共查询到20条相似文献,搜索用时 0 毫秒
1.
Mice mutant in the DM domain gene Dmrt4 are viable and fertile but have polyovular follicles 总被引:3,自引:0,他引:3
下载免费PDF全文

Proteins containing the DM domain, a zinc finger-like DNA binding motif, have been implicated in sexual differentiation in diverse metazoan organisms. Of seven mammalian DM domain genes, only Dmrt1 and Dmrt2 have been functionally analyzed. Here, we report expression analysis and targeted disruption of Dmrt4 (also called DmrtA1) in the mouse. Dmrt4 is widely expressed during embryonic and postnatal development. However, we find that mice homozygous for a putative null mutation in Dmrt4 develop essentially normally, undergo full sexual differentiation in both sexes, and are fertile. We observed two potential mutant phenotypes in Dmrt4 mutant mice. First, ovaries of most mutant females have polyovular follicles, suggesting a role in folliculogenesis. Second, 25% of mutant males consistently exhibited copulatory behavior toward other males. We also tested potential redundancy between Dmrt4 and two other gonadally expressed DM domain genes, Dmrt1 and Dmrt7. We observed no enhancement of gonadal phenotypes in the double mutants, suggesting that these genes function independently in gonadal development. 相似文献
2.
Mice devoid of fer protein-tyrosine kinase activity are viable and fertile but display reduced cortactin phosphorylation 总被引:1,自引:0,他引:1
下载免费PDF全文

The ubiquitous Fer protein-tyrosine kinase has been proposed to regulate diverse processes such as cell growth, cell adhesion, and neurite outgrowth. To gain insight into the biological function of Fer, we have targeted the fer locus with a kinase-inactivating missense mutation (fer(D743R)). Mice homozygous for this mutation develop normally, have no overt phenotypic differences from wild-type mice, and are fertile. Since these mice lack both Fer and the testis-specific FerT kinase activities, these proteins are clearly not essential for development and survival. No differences were observed in overall cellularity of bone marrow, spleen, or thymus in the absence of Fer activity. While most platelet-derived growth factor (PDGF)-induced tyrosine phosphorylation was unchanged in fer(D743R) homozygous embryonic fibroblasts, cortactin phosphorylation was reduced. However, Fer kinase activity was not required for PDGF-induced Stat3, p120(ctn), or epidermal growth factor (EGF)-induced beta-catenin phosphorylation. Also, no defects were observed in changes to the actin cytoskeleton, adherens junctions, or focal adhesions in PDGF- or EGF-stimulated fer(D743R) homozygous embryonic fibroblasts. Therefore, Fer likely serves a redundant role in regulating cell growth, cell adhesion, retinal development, and spermatogenesis but is required for efficient phosphorylation of cortactin. 相似文献
3.
We have previously shown that Sox18 is expressed in developing vascular endothelium and hair follicles during mouse embryogenesis and that point mutations in Sox18 are the underlying cause of cardiovascular and hair follicle defects in ragged (Ra) mice. Here we describe the analysis of Sox18(-/-) mice produced by gene targeting. Despite the profound defects seen in Ra mice, Sox18(-/-) mice have no obvious cardiovascular defects and only a mild coat defect with a reduced proportion of zigzag hairs. A reduction in the amount of pheomelanin pigmentation in hair shafts was also observed; later-forming hair follicles showed a reduced subapical pheomelanin band, giving Sox18(-/-) mice a slightly darker appearance than Sox18(+/+) and Sox18(+/-) siblings. Sox18(-/-) mice are viable and fertile and show no difference in the ability to thrive relative to littermates. Because of the mild effect of the mutation on the phenotype of Sox18(-/-) mice, we conclude that the semidominant nature of the Ra mutations is due to a trans-dominant negative effect mediated by the mutant SOX18 proteins rather than haploinsufficiency as has been observed for other SOX genes. Due to the similarity of SOX18 to other subgroup F SOX proteins, SOX7 and -17, and the overlap in expression of these genes, functional redundancy amongst these SOX proteins could also account for the mild phenotype of Sox18(-/-) mice. 相似文献
4.
Mice with a targeted mutation of patched2 are viable but develop alopecia and epidermal hyperplasia 总被引:3,自引:0,他引:3
下载免费PDF全文

Nieuwenhuis E Motoyama J Barnfield PC Yoshikawa Y Zhang X Mo R Crackower MA Hui CC 《Molecular and cellular biology》2006,26(17):6609-6622
Hedgehog (Hh) signaling plays pivotal roles in tissue patterning and development in Drosophila melanogaster and vertebrates. The Patched1 (Ptc1) gene, encoding the Hh receptor, is mutated in nevoid basal cell carcinoma syndrome, a human genetic disorder associated with developmental abnormalities and increased incidences of basal cell carcinoma (BCC) and medulloblastoma (MB). Ptc1 mutations also occur in sporadic forms of BCC and MB. Mutational studies with mice have verified that Ptc1 is a tumor suppressor. We previously identified a second mammalian Patched gene, Ptc2, and demonstrated its distinct expression pattern during embryogenesis, suggesting a unique role in development. Most notably, Ptc2 is expressed in an overlapping pattern with Shh in the epidermal compartment of developing hair follicles and is highly expressed in the developing limb bud, cerebellum, and testis. Here, we describe the generation and phenotypic analysis of Ptc2(tm1/tm1) mice. Our molecular analysis suggests that Ptc2(tm1) likely represents a hypomorphic allele. Despite the dynamic expression of Ptc2 during embryogenesis, Ptc2(tm1/tm1) mice are viable, fertile, and apparently normal. Interestingly, adult Ptc2(tm1/tm1) male animals develop skin lesions consisting of alopecia, ulceration, and epidermal hyperplasia. While functional compensation by Ptc1 might account for the lack of a strong mutant phenotype in Ptc2-deficient mice, our results suggest that normal Ptc2 function is required for adult skin homeostasis. 相似文献
5.
Weidinger G Stebler J Slanchev K Dumstrei K Wise C Lovell-Badge R Thisse C Thisse B Raz E 《Current biology : CB》2003,13(16):1429-1434
In most animals, primordial germ cell (PGC) specification and development depend on maternally provided cytoplasmic determinants that constitute the so-called germ plasm. Little is known about the role of germ plasm in vertebrate germ cell development, and its molecular mode of action remains elusive. While PGC specification in mammals occurs via different mechanisms, several germ plasm components required for early PGC development in lower organisms are expressed in mammalian germ cells after their migration to the gonad and are involved in gametogenesis. Here we show that the RNA of dead end, encoding a novel putative RNA binding protein, is a component of the germ plasm in zebrafish and is specifically expressed in PGCs throughout embryogenesis; Dead End protein is localized to perinuclear germ granules within PGCs. Knockdown of dead end blocks confinement of PGCs to the deep blastoderm shortly after their specification and results in failure of PGCs to exhibit motile behavior and to actively migrate thereafter. PGCs subsequently die, while somatic development is not effected. We have identified dead end orthologs in other vertebrates including Xenopus, mouse, and chick, where they are expressed in germ plasm and germ-line cells, suggesting a role in germ-line development in these organisms as well. 相似文献
6.
Zebrafish Staufen1 and Staufen2 are required for the survival and migration of primordial germ cells
In sexually reproducing organisms, primordial germ cells (PGCs) give rise to the cells of the germ line, the gametes. In many animals, PGCs are set apart from somatic cells early during embryogenesis. Work in Drosophila, C. elegans, Xenopus, and zebrafish has shown that maternally provided localized cytoplasmic determinants specify the germ line in these organisms (Raz, E., 2003. Primordial germ-cell development: the zebrafish perspective. Nat. Rev., Genet. 4, 690--700; Santos, A.C., Lehmann, R., 2004. Germ cell specification and migration in Drosophila and beyond. Curr. Biol. 14, R578-R589). The Drosophila RNA-binding protein, Staufen is required for germ cell formation, and mutations in stau result in a maternal effect grandchild-less phenotype (Schupbach,T., Weischaus, E., 1989. Female sterile mutations on the second chromosome of Drosophila melanogaster:1. Maternal effect mutations. Genetics 121, 101-17). Here we describe the functions of two zebrafish Staufen-related proteins, Stau1 and Stau2. When Stau1 or Stau2 functions are compromised in embryos by injecting antisense morpholino modified oligonucleotides or dominant-negative Stau peptides, germ layer patterning is not affected. However, expression of the PGC marker vasa is not maintained. Furthermore, expression of a green fluorescent protein (GFP):nanos 3'UTR fusion protein in germ cells shows that PGC migration is aberrant, and the mis-migrating PGCs do not survive in Stau-compromised embryos. Stau2 is also required for survival of neurons in the central nervous system (CNS). These phenotypes are rescued by co-injection of Drosophila stau mRNA. Thus, staufen has an evolutionarily conserved function in germ cells. In addition, we have identified a function for Stau proteins in PGC migration. 相似文献
7.
Valenzuela-Fernández A Cabrero JR Serrador JM Sánchez-Madrid F 《Trends in cell biology》2008,18(6):291-297
Histone deacetylase 6 (HDAC6) is a cytoplasmic enzyme that regulates many important biological processes, including cell migration, immune synapse formation, viral infection, and the degradation of misfolded proteins. HDAC6 deacetylates tubulin, Hsp90 and cortactin, and forms complexes with other partner proteins. Although HDAC6 enzymatic activity seems to be required for the regulation of cell morphology, the role of HDAC6 in lymphocyte chemotaxis is independent of its tubulin deacetylase activity. The diverse functions of HDAC6 suggest that it is a potential therapeutic target for the treatment of a range of diseases. This review examines the biological actions of HDAC6, focusing on its deacetylase activity and its potential scaffold functions in the regulation of cell migration and other key biological processes in which the cytoskeleton plays an important role. 相似文献
8.
9.
Tian D Litvak V Toledo-Rodriguez M Carmon S Lev S 《Molecular and cellular biology》2002,22(8):2650-2662
Cell morphogenesis requires dynamic reorganization of the actin cytoskeleton, a process that is tightly regulated by the Rho family of small GTPases. These GTPases act as molecular switches by shuttling between their inactive GDP-bound and active GTP-bound forms. Here we show that Nir2, a novel protein related to Drosophila retinal degeneration B (RdgB), markedly affects cell morphology through a novel Rho-inhibitory domain (Rid) which resides in its N-terminal region. Rid exhibits sequence homology with the Rho-binding site of formin-homology (FH) proteins and leads to an apparent loss of F-actin staining when ectopically expressed in mammalian cells. We also show that Rid inhibits Rho-mediated stress fiber formation and lysophosphatidic acid-induced RhoA activation. Biochemical studies demonstrated that Nir2, via Rid, preferentially binds to the inactive GDP-bound form of the small GTPase Rho. Microinjection of antibodies against Nir2 into neuronal cells markedly attenuates neurite extension, whereas overexpression of Nir2 in these cells attenuates Rho-mediated neurite retraction. These results implicate Nir2 as a novel regulator of the small GTPase Rho in actin cytoskeleton reorganization and cell morphogenesis. 相似文献
10.
Satbhai SB Yamashino T Mizuno T Aoki S 《Bioscience, biotechnology, and biochemistry》2011,75(4):786-789
Physcomitrella patens has four homologs of the pseudo-response regulator involved in the circadian clock mechanism in seed plants. To gain insight into their function, Arabidopsis transgenic lines misexpressing PpPRR2 were constructed. Phenotypic analysis of the transformants with reference to clock-related gene expression and photoperiodic responses revealed that heterologous expression of the moss PpPRR2 gene modifies the intrinsic mechanism underlying the circadian clock in Arabidopsis, suggesting that PpPRR2 serves as a clock component in P. patens. 相似文献
11.
12.
13.
Zhang X Wang H Zhang S Song J Zhang Y Wei X Feng Z 《In vitro cellular & developmental biology. Animal》2012,48(2):131-136
MicroRNAs (miRNAs) are 21–25 nt long non-coding RNA that modulate various biological processes, including developmental timing
via regulating the expression of their target genes. One critical determinant of normal postnatal lung architecture is septation,
and there are many miRNAs involved in the development process. miR-134 is reported as a powerful inducer of pluripotent stem
cell differentiation, and we have found that miR-134 is strongly downregulated during mice lung septation (from postnatal
Day 2 to postnatal Day 21). Further cell function experiments have revealed that over-expression of miR-134 in A549 and Calu-3
cells can promote cell proliferation and inhibit cell apoptosis and migration abilities in vitro, and the down-expression
of miR-134 in cells can act in the opposite way, which indicate that miR-134 is associated with lung septation. This study
provides a basis for further investigation of its function in lung development. 相似文献
14.
The onset of germ cell migration in the mouse embryo 总被引:9,自引:0,他引:9
Mouse primordial germ cells (PGCs) are specified between embryonic day 6.5 (E6.5) and E7.5, when they have been visualized as an alkaline phosphatase-positive (AP+) cell population in the developing allantois. By E8.5, they are embedded in the hind-gut epithelium. Previous experiments have suggested different sites for PGCs' origin, and it is unclear how they reach the gut epithelium. We have used transgenic mice expressing GFP under a truncated Oct4 promoter to visualize living PGCs. We find GFP+/AP+ cells in the posterior end of the primitive streak as a dispersed population of cells actively migrating into the allantois, and directly into the adjacent embryonic endoderm. Time-lapse analysis shows these cells to be actively migratory from the time they exit the primitive streak. 相似文献
15.
Cailian Zhang Shengli Ge Cailian Hu Ning Yang Jinran Zhang 《Acta biochimica et biophysica Sinica》2013,(12):1055-1061
MieroRNAs (miRNAs) function as negative regulators of gene expression involved in cancer metastasis. The aim of this study is to investigate the potential roles of miR-218 in non-small cell lung cancer and validate its regulation mech- anism. Functional studies showed that miR-218 overexpres- sion inhibited cell migration and invasion, but had no effect on cell viability. Enhanced green fluorescent protein reporter assay, real-time polymerase chain reaction and western blot analysis confirmed that miR-218 suppressed the expression of high mobility group box-1 (HMGB1) by directly targeting its 31-untranslated region. Accordingly, silencing of HMGBI accorded with the effects of miR-218 on cell migration and invasion, and overexpression of HMGB1 can restore cell migration and invasion which were reduced by miR-218. In conclusion, these findings demon- strate that miR-218 functions as a tumor suppressor in lung cancer. Furthermore, miR-218 may act as a potential thera- peutic biomarker for metastatic lung cancer patients. 相似文献
16.
Casein kinase 2 (CK2), a highly conserved, multifunctional serine/threonine protein kinase, is critically important for the regulation of a plethora of processes in eukaryotes, such as cell proliferation, differentiation, and death. CK2 is expressed in all tissues; in particular, its amount and activity are elevated in tumor cells. Unlike many regulatory proteins, CK2 permanently adopts an active conformation. The antiapoptotic functions of CK2 are of utmost importance. CK2 is capable of regulating cell survival at multiple levels, including DNA repair; the NF-κB, Wnt, PI3K/Akt, and JAK-STAT signaling cascades; chaperones; activation of anti-apoptotic proteins; and downregulation of pro-apoptotic counterparts, in particular, caspases. The versatility of CK2-mediated phosphorylation ensures the survival of tumor cells exposed to stimuli varying in origin and cytotoxicity mechanisms. Such manifold mode of CK2-dependent survival makes the enzyme an important target for antitumor therapy. 相似文献
17.
Mice expressing mutant myosin heavy chains are a model for familial hypertrophic cardiomyopathy. 总被引:16,自引:0,他引:16
下载免费PDF全文

BACKGROUND: Familial hypertrophic cardiomyopathy (HCM) is an autosomal dominant disease characterized by ventricular hypertrophy, myocellular disarray, arrhythmias, and sudden death. Mutations in several contractile proteins, including cardiac myosin heavy chains, have been described in families with this disease, leading to the hypothesis that HCM is a disease of the sarcomere. MATERIALS AND METHODS: A mutation in the myosin heavy chain (Myh) predicted to interfere strongly with myosin's binding to actin was designed and used to create an animal model for HCM. Five independent lines of transgenic mice were produced with cardiac-specific expression of the mutant Myh. RESULTS: Although the mutant Myh represents a small proportion (1-12%) of the heart's myosin, the mice exhibit the cardiac histopathology seen in HCM patients. Histopathology is absent from the atria and primarily restricted to the left ventricle. The line exhibiting the highest level of mutant Myh expression demonstrates ventricular hypertrophy by 12 weeks of age, but the further course of the disease is strongly affected by the sex of the animal. Hypertrophy increases with age in female animals while the hearts of male show severe dilation by 8 months of age, in the absence of increased mass. CONCLUSIONS: The low levels of the transgene protein in the presence of the phenotypic features of HCM suggest that the mutant protein acts as a dominant negative. In addition, the distinct phenotypes developed by aging male or female transgenic mice suggest that extragenic factors strongly influence the development of the disease phenotype. 相似文献
18.
Coffinier C Ketpura N Tran U Geissert D De Robertis EM 《Gene expression patterns : GEP》2002,2(3-4):189-194
The Dpp/BMP signaling pathway is highly conserved between vertebrates and invertebrates. The recent molecular characterization of the Drosophila crossveinless-2 (cv-2) mutation by Conley and colleagues introduced a novel regulatory step in the Dpp/BMP pathway (Development 127 (2000) 3945). The CV-2 protein is secreted and contains five cysteine-rich (CR) domains similar to those observed in the BMP antagonist Short gastrulation (Sog) of Drosophila and Chordin (Chd) of vertebrates. The mutant phenotype in Drosophila suggests that CV-2 is required for the differentiation of crossvein structures in the wing which require high Dpp levels. Here we present the mouse and human homologs of the Drosophila cv-2 protein. The mouse gene is located on chromosome 9A3 while the human locus maps on chromosome 7p14. CV-2 is expressed dynamically during mouse development, in particular in regions of high BMP signaling such as the posterior primitive streak, ventral tail bud and prevertebral cartilages. We conclude that CV-2 is an evolutionarily conserved extracellular regulator of the Dpp/BMP signaling pathway. 相似文献
19.
Coffinier C Ketpura N Tran U Geissert D De Robertis EM 《Mechanisms of development》2002,119(Z1):S179-S184
The Dpp/BMP signaling pathway is highly conserved between vertebrates and invertebrates. The recent molecular characterization of the Drosophila crossveinless-2 (cv-2) mutation by Conley and colleagues introduced a novel regulatory step in the Dpp/BMP pathway (Development 127 (2000) 3945). The CV-2 protein is secreted and contains five cysteine-rich (CR) domains similar to those observed in the BMP antagonist Short gastrulation (Sog) of Drosophila and Chordin (Chd) of vertebrates. The mutant phenotype in Drosophila suggests that CV-2 is required for the differentiation of crossvein structures in the wing which require high Dpp levels. Here we present the mouse and human homologs of the Drosophila cv-2 protein. The mouse gene is located on chromosome 9A3 while the human locus maps on chromosome 7p14. CV-2 is expressed dynamically during mouse development, in particular in regions of high BMP signaling such as the posterior primitive streak, ventral tail bud and prevertebral cartilages. We conclude that CV-2 is an evolutionarily conserved extracellular regulator of the Dpp/BMP signaling pathway. 相似文献