献   

9.
Bioaffinity interactions have been, and continue to be, successfully adapted from nature for use in separation and detection applications. It has been previously reported that the magnetophoretic mobility of labeled cells show a saturation type phenomenon as a function of the concentration of the free antibody-magnetic nanoparticle conjugate which is consistent with other reports of antibody-fluorophore binding. Starting with the standard antibody-antigen relationship, a model was developed which takes into consideration multi-valence interactions, and various attributes of flow cytometry (FCM) and cell tracking velocimetry (CTV) measurements to determine both the apparent dissociation constant and the antibody-binding capacity (ABC) of a cell. This model was then evaluated on peripheral blood lymphocytes (PBLs) labeled with anti CD3 antibodies conjugated to FITC, PE, or DM (magnetic nanoparticles). Reasonable agreements between the model and the experiments were obtained. In addition, estimates of the limitation of the number of magnetic nanoparticles that can bind to a cell as a result of steric hinderance was consistent with measured values of magnetophoretic mobility. Finally, a scale-up model was proposed and tested which predicts the amount of antibody conjugates needed to achieve a given level of saturation as the total number of cells reaches 10(10), the number of cells needed for certain clinical applications, such as T-cell depletions for mismatched bone marrow transplants.  相似文献   

10.
When covalently bound to an appropriate ligand, iron oxide nanoparticles can bind to a specific target of interest. This interaction can be detected through changes in the solution's spin-spin relaxation times (T2) via magnetic relaxation measurements. In this report, a strategy of molecular mimicry was used in order to identify targeting ligands that bind to the cholera toxin B subunit (CTB). The cellular CTB-receptor, ganglioside GM1, contains a pentasaccharide moiety consisting in part of galactose and glucose units. We therefore predicted that CTB would recognize carbohydrate-conjugated iron oxide nanoparticles as GM1 mimics, thus producing a detectable change in the T2 relaxation times. Magnetic relaxation experiments demonstrated that CTB interacted with the galactose-conjugated nanoparticles. This interaction was confirmed via surface plasmon resonance studies using either the free or nanoparticle-conjugated galactose molecule. The galactose-conjugated nanoparticles were then used as CTB sensors achieving a detection limit of 40 pM. Via magnetic relaxation studies, we found that CTB also interacted with dextran-coated nanoparticles, and surface plasmon resonance studies also confirmed this interaction. Additional experiments demonstrated that the dextran-coated nanoparticle can also be used as CTB sensors and that dextran can prevent the internalization of CTB into GM1-expressing cells. Our work indicates that magnetic nanoparticle conjugates and magnetic relaxation detection can be used as a simple and fast method to identify targeting ligands via molecular mimicry. Furthermore, our results show that the dextran-coated nanoparticles represent a low-cost approach for CTB detection.  相似文献   

11.
AIMS: To develop a non-competitive direct immunoassay method for quantifying nisin in solution or adsorbed to surfaces. METHODS AND RESULTS: The developed method differs from traditional ELISA in pre-forming a complex of the nisin antibodies and the secondary antibody conjugate before addition to the nisin-coated solid phase. The modifications may help decrease interference from the nisin degradation molecules and reduce non-specific adsorption of secondary antibody conjugate. The new method has a detection limit of 65 ng nisin and correlates well (r=0.982) with the agar diffusion bioassay. CONCLUSIONS: A new sensitivity method was developed to determine the amounts of nisin adsorbed to a polymeric surface. SIGNIFICANCE AND IMPACT OF THE STUDY: The new technique can provide a reproducible and accurate method to quantitate nisin molecules in solutions and those bound on polymeric surfaces, and it is free of the limitations of the traditional agar diffusion bioassay.  相似文献   

12.
gamma-Irradiation of acrolein and other acrylic monomers allowed the synthesis of spherical polyfunctional hydrophilic microparticles in the size range of 50 to 300 nm, on which antigens (immunoglobulins G, chorionic gonadotropin hormone, prealbumin) could be covalently bound. Microsphere-antigen conjugates clustered together in the presence of specific antiserum or monoclonal antibodies and their agglutination was quantified by light-scattering measurement performed with a specially designed nephelometer. Essential factors concerning the conjugate agglutination and its quantitation (size of microsphere, amount of antigen bound on microsphere, concentration of conjugate, concentration of agglutinating reagent, angle of light-scattering observation) were successively studied. A microparticle-enhanced nephelometric immunoassay for prealbumin was finally developed as an example of application. It was based on the inhibition of the immunoagglutination of microspheres-prealbumin conjugate by free prealbumin. This prealbumin immunoassay was easy to perform (one-step assay without washing or phase separation), fast (30 min), reliable (variation coefficients ranged from 3.6% to 7.5% for within- and between-assay determination), and sensitive (1 microgram/L detected). It was correlated with conventional immunonephelometry and radial immunodiffusion (correlation coefficients, 0.98). Microparticle-enhanced nephelometric immunoassay offered many advantages over the last two methods. Its better sensitivity allowed a lower reagent consumption and a larger sample dilution (contrary to the conventional immunonephelometry, sample pretreatment and sample blank measurement were unnecessary). Its inhibition mode induced a total accuracy for sample with high analyte concentration (a risk of underevaluation in antigen excess conditions existed in all method based on a noncompetitive antigen-antibody reaction) and provided the possibility to quantify haptens.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
The presence of histamine receptors on lymphocyte membranes was investigated using conjugates of histamine and macromolecules tritiated or iodinated with I-125. Histamine-RSA conjugate binds to lymphocytes and causes patching and capping of the bound conjugate. It was found, however, that free histamine did not inhibit the binding of histamine-rabbit serum albumin to mouse lymphocytes, nor did His-RSA interfere with the binding of free histamine. In addition conjugates between RSA and other small molecules, such as ethylamine, ethanolamine, tyramine and glycine, were found to bind to the same sites on lymphocyte membrane as did His-RSA. Ethylamine-RSA like His-RSA when coupled to Sepharose, was capable of removing antibody producing cells from spleen cells of mice immunized against sheep red blood cells. In addition, when spleen cells from such immunized mice were passed through ethylamine or histamine-RSA-Sepharose and the unbound cells were subsequently injected into X-irradiated mice, a 1.8 fold increase in the immunological response was noted. We conclude that the selective binding to lymphocytes of the various ligand-macromolecular conjugates may be due to some general properties of the cell membrane and not to any specific receptors. Nevertheless, these conjugates can be used as a tool to remove selectively antibody producing cells as well as some regulatory cells.  相似文献   

14.
Binding of ligands on to epidermal growth factor receptor (EGFR) can stimulate cell growth; therefore, any application employing EGF as a targeting ligand for a "drug carrier" must evaluate the effect of the conjugate on cell growth. We report the synthesis and in vitro biological activity of EGF molecules coupled to a fluorescein-labeled polyamidoamine dendrimer. The conjugate bound and internalized into several EGFR-expressing cell lines in a receptor-specific fashion. The conjugate effectively induced EGFR phosphorylation and acted as a superagonist by stimulating cell growth to a greater degree than free EGF. Concomitant administration of the chemotherapeutic drug methotrexate completely inhibited cell growth to a degree similar to its effect in the absence of the conjugate. Thus, dendrimer-EGF conjugates serve as EGFR superagonists, but this activity can be overcome by chemotherapeutic drugs. The agonist activity of these materials must be taken into consideration when using EGF conjugates for imaging applications.  相似文献   

15.
A simple and versatile method for the preparation of functional enzyme-gold nanoparticle conjugates using "click" chemistry has been developed. In a copper-catalyzed 1,2,3-triazole cycloaddition, an acetylene-functionalized Thermomyces lanuginosus lipase has been attached to azide-functionalized water-soluble gold nanoparticles under retention of enzymatic activity. The products have been characterized by gel electrophoresis and a fluorometric lipase activity assay. It is estimated that the equivalent of approximately seven fully active lipase molecules are attached to each nanoparticle.  相似文献   

16.
Antigen-coated plastic tubes were used with 125I- or enzyme-labeled staphylococcal protein A in a general immunoassay method for antigens and haptens. Protein A reacts with immunoglobulin G (IgG) regardless of antibody specificity at sites distal to the antigen combining site and does not inhibit the immune reaction. It therefore serves as a general tracer and its use eliminates the need to purify and to label individual components for each assay. Macromolecular antigens were bound to polystyrene or polypropylene tubes by direct passive adsorption. Haptens with free carboxyl groups were bound covalently to poly-l-lysine and these conjugates passively adsorbed to the tube surface. Optimal assay conditions were established for the quantitative determination of immunoglobulins and the folate derivatives, methotrexate and 5-methyltetrahydrofolate, using 125I-labeled protein A or protein A labeled with alkaline phosphatase. The method has been used to estimate levels of IgG, IgA, IgM, and IgE in serum in volumes up to 1 ml.  相似文献   

17.
Summary The validity of histochemical methods for the localization of hormone receptors based on the binding of fluorescent bovine serum albumin conjugates of oestradiol was examined with respect to their stability and their interactions with the oestrogen receptor type I. Stability was assessed by measuring free oestrogen in conjugates by radioimmunoassay and/or receptor protein binding assay. Sufficient free oestrogen-in order to saturate type I and type II binding sites (ER I, ER II)-was detected in freshly prepared conjugates. This free oestrogen originates in inadequate removal of adsorptively bound original ligand after synthesis. Apart from this fact, conjugates appeared to be unstable in aqueous solutions, especially under the conditions used for histochemical methods. Free oestrogen extracted from the conjugates was subjected to high performance liquid chromatography. Amongst the eluted peaks, oestradiol and/or the original ligand used for synthesis were identified. Thein vitro interaction of conjugates with oestrogen receptors was studied by competitive binding analysis and by incubation of cytosol with a Sepharose-bound conjugate. The results, especially those concerning the amount of free oestrogen, suggest that neither ER I nor ER II is involved in the staining mechanism of conjugates.This paper is dedicated to Professor Dr E. Schauenstein on the occasion of his 65th birthday.  相似文献   

18.
A new variant of competitive heterogeneous immunoassay for certain proteinaceous antigens has been developed. The assay is based on the use of the target protein conjugated with Co(II) or Ni(II) ions and immobilized antibodies. The effect of catalytic hydrogen release allows quantitation of the metal ion labels by voltammetry at the final step of the assay. The conjugates have been characterized by spectrophotometry, voltammetry, atomic adsorption spectrometry, and nuclear magnetic relaxation. Based on the use of the conjugate RNase–diethylenetriaminepentaacetic acid–Co(II) (10 : 4 : 4), a competitive immunoassay for RNase has been developed, detecting the target protein in the range 2 × 10–2–2 × 10–4 mg/ml.  相似文献   

19.
Active application of gold nanoparticles for various diagnostic and therapeutic purposes started in recent decades due to the emergence of new data on their unique optical and physicochemical properties. In addition to colloidal gold conjugates, growth in the number of publications devoted to the synthesis and application of multifunctional nanocomposites has occurred in recent years. This review considers the application in biomedicine of multifunctional nanoparticles that can be produced in three different ways. The first method involves design of composite nanostructures with various components intended for either diagnostic or therapeutic functions. The second approach uses new bioconjugation techniques that allow functionalization of gold nanoparticles with various molecules, thus combining diagnostic and therapeutic functions in one medical procedure. Finally, the third method for production of multifunctional nanoparticles combines the first two approaches, in which a composite nanoparticle is additionally functionalized by molecules having different properties.  相似文献   

20.
As part of our ongoing effort to develop electrophoretic assay technology for clinical diagnostics, we describe a competitive immunoassay for the determination of serum thyroxine (T4) based on electrophoresis and laser induced fluorescence (LIF). Measurements of total T4 are useful for the clinical evaluation of thyroid function. A fluorescein thyroxine conjugate was utilized in conjunction with a polyclonal antibody preparation as assay reagents. Capillary electrophoresis (CE) conditions tolerant of the direct injection of serum without extraction or other sample preparation steps were developed and used for quantitation of total T4 in serum. We have been exploring the use of micromachined devices with arrays of channels for high assay throughput. Our assay protocol was carried in a microchip format. The results illustrate that gains in speed can be additionally achieved, with the electrophoretic separation of free from bound labelled T4 being performed in about 15 s for serum samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号