首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The expression of four different gap junction gene products (alpha 1, beta 1, beta 2, and beta 3) has been analysed during rat skin development and the hair growth cycle. Both alpha 1 (Cx43) and beta 2 (Cx26) connexins were coexpressed in the undifferentiated epidermis. A specific, developmentally regulated elimination of beta 2 expression was observed in the periderm at E16. Coinciding with the differentiation of the epidermis, differential expression of alpha 1 and beta 2 connexins was observed in the newly formed epidermal layers. alpha 1 connexin was expressed in the basal and spinous layers, while beta 2 was confined to the differentiated spinous and granular layers. Large gap junctions were present in the basal layer, while small gap junctions, associated with many desmosomes, were typical for the differentiated layers. Although the distribution pattern for alpha 1 and beta 2 expression remained the same in the neonatal and postnatal epidermis, the RNA and protein levels decreased markedly following birth. Hair follicle development was marked by expression of alpha 1 connexin in hair germs at E16. Following beta 2 detection at E20, the expression increased for both alpha 1 and beta 2 in developing follicles. A cell-type-specific expression was detected in the outer root sheath, in the matrix, in the matrix-derived cells (inner root sheath, cortex and medulla) and in the dermal papilla. In addition, alpha 1 was specifically expressed in the arrector pili muscle, while sebocytes expressed both alpha 1 and beta 3 (Cx31) connexin. beta 1 connexin (Cx32) was not detected at any stage analysed. The results indicate that multiple gap junction genes contribute to epidermal and follicular morphogenesis. Moreover, based on the utilization of gap junctions in all living cells of the surface epidermis, it appears that the epidermis may behave as a large communication compartment that may be coupled functionally to epidermal appendages (hair follicles and sebaceous glands) via gap junctional pathways.  相似文献   

3.
4.
5.
We used electron cryo-microscopy and image analysis to examine frozen-hydrated, two-dimensional (2D) crystals of a recombinant, 30-kDa C-terminal truncation mutant of the cardiac gap junction channel formed by 43-kDa alpha(1) connexin. To our knowledge this is the first example of a structural analysis of a membrane protein that has been accomplished using microgram amounts of starting material. The recombinant alpha(1) connexin was expressed in a stably transfected line of baby hamster kidney cells and spontaneously assembled gap junction plaques. Detergent treatment with Tween 20 and 1,2-diheptanoyl-sn-phosphocholine resulted in well-ordered 2D crystals. A three-dimensional density (3D) map with an in-plane resolution of approximately 7.5 A revealed that each hexameric connexon was formed by 24 closely packed rods of density, consistent with an alpha-helical conformation for the four transmembrane domains of each connexin subunit. In the extracellular gap the aqueous channel was bounded by a continuous wall of protein that formed a tight electrical and chemical seal to exclude exchange of substances with the extracellular milieu.  相似文献   

6.
Cardiac fibroblasts contribute to the structure and function of the myocardium. However their involvement in electrophysiological processes remains unclear; particularly in pathological situations when they proliferate and develop fibrosis. We have identified the connexins involved in gap junction channels between fibroblasts from adult mouse heart and characterized their functional coupling. RT-PCR and Western blotting results show that mRNA and proteins of connexin40 and connexin43 are expressed in cultured cardiac fibroblasts, while Cx45 is not detected. Analysis of gap junctional communications established by these connexins with the gap-FRAP technique demonstrates that fibroblasts are functionally coupled. The time constant of permeability, k, calculated from the fluorescence recovery curves between cell pairs is 0.066 ± 0.005 min− 1 (n = 65). Diffusion analysis of Lucifer Yellow through gap junction channels with the scrape-loading method demonstrates that when they are completely confluent, a majority of fibroblasts are coupled forming an interconnecting network over a distance of several hundred micrometers. These data show that cardiac fibroblasts express connexin40 and connexin43 which are able to establish functional communications through homo and/or heterotypic junctions to form an extensive coupled cell network. It should then be interesting to study the conditions to improve efficiency of this coupling in pathological conditions.  相似文献   

7.
8.
The objective of this study was to determine whether connexin 32-type gap junctions contribute to the "contact effect" in follicular thyrocytes and whether the response is influenced by radiation quality. Our previous studies demonstrated that early-passage follicular cultures of Fischer rat thyroid cells express functional connexin 32 gap junctions, with later-passage cultures expressing a truncated nonfunctional form of the protein. This model allowed us to assess the role of connexin 32 in radiation responsiveness without relying solely on chemical manipulation of gap junctions. The survival curves generated after gamma irradiation revealed that early-passage follicular cultures had significantly lower values of alpha (0.04 Gy(-1)) than later-passage cultures (0.11 Gy(-1)) (P < 0.0001, n = 12). As an additional way to determine whether connexin 32 was contributing to the difference in survival, cultures were treated with heptanol, resulting in higher alpha values, with early-passage cultures (0.10 Gy(-1)) nearly equivalent to untreated late-passage cultures (0.11 Gy(-1)) (P > 0.1, n = 9). This strongly suggests that the presence of functional connexin 32-type gap junctions was contributing to radiation resistance in gamma-irradiated thyroid follicles. Survival curves from proton-irradiated cultures had alpha values that were not significantly different whether cells expressed functional connexin 32 (0.10 Gy(-1)), did not express connexin 32 (0.09 Gy(-1)), or were down-regulated (early-passage plus heptanol, 0.09 Gy(-1); late-passage plus heptanol, 0.12 Gy(-1)) (P > 0.1, n = 19). Thus, for proton irradiation, the presence of connexin 32-type gap junctional channels did not influence their radiosensitivity. Collectively, the data support the following conclusions. (1) The lower alpha values from the gamma-ray survival curves of the early-passage cultures suggest greater repair efficiency and/or enhanced resistance to radiation-induced damage, coincident with the expression of connexin 32-type gap junctions. (2) The increased sensitivity of FRTL-5 cells to proton irradiation was independent of their ability to communicate through connexin 32 gap junctions. (3) The fact that the beta components of the survival curves from both gamma rays and proton beams were similar (average 0.022 +/- 0.008 Gy(-2), P > 0.1, n = 39) suggests that at higher doses the loss of viability occurs at a relatively constant rate and is independent of radiation quality and the presence of functional gap junctions.  相似文献   

9.
M M Falk  L K Buehler  N M Kumar    N B Gilula 《The EMBO journal》1997,16(10):2703-2716
Several different gap junction channel subunit isotypes, known as connexins, were synthesized in a cell-free translation system supplemented with microsomal membranes to study the mechanisms involved in gap junction channel assembly. Previous results indicated that the connexins were synthesized as membrane proteins with their relevant transmembrane topology. An integrated biochemical and biophysical analysis indicated that the connexins assembled specifically with other connexin subunits. No interactions were detected between connexin subunits and other co-translated transmembrane proteins. The connexins that were integrated into microsomal vesicles assembled into homo- and hetero-oligomeric structures with hydrodynamic properties of a 9S particle, consistent with the properties reported for hexameric gap junction connexons derived from gap junctions in vivo. Further, cell-free assembled homo-oligomeric connexons composed of beta1 or beta2 connexin were reconstituted into synthetic lipid bilayers. Single channel conductances were recorded from these bilayers that were similar to those measured for these connexons produced in vivo. Thus, this is the first direct evidence that the synthesis and assembly of a gap junction connexon can take place in microsomal membranes. Finally, the cell-free system has been used to investigate the properties of alpha1, beta1 and beta2 connexin to assemble into hetero-oligomers. Evidence has been obtained for a selective interaction between individual connexin isotypes and that a signal determining the potential hetero-oligomeric combinations of connexin isotypes may be located in the N-terminal sequence of the connexins.  相似文献   

10.
Dendritic cells (DCs) in culture express at least connexin43, a protein subunit of gap junctions, and form gap junction channels, which could be important for T-cells activation. Here, we evaluated whether DCs express connexins in vivo and also to identify components of their microenvironment that regulate the functional expression of gap junctions. In vivo studies were performed in lymph nodes of mice under control conditions or after skeletal muscle damage. In double immunolabeling studies, connexin45 was frequently detected in DEC205(+) DCs in lymph nodes of control animals, whereas connexin43 was rarely found in DCs. However, connexin43 was upregulated in DCs after skeletal muscle damage. Upregulation of connexin43 gene expression by tissue damage was also confirmed in mice carrying a beta-galactosidase reporter gene in a connexin43 allele. The effect of several cytokines on the expression of functional gap junctions between cultured DCs was also tested. Under control conditions, cultured DCs did not communicate via gap junctions. However, after treatment with keratinocyte-conditioned medium or cytokine mixtures containing at least TNF-alpha and IL-1beta, they became transiently coupled through a pathway sensitive to octanol, a gap junction blocker. Cellular coupling induced by effective cytokine mixtures was prevented by IL-6. Single cytokines (TNF-alpha, IL-1beta, IFN-gamma, or IL-6) or other mixtures than the described above did not induce coupling via gap junctions. Increased levels of connexin43 and connexin45 protein and mRNA accompanied the appearance of cellular coupling. These studies provide demonstration of connexin expression and regulation by specific danger signals in DCs.  相似文献   

11.
Rat heart and other organs contain mRNA coding for connexin43, a polypeptide homologous to a gap junction protein from liver (connexin32). To provide direct evidence that connexin43 is a cardiac gap junction protein, we raised rabbit antisera directed against synthetic oligopeptides corresponding to two unique regions of its sequence, amino acids 119-142 and 252-271. Both antisera stained the intercalated disc in myocardium by immunofluorescence but did not react with frozen sections of liver. Immunocytochemistry showed anti-connexin43 staining of the cytoplasmic surface of gap junctions in isolated rat heart membranes but no reactivity with isolated liver gap junctions. Both antisera reacted with a 43-kD polypeptide in isolated rat heart membranes but did not react with rat liver gap junctions by Western blot analysis. In contrast, an antiserum to the conserved, possibly extracellular, sequence of amino acids 164-189 in connexin32 reacted with both liver and heart gap junction proteins on Western blots. These findings support a topological model of connexins with unique cytoplasmic domains but conserved transmembrane and extracellular regions. The connexin43-specific antisera were used by Western blots and immunofluorescence to examine the distribution of connexin43. They demonstrated reactivity consistent with gap junctions between ovarian granulosa cells, smooth muscle cells in uterus and other tissues, fibroblasts in cornea and other tissues, lens and corneal epithelial cells, and renal tubular epithelial cells. Staining with the anti-connexin43 antisera was never observed to colocalize with antibodies to other gap junctional proteins (connexin32 or MP70) in the same junctional plaques. Because of limitations in the resolution of the immunofluorescence, however, we were not able to determine whether individual cells ever simultaneously express more than one connexin type.  相似文献   

12.
The connexins are a family of related gap junction proteins which contain conserved transmembrane and extracellular domains but unique cytoplasmic regions. To identify connexins with potential roles in development, a chick embryo cDNA library was screened by hybridization at low stringency with a cDNA for rat connexin-43. cDNA clones for two previously undescribed connexins were isolated. Chick connexin-45 has a predicted molecular mass of 45,376 daltons; connexin-42 has a predicted molecular mass of 41,748 daltons. Both of these predicted connexin proteins share the homologous regions noted in other members of this family, and each has its own unique regions. Southern blots of chicken genomic DNA suggest that each connexin is encoded by a distinct single copy gene. RNA blots demonstrate that while chick connexin-43, -42, and -45 are each expressed in a number of chick organs, they each have a unique tissue distribution. Each connexin mRNA is present in heart. Blots of total RNA isolated from hearts of chick embryos of different ages demonstrate that the abundance of connexin-42 and -43 mRNAs varies no more than 2-fold between the embryo and the adult. However, connexin-45 mRNA shows a dramatic change, falling 10-fold from the 6-day embryonic heart to the adult. These multiple connexins are likely to have different physiological properties and may account for the multiple physiologically distinct gap junction channels which have been observed in cardiac myocytes. They may provide a mechanism for the formation of communication compartments in the developing myocardium.  相似文献   

13.
14.
Our previous studies showed an essential role for connexin 43 or alpha1 connexin (Cx43alpha1) gap junctions in the modulation of neural crest cell motility. Cx43alpha1 gap junctions and N-cadherin containing adherens junctions are expressed in migrating cardiac neural crest cells. Analysis of the N-cadherin knockout (KO) mouse model revealed that N-cadherin is essential for gap junction mediated dye coupling but not for expression of Cx43alpha1 gap junctions in neural crest cells. Time lapse videomicroscopy and motion analysis showed that the motility of N-cadherin KO neural crest cells were altered, but the motility changes differed compared to Cx43alpha1 KO neural crest cells. These observations suggest that the role of N-cadherin in cell motility is not simply mediated via the modulation of Cx43alpha1 mediated cell-cell communication. This was confirmed by a parallel analysis of wnt-1 deficient neural crest cells, which also showed a reduction in dye coupling, and yet no change in cell motility. Analysis of p120 catenin (p120ctn), an Amardillo family protein known to play a role in cell motility, showed that it is colocalized with N-cadherin and Cx43alpha1 in migrating neural crest cells. This subcellular distribution was altered in the N-cadherin and Cx43alpha1 KO neural crest cells. Given these results, we propose that N-cadherin and Cx43alpha1 may modulate neural crest cell motility by engaging in a dynamic cross-talk with the cell's locomotory apparatus through p120ctn signaling.  相似文献   

15.
Integration of vascular endothelial function relies on multiple signaling mechanisms, including direct cell-cell communication through gap junctions. Gap junction proteins expressed in the endothelium include connexin37, connexin40, and connexin43. To investigate whether individual endothelial cells in vivo express all three connexin types and, if so, whether multiple connexins are assembled into the same gap junction plaque, we used affinity-purified connexin-specific antibodies raised in three different species to permit multiple-label immunoconfocal and immunoelectron microscopy in the rat main pulmonary artery. Immunoconfocal microscopy showed a high incidence of co-localization between connexin43 and connexin40, but lower incidences of co-localization between connexin37 and connexin40 or connexin43. Immunoelectron microscopy revealed that 83% of gap junction profiles contained all three connexins, with the proportion of connexin40 labeling being significantly higher than that of connexin37 or connexin43. The presence of three different connexin types of distinct properties in vitro provides potential for complex regulation and functional differentiation of endothelial intercellular communication properties in vivo.  相似文献   

16.
The gap junction protein connexin43 (Cx43) is widely expressed in all vertebrate species; however, in ventricular myocardium, Cx43 expression is restricted to mammalian species only, where it provides the molecular correlate for both electrical conduction and synchronization of the repolarization process. The evolutionarily late appearance of Cx43 in the heart suggests physiological adaptation to euthermia with its concomitant demands related to increased cardiovascular output. We tested to what extent mammalian Cx43 differs from that of non-mammalian vertebrates and whether Cx43 from hibernating species contains specific sequence characteristics which could be attributed to their non-isothermal life cycle. We cloned the complete coding region of Cx43 from the African green monkey, European hedgehog (hibernator), Russian dwarf hamster, rabbit, European ground squirrel (hibernator) and pig. After sequencing, these were compared to 12 full-length Cx43 sequences present in GenBank (3 fish, 2 frogs, chicken and 6 mammals amongst which there was one other hibernator). Overall identity ranged from 68.7% to 97.7% at the nucleotide level and from 71.6% to 99.7% at the amino acid level. The phylogeny of Cx43 mirrors the general phylogenetic histories of the investigated species to a large extent. From 382 amino acids there were only 6 specific for mammals. There were no substitutions specific for hibernators. In conclusion, mammalian Cx43 is characterized by 6 specific amino acids, and no obvious differences between non-hibernating and hibernating mammals were observed.Edited by D. Tautz  相似文献   

17.
Gap junctions, composed of connexin proteins in chordates, are the most ubiquitous form of intercellular communication. Complete connexin gene families have been identified from human (20) and mouse (19), revealing significant diversity in gap junction channels. We searched current databases and identified 37 putative zebrafish connexin genes, almost twice the number found in mammals. Phylogenetic comparison of entire connexin gene families from human, mouse, and zebrafish revealed 23 zebrafish relatives of 16 mammalian connexins, and 14 connexins apparently unique to zebrafish. We found evidence for duplication events in all genomes, as well as evidence for recent tandem duplication events in the zebrafish, indicating that the complexity of the connexin family is growing. The identification of a third complete connexin gene family provides novel insight into the evolution of connexins, and sheds light into the phenotypic evolution of intercellular communication via gap junctions.  相似文献   

18.
Propagation of electrical activity between myocytes in the heart requires gap junction channels, which contribute to coordinated conduction of the heartbeat. Some antipsychotic drugs, such as thioridazine and its active metabolite, mesoridazine, have known cardiac conduction side-effects, which have resulted in fatal or nearly fatal clinical consequences in patients. The physiological mechanisms responsible for these cardiac side-effects are unknown. We tested the effect of thioridazine and mesoridazine on gap junction-mediated intercellular communication between cells that express the major cardiac gap junction subtype connexin 43. Micromolar concentrations of thioridazine and mesoridazine inhibited gap junction-mediated intercellular communication between WB-F344 epithelial cells in a dose-dependent manner, as measured by fluorescent dye transfer. Kinetic analyses demonstrated that inhibition by 10 μmol/L thioridazine occurred within 5 min, achieved its maximal effect within 1 h, and was maintained for at least 24 h. Inhibition was reversible within 1 h upon removal of the drug. Western blot analysis of connexin 43 in a membrane-enriched fraction of WB-F344 cells treated with thioridazine revealed decreased amounts of unphosphorylated connexin 43, and appearance of a phosphorylated connexin 43 band that co-migrated with a “hyperphosphorylated” connexin 43 band present in TPA-inhibited cells. When tested for its effects on cardiomyocytes isolated from neonatal rats, thioridazine decreased fluorescent dye transfer between colonies of beating myocytes. Microinjection of individual cells with fluorescent dye also showed inhibition of dye transfer in thioridazine-treated cells compared to vehicle-treated cells. In addition, thioridazine, like TPA, inhibited rhythmic beating of myocytes within 15 min of application. In light of the fact that the thioridazine and mesoridazine concentrations used in these experiments are in the range of those used clinically in patients, our results suggest that inhibition of gap junction intercellular communication may be one factor contributing to the cardiac side-effects observed in some patients taking these medications.  相似文献   

19.
One of the most dramatic discoveries in the field of hereditary hearing loss is the association of this sensory defect with connexin mutations. Most significant is the large proportion, 30-50%, of inherited hearing loss that is due to mutations in connexin 26. The proteins these genes encode are expressed in the cochlear duct, in regions containing gap junctions. Together, these findings suggest a crucial role for gap junction proteins in the mammalian inner ear. Mouse models with specific connexin mutations leading to deafness will help resolve the many questions regarding the role of these gap junction proteins in the inner ear.  相似文献   

20.
Tat-interactive protein 60 (Tip60) is a member of the MYST family of histone acetyltransferases (HATs). In addition to its HAT domain, Tip contains a heterochromatin-associated protein 1-like chromodomain and a zinc finger-like domain. Several alternative splice variants of Tip60 have been characterized, including full-length Tip60alpha, Tip60beta (which lacks exon V encoded by the Tip60 gene), and Tip55 (which encodes a novel 103-amino-acid C terminus). We report here that isoproteins recognized by a pan-Tip60 antibody are strongly and transiently expressed between embryonic days 8 and 11 in the embryonic mouse myocardium. A functional role for Tip60 isoproteins in cardiac myocyte differentiation is suggested by immunoprecipitation experiments showing that Tip60alpha, Tip60beta, and Tip55 can bind serum response factor (SRF) and by transient transfection assessments showing that Tip60 and SRF cooperatively activate the atrial natriuretic factor promoter. Although this combinatorial activity is inhibited by histone deacetylase 7, it was unexpectedly enhanced by point mutation of the HAT domain. Ablation of the chromodomain from Tip60beta caused derepression. These findings suggest that Tip60 modulates expression of SRF-dependent cardiac genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号