首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mycobacterium tuberculosis (M.tb) is a leading cause of global infectious mortality. The pathogenesis of tuberculosis involves inhibition of phagosome maturation, leading to survival of M.tb within human macrophages. A key determinant is M.tb-induced inhibition of macrophage sphingosine kinase (SK) activity, which normally induces Ca2+ signaling and phagosome maturation. Our objective was to determine the spatial localization of SK during phagocytosis and its inhibition by M.tb. Stimulation of SK activity by killed M.tb, live Staphylococcus aureus, or latex beads was associated with translocation of cytosolic SK1 to the phagosome membrane. In contrast, SK1 did not associate with phagosomes containing live M.tb. To characterize the mechanism of phagosomal translocation, live cell confocal microscopy was used to compare the localization of wild-type SK1, catalytically inactive SK1G82D, and a phosphorylation-defective mutant that does not undergo plasma membrane translocation (SK1S225A). The magnitude and kinetics of translocation of SK1G82D and SK1S225A to latex bead phagosomes were indistinguishable from those of wild-type SK1, indicating that novel determinants regulate the association of SK1 with nascent phagosomes. These data are consistent with a model in which M.tb inhibits both the activation and phagosomal translocation of SK1 to block the localized Ca2+ transients required for phagosome maturation.  相似文献   

2.
The mechanism of membrane targeting of human sphingosine kinase 1   总被引:2,自引:0,他引:2  
Sphingosine 1-phosphate is a bioactive sphingolipid that regulates cell growth and suppresses programmed cell death. The biosynthesis of sphingosine 1-phosphate is catalyzed by sphingosine kinase (SK) but the mechanism by which the subcellular localization and activity of SK is regulated in response to various stimuli is not fully understood. To elucidate the origin and structural determinant of the specific subcellular localization of SK, we performed biophysical and cell studies of human SK1 (hSK1) and selected mutants. In vitro measurements showed that hSK1 selectively bound phosphatidylserine over other anionic phospholipids and strongly preferred the plasma membrane-mimicking membrane to other cellular membrane mimetics. Mutational analysis indicates that conserved Thr54 and Asn89 in the putative membrane-binding surface are essential for lipid selectivity and membrane targeting both in vitro and in the cell. Also, phosphorylation of Ser225 enhances the membrane affinity and plasma membrane selectivity of hSK1, presumably by modulating the interaction of Thr54 and Asn89 with the membrane. Collectively, these studies suggest that the specific plasma membrane localization and activation of SK1 is mediated largely by specific lipid-protein interactions.  相似文献   

3.
Sphingosine-1-phosphate (S1P) is a highly bioactive sphingolipid involved in diverse biological processes leading to changes in cell growth, differentiation, motility, and survival. S1P generation is regulated via sphingosine kinase (SK), and many of its effects are mediated through extracelluar action on G-protein-coupled receptors. In this study, we have investigated the mechanisms regulating SK, where this occurs in the cell, and whether this leads to release of S1P extracellularly. The protein kinase C (PKC) activator, phorbol 12-myristate 13-acetate (PMA), induced early activation of SK in HEK 293 cells, and this activation was more specific to the membrane-associated SK. Therefore, we next investigated whether PMA induced translocation of SK to the plasma membrane. PMA induced translocation of both endogenous and green fluorescent protein (GFP)-tagged human SK1 (hSK1) to the plasma membrane. PMA also induced phosphorylation of GFP-hSK1. The PMA-induced translocation was abrogated by preincubation with known PKC inhibitors (bisindoylmaleimide and calphostin-c) as well as by the indirect inhibitor of PKC, C(6)-ceramide, supporting a role for PKC in mediating translocation of SK to the plasma membrane. SK activity was not necessary for translocation, because a dominant negative G82D mutation also translocated in response to PMA. Importantly, PKC regulation of SK was accompanied by a 4-fold increase in S1P in the media. These results demonstrate a novel mechanism by which PKC regulates SK and increases secretion of S1P, allowing for autocrine/paracrine signaling.  相似文献   

4.
Wang S  Reed GL  Hedstrom L 《Biochemistry》1999,38(16):5232-5240
Plasminogen (Plgn) is usually activated by proteolytic cleavage of Arg561-Val562. The new N-terminal amino group of Val562 forms a salt bridge with Asp740, creating the active protease plasmin (Pm). However, streptokinase (SK) binds to Plgn, generating an active protease in a poorly understood, nonproteolytic process. We hypothesized that the N-terminus of SK, Ile1, substitutes for the N-terminal Val562 of Pm, forming an analogous salt bridge with Asp740. SK initially forms an inactive complex with Plgn, which subsequently rearranges to create an active complex; this rearrangement is rate limiting at 4 degrees C. SK.Plgn efficiently hydrolyzes amide substrates at 4 degrees C, although DeltaIle1-SK. Plgn has no amidolytic activity. DeltaIle1-SK prevents formation of wild-type SK.Plgn. These results indicate that DeltaIle1-SK forms the initial inactive complex with plasminogen, but cannot form the active complex. However, when the experiment is performed at 37 degrees C, amidolytic activity is observed when DeltaIle1-SK is added to plasminogen. SDS-PAGE analysis demonstrates that the amidolytic activity results from the formation of DeltaIle1-SK.Pm. To further demonstrate that the activity of DeltaIle1-SK requires the conversion of Plgn to Pm, we characterized the reaction of SK with a mutant microplasminogen, Arg561Ala-microPlgn, that cannot be converted to microplasmin. Amidolytic activity is observed when Arg561Ala-microPlgn is incubated with wild-type SK at 37 degrees C; however, no amidolytic activity is observed in the presence of DeltaIle1-SK. These observations demonstrate that the amidolytic activity of DeltaIle1-SK at 37 degrees C requires the conversion of Plgn to Pm. Our findings indicate that Ile1 of SK is required for the nonproteolytic activation of Plgn by SK and are consistent with the hypothesis that Ile1 of SK substitutes for Val562 of Pm.  相似文献   

5.
Whole-mount cell preparations of cultured rat 3Y1 cells were examined by stereo electron microscopy to identify the ultrastructural localization of concanavalin A (Con A) receptors in the plasma membrane, and to clarify the relationship between Con A receptors and cytoskeletal components. Well spread monolayer cells were extracted with saponin, briefly fixed, and then partially broken open with shearing force to facilitate the introduction of antibodies for identification of actin filaments. Stereo electron microscopy of such treated cells revealed a 3-dimensional image of filamentous structures such as fine filaments, microtubules (MT) and endoplasmic reticulum (ER) in the flattened areas of each cell. Just beneath the plasma membrane were meshworks of actin-containing fine filaments, as identified by an immunogold staining method. Microtubules and ER were observed to be either directly or indirectly associated with this meshwork. The broken open part of each cell exhibited a meshwork of filaments which were associated with the cytoplasmic surface of the plasma membrane. Some of the filaments were connected to the plasma membrane either by their ends or by their lateral surfaces. The localization of Con A receptors was examined by binding colloidal gold-labelled Con A to the surface of fixed, saponin-extracted cells. Virtually all gold particles bound externally at the same membrane sites where intracellular actin filaments attached internally. The observations strongly suggest that the distribution of Con A receptors was regulated by the underlying meshwork of actin filaments.  相似文献   

6.
Sphingosine kinase 1 (SK1) is an important regulator of cellular signalling that has gained recent attention as a potential target for anti-cancer therapies. SK1 activity, subcellular localization and oncogenic function are regulated by phosphorylation and dephosphorylation at Ser225. ERK1/2 have been identified as the protein kinases responsible for phosphorylation and activation of SK1. Conversely, dephosphorylation and deactivation of SK1 occurs by protein phosphatase 2A (PP2A). Active PP2A, however, is a heterotrimer, composed of tightly associated catalytic and structural subunits that can interact with an array of regulatory subunits, which are critical for determining holoenzyme substrate specificity and subcellular localization. Thus, PP2A represents a large family of holoenzyme complexes with different activities and diverse substrate specificities. To date the regulatory subunit essential for targeting PP2A to SK1 has remained undefined. Here, we demonstrate a critical role for the B'α (B56α/PR61α/PPP2R5A) regulatory subunit of PP2A in SK1 dephosphorylation. B'α was found to interact with the c-terminus of SK1, and reduce SK1 phosphorylation when overexpressed, while having no effect on upstream ERK1/2 activation. siRNA-mediated knockdown of B'α increased SK1 phosphorylation, activity and membrane localization of endogenous SK1. Furthermore, overexpression of B'α blocked agonist-induced translocation of SK1 to the plasma membrane and abrogated SK1-induced neoplastic transformation of NIH3T3 fibroblasts. Thus, the PP2A-B'α holoenzyme appears to function as an important endogenous regulator of SK1.  相似文献   

7.
The purpose of the present study was to investigate the influence of the actin cytoskeleton on gap junctional intercellular communication (GJIC) in cultured astrocytes. This report describes an decrease of GJIC following microinjection of anti-actin antibodies or cytochalasin D treatment. Dye transfer of microinjected neurobiotin was used to assay gap junctional permeability in cultured astrocytes. Besides this translocation of connexins to the plasma membrane we investigated subsequent anti-actin antibody injection. While control cultures exhibited intensive dye spreading of microinjected neurobiotin, GJIC was impaired by microinjection of anti-actin antibodies. Additionally, impaired GJIC was observed after cytochalasin D treatment for 15 min. After the drug had been washed out, a recovery of GJIC was achieved. Cultured astrocytes exhibited a prominent actin cytoskeleton, with strong staining of actin filaments at the plasma membrane. Confocal laser scanning microscopy revealed an impaired translocation of Cx 43 from the Golgi apparatus to the cell membrane of cell processes following anti-actin antibody injection. These results suggest that the morphological integrity of microfilaments seems to be fundamental for GJIC, probably by means of associations among actin filaments, actin binding proteins, and Cx 43 at the plasma membrane or indirectly through the transport of connexins from the cytoplasm to the cell membrane.  相似文献   

8.
We studied the cytoskeletal reorganization of saponized human platelets after stimulation by using the quick-freeze deep-etch technique, and examined the localization of myosin in thrombin-treated platelets by immunocytochemistry at the electron microscopic level. In unstimulated saponized platelets we observed cross-bridges between: adjoining microtubules, adjoining actin filaments, microtubules and actin filaments, and actin filaments and plasma membranes. After activation with 1 U/ml thrombin for 3 min, massive arrays of actin filaments with mixed polarity were found in the cytoplasm. Two types of cross-bridges between actin filaments were observed: short cross-bridges (11 +/- 2 nm), just like those observed in the resting platelets, and longer ones (22 +/- 3 nm). Actin filaments were linked with the plasma membrane via fine short filaments and sometimes ended on the membrane. Actin filaments and microtubules frequently ran close to the membrane organelles. We also found that actin filaments were associated by end-on attachments with some organelles. Decoration with subfragment 1 of myosin revealed that all the actin filaments associated end-on with the membrane pointed away in their polarity. Immunocytochemical study revealed that myosin was present in the saponin-extracted cytoskeleton after activation and that myosin was localized on the filamentous network. The results suggest that myosin forms a gel with actin filaments in activated platelets. Close associations between actin filaments and organelles in activated platelets suggests that contraction of this actomyosin gel could bring about the observed centralization of organelles.  相似文献   

9.
The association of actin filaments with the plasma membrane maintains cell shape and adhesion. Here, we show that the plasma membrane ion exchanger NHE1 acts as an anchor for actin filaments to control the integrity of the cortical cytoskeleton. This occurs through a previously unrecognized structural link between NHE1 and the actin binding proteins ezrin, radixin, and moesin (ERM). NHE1 and ERM proteins associate directly and colocalize in lamellipodia. Fibroblasts expressing NHE1 with mutations that disrupt ERM binding, but not ion translocation, have impaired organization of focal adhesions and actin stress fibers, and an irregular cell shape. We propose a structural role for NHE1 in regulating the cortical cytoskeleton that is independent of its function as an ion exchanger.  相似文献   

10.
Platelets have previously been shown to contain a membrane skeleton that is composed of actin filaments, actin-binding protein, and three membrane glycoproteins (GP), GP Ib, GP Ia, and a minor glycoprotein of Mr = 250,000. The present study was designed to determine how the membrane glycoproteins were linked to actin filaments. Unstimulated platelets were lysed with Triton X-100, and the membrane skeleton was isolated on sucrose density gradients or by high-speed centrifugation. The association of the membrane glycoproteins with the actin filaments was disrupted when actin-binding protein was hydrolyzed by activity of the Ca2+-dependent protease, which was active in platelet lysates upon addition of Ca2+ in the absence of leupeptin. Similarly, activation of the Ca2+-dependent protease in intact platelets by the addition of a platelet agonist also caused the membrane glycoproteins to dissociate from the membrane skeleton. Affinity-purified actin-binding protein antibodies immunoprecipitated the membrane glycoproteins from platelet lysates in which actin filaments had been removed by DNase I-induced depolymerization and high-speed centrifugation. These results demonstrate that actin-binding protein links actin filaments of the platelet membrane skeleton to three plasma membrane glycoproteins and that filaments are released from their attachment site when actin-binding protein is hydrolyzed by the Ca2+-dependent protease within intact platelets during platelet activation.  相似文献   

11.
The attachment of the cytoskeleton to the plasma membrane is crucial in controlling the polarized transport of cell-fate-determining molecules. Attachment involves adaptor molecules, which have the capacity to bind to both the plasma membrane and elements of the cytoskeleton, such as microtubules and actin filaments. Using the Drosophila oocyte as a model system, we show that the type I phosphatidylinositol 4-phosphate 5-kinase (PIP5K), Skittles, is necessary to sustain the organization of microtubules and actin cytoskeleton required for the asymmetric transport of oskar, bicoid and gurken mRNAs and thereby controls the establishment of cell polarity. We show that Skittles function is crucial to synthesize and maintain phosphatidylinositol 4,5 bisphosphate (PIP2) at the plasma membrane in the oocyte. Reduction of Skittles activity impairs activation at the plasma membrane of Moesin, a member of the ERM family known to link the plasma membrane to the actin-based cytoskeleton. Furthermore, we provide evidence that Skittles, by controlling the localization of Bazooka, Par-1 and Lgl, but not Lkb1, to the cell membrane, regulates PAR polarity proteins and the maintenance of specific cortical domains along the anteroposterior axis.  相似文献   

12.
We examined the association between glycoprotein (GP) IIb/IIIa, a receptor for fibrinogen, and membrane skeletons in both unstimulated and thrombin-activated human platelets. After a treatment with dithiobis succinimidyl propionate (DTSP), a cross-linker, unstimulated and activated platelets were simultaneously extracted and fixed with a fixing solution containing Triton X-100. Also, the localization of GPIIb/IIIa on the plasma membrane was observed by a preembedding staining method of unextracted platelets. In unstimulated platelets, 20-40% of the whole plasma membrane remained in the detergent-extracted samples. Amorphous structures with 10-70 nm in diameters are distributed at 20 to 100-nm intervals on the surface of plasma membrane. Similar structures also were identified in the intact platelets by the immunocytochemical method. By careful inspection, we found that most of the amorphous structures that contained gold particles were connected to the submembrane zone just beneath the plasma membrane. The submembrane zone was identified as the membrane skeleton because actin was detected in the zone. After activation, detergent-insoluble granules were surrounded by dense networks of microfilaments in the central part of platelets. The filaments were identified as actin and became associated with myosin. These results demonstrate that GPIIb/IIIa on the plasma membrane is connected to the membrane skeleton and suggest that, during activation, actin filaments which extend into the cytoplasm from the membrane skeleton increase and form dense networks around Triton-insoluble granules.  相似文献   

13.
We recently reported that IGF-II binding to the IGF-II/mannose-6-phosphate (M6P) receptor activates the ERK1/2 cascade by triggering sphingosine kinase 1 (SK1)-dependent transactivation of G protein-coupled sphingosine 1-phosphate (S1P) receptors. Here, we investigated the mechanism of IGF-II/M6P receptor-dependent sphingosine kinase 1 (SK1) activation in human embryonic kidney 293 cells. Pretreating cells with protein kinase C (PKC) inhibitor, bisindolylmaleimide-I, abolished IGF-II-stimulated translocation of green fluorescent protein (GFP)-tagged SK1 to the plasma membrane and activation of endogenous SK1, implicating PKC as an upstream regulator of SK1. Using confocal microscopy to examine membrane translocation of GFP-tagged PKCα, β1, β2, δ, and ζ, we found that IGF-II induced rapid, transient, and isoform-specific translocation of GFP-PKCβ2 to the plasma membrane. Immunoblotting of endogenous PKC phosphorylation confirmed PKCβ2 activation in response to IGF-II. Similarly, IGF-II stimulation caused persistent membrane translocation of the kinase-deficient GFP-PKCβ2 (K371R) mutant, which does not dissociate from the membrane after translocation. IGF-II stimulation increased diacylglycerol (DAG) levels, the established activator of classical PKC. Interestingly, the polyunsaturated fraction of DAG was increased, indicating involvement of phosphatidyl inositol/phospholipase C (PLC). Pretreating cells with the PLC inhibitor, U73122, attenuated IGF-II-dependent DAG production and PKCβ2 phosphorylation, blocked membrane translocation of the kinase-deficient GFP-PKCβ2 (K371R) mutant, and reduced sphingosine 1-phosphate production, suggesting that PLC/PKCβ2 are upstream regulators of SK1 in the pathway. Taken together, these data provide evidence that activation of PLC and PKCβ2 by the IGF-II/M6P receptor are required for the activation of SK1.  相似文献   

14.
Summary We examined the association between glycoprotein (GP) IIb/IIIa, a receptor for fibrinogen, and membrane skeletons in both unstimulated and thrombin-activated human platelets. After a treatment with dithiobis succinimidyl propionate (DTSP), a cross-linker, unstimulated and activated platelets were simultaneously extracted and fixed with a fixing solution containing Triton X-100. Also, the localization of GPIIb/IIIa on the plasma membrane was observed by a preembedding staining method of unextracted platelets. In unstimulated platelets, 20–40% of the whole plasma membrane remained in the detergent-extracted samples. Amorphous structures with 10–70 nm in diameters are distributed at 20 to 100-nm intervals on the surface of plasma membrane. Similar structures also were identified in the intact platelets by the immunocytochemical method. By careful inspection, we found that most of the amorphous structures that contained gold particles were connected to the submembrane zone just beneath the plasma membrane. The submembrane zone was identified as the membrane skeleton because actin was detected in the zone. After activation, detergent-insoluble granules were surrounded by dense networks of microfilaments in the central part of platelets. The filaments were identified as actin and became associated with myosin. These results demonstrate that GPIIb/IIIa on the plasma membrane is connected to the membrane skeleton and suggest that, during activation, actin filaments which extend into the cytoplasm from the membrane skeleton increase and form dense networks around Triton-insoluble granules.  相似文献   

15.
The sperm entry site (SES) of zebrafish (Brachydanio rerio) eggs was studied before and during fertilization by fluorescence, scanning, and transmission electron microscopy. Rhodamine phalloidin (RhPh), used to detect polymerized filamentous actin, was localized to microvilli of the SES and to cytoplasm subjacent to the plasma membrane in the unfertilized egg. The distribution of RhPh staining at the SES correlated with the ultrastructural localization of a submembranous electrondense layer of cortical cytoplasm approximately 500 nm thick and containing 5- to 6-nm filaments. Actin, therefore, was organized at the SES as a tightly knit meshwork of filaments prior to fertilization. Contact between the fertilizing sperm and the filamentous actin network was observed by 15-20 sec postinsemination or just before the onset of fertilization cone formation. Growing fertilization cones of either artificially activated or inseminated eggs exhibited intense RhPh staining and substantial increase in thickness of the actin meshwork. Collectively, TEM and RhPh fluorescence images of inseminated eggs demonstrated that the submembranous actin became rearranged in fertilization cones to form a thickened meshwork around the sperm nucleus during incorporation. The results reported here suggest that activation of the egg triggers a dramatic polymerization of actin beneath the plasma membrane of the fertilization cone. Furthermore, the actin involved in sperm incorporation is sensitive to the action of cytochalasins.  相似文献   

16.
In previous equilibrium binding studies, Dictyostelium discoideum plasma membranes have been shown to bind actin and to recruit actin into filaments at the membrane surface. However, little is known about the kinetic pathway(s) through which actin assembles at these, or other, membranes. We have used actin fluorescently labeled with N-(1- pyrenyl)iodoacetamide to examine the kinetics of actin assembly in the presence of D. discoideum plasma membranes. We find that these membranes increase the rate of actin polymerization. The rate of membrane-mediated actin polymerization is linearly dependent on membrane protein concentrations up to 20 micrograms/ml. Nucleation (the association of activated actin monomers into oligomers) appears to be the primary step of polymerization that is accelerated. A sole effect on the initial salt-induced actin conformational change (activation) is ruled out because membranes accelerate the polymerization of pre- activated actin as well as actin activated in the presence of membranes. Elongation of preexisting filaments also is not the major step of polymerization facilitated by membranes since membranes stripped of all peripheral components, including actin, increase the rate of actin assembly to about the same extent as do membranes containing small amounts of endogenous actin. Acceleration of the nucleation step by membranes also is supported by an analysis of the dependence of polymerization lag time on actin concentration. The barbed ends of membrane-induced actin nuclei are not obstructed by the membranes because the barbed end blocking agent, cytochalasin D, reduces the rate of membrane-mediated actin nucleation. Similarly, the pointed ends of the nuclei are not blocked by membranes since the depolymerization rate of gelsolin-capped actin is unchanged in the presence of membranes. These results are consistent with previous observations of lateral interactions between membranes and actin filaments. These results also are consistent with two predictions from a model based on equilibrium binding studies; i.e., that plasma membranes should nucleate actin assembly and that membrane-bound actin nuclei should have both ends free (Schwartz, M. A., and E. J. Luna. 1988. J. Cell Biol. 107:201-209). Integral membrane proteins mediate the actin nucleation activity because activity is eliminated by heat denaturation, treatment with reducing agents, or proteolysis of membranes. Activity also is abolished by solubilization with octylglucoside but is reconstituted upon removal or dilution of the detergent. Ponticulin, the major actin-binding protein in plasma membranes, appears to be necessary for nucleation activity since activity is not reconstituted from detergent extracts depleted of ponticulin.  相似文献   

17.
Cofilin mediates lamellipodium extension and polarized cell migration by stimulating actin filament dynamics at the leading edge of migrating cells. Cofilin is inactivated by phosphorylation at Ser-3 and reactivated by cofilin-phosphatase Slingshot-1L (SSH1L). Little is known of signaling mechanisms of cofilin activation and how this activation is spatially regulated. Here, we show that cofilin-phosphatase activity of SSH1L increases approximately 10-fold by association with actin filaments, which indicates that actin assembly at the leading edge per se triggers local activation of SSH1L and thereby stimulates cofilin-mediated actin turnover in lamellipodia. We also provide evidence that 14-3-3 proteins inhibit SSH1L activity, dependent on the phosphorylation of Ser-937 and Ser-978 of SSH1L. Stimulation of cells with neuregulin-1beta induced Ser-978 dephosphorylation, translocation of SSH1L onto F-actin-rich lamellipodia, and cofilin dephosphorylation. These findings suggest that SSH1L is locally activated by translocation to and association with F-actin in lamellipodia in response to neuregulin-1beta and 14-3-3 proteins negatively regulate SSH1L activity by sequestering it in the cytoplasm.  相似文献   

18.
We have previously described a novel actin-capping protein, a 20,000-molecular weight protein (20K protein)-actin complex (20K-A) isolated from sea urchin eggs. In the present study, the localization and possible function of this 20K protein were investigated. The 20K protein was localized in the sea urchin egg cortex. Its distribution in the cortex as revealed by immunofluorescence microscopy did not change during or after fertilization up to the first mitosis, but it was concentrated to some extent in the cleavage furrow region. Exogenously added actin polymerized on the cortex isolated from unfertilized egg; however, actin did not polymerize on the cortex extracted with 0.6 M KCl, that is, the cell membrane, which lost the 20K protein. The cell membrane preincubated with 20K-A restored the activity to grow actin filaments. When decorated with myosin subfragment 1, almost all the actin filaments showed the arrowhead configuration pointing away from the membrane, indicating that they were connected to the membrane at their barbed ends. These results strongly suggest that the 20K protein connects actin filaments to the plasma membrane of sea urchin eggs. Because of this property we call this protein "actolinkin".  相似文献   

19.
Ponticulin, an F-actin binding transmembrane glycoprotein in Dictyostelium plasma membranes, was isolated by detergent extraction from cytoskeletons and purified to homogeneity. Ponticulin is an abundant membrane protein, averaging approximately 10(6) copies/cell, with an estimated surface density of approximately 300 per microns2. Ponticulin solubilized in octylglucoside exhibited hydrodynamic properties consistent with a ponticulin monomer in a spherical or slightly ellipsoidal detergent micelle with a total molecular mass of 56 +/- 6 kD. Purified ponticulin nucleated actin polymerization when reconstituted into Dictyostelium lipid vesicles, but not when a number of commercially available lipids and lipid mixtures were substituted for the endogenous lipid. The specific activity was consistent with that expected for a protein comprising 0.7 +/- 0.4%, by mass, of the plasma membrane protein. Ponticulin in octylglucoside micelles bound F- actin but did not nucleate actin assembly. Thus, ponticulin-mediated nucleation activity was sensitive to the lipid environment, a result frequently observed with transmembrane proteins. At most concentrations of Dictyostelium lipid, nucleation activity increased linearly with increasing amounts of ponticulin, suggesting that the nucleating species is a ponticulin monomer. Consistent with previous observations of lateral interactions between actin filaments and Dictyostelium plasma membranes, both ends of ponticulin-nucleated actin filaments appeared to be free for monomer assembly and disassembly. Our results indicate that ponticulin is a major membrane protein in Dictyostelium and that, in the proper lipid matrix, it is sufficient for lateral nucleation of actin assembly. To date, ponticulin is the only integral membrane protein known to directly nucleate actin polymerization.  相似文献   

20.
We tested the hypothesis that RhoA, a monomeric GTP-binding protein, induces association of inositol trisphosphate receptor (IP3R) with transient receptor potential channel (TRPC1), and thereby activates store depletion-induced Ca2+ entry in endothelial cells. We showed that RhoA upon activation with thrombin associated with both IP3R and TRPC1. Thrombin also induced translocation of a complex consisting of Rho, IP3R, and TRPC1 to the plasma membrane. IP3R and TRPC1 translocation and association required Rho activation because the response was not seen in C3 transferase (C3)-treated cells. Rho function inhibition using Rho dominant-negative mutant or C3 dampened Ca2+ entry regardless of whether Ca2+ stores were emptied by thrombin, thapsigargin, or inositol trisphosphate. Rho-induced association of IP3R with TRPC1 was dependent on actin filament polymerization because latrunculin (which inhibits actin polymerization) prevented both the association and Ca2+ entry. We also showed that thrombin produced a sustained Rho-dependent increase in cytosolic Ca2+ concentration [Ca2+]i in endothelial cells overexpressing TRPC1. We further showed that Rho-activated Ca2+ entry via TRPC1 is important in the mechanism of the thrombin-induced increase in endothelial permeability. In summary, Rho activation signals interaction of IP3R with TRPC1 at the plasma membrane of endothelial cells, and triggers Ca2+ entry following store depletion and the resultant increase in endothelial permeability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号