首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Island mammals often display remarkable evolutionary changes in size and morphology. Both theory and empirical data support the hypothesis that island mammals evolve at faster rates than their mainland congeners. It is also often assumed that the island effect is stronger and that evolution is faster on the smallest islands. I used a dataset assembled from the literature to test these assumptions for the first time. I show that mammals on smaller islands do indeed evolve more rapidly than mammals on larger islands, and also evolve by a greater amount. These results fit well the theory of an evolutionary burst due to the opening of new ecological opportunities on islands. This evolutionary burst is expected to be the strongest on the smallest islands where the contrast between the island and the mainland environments is the most dramatic.  相似文献   

2.
Mammals of Australian islands: factors influencing species richness   总被引:1,自引:0,他引:1  
Distribution patterns of indigenous non-volant terrestrial mammals on 257 Australian islands were examined in relation to environmental parameters and the effects of human-induced disturbance during prehistoric and historic times on island species numbers. Species occurrence for individual species, for taxonomic and trophic groups, and for all species together was related to environmental parameters using regression analysis and the extreme-value function model. Patterns of occurrence were examined separately within three major biogeographic regions derived by pattern analysis. The number of species known to have occurred on these islands during historic times was adequately predicted from area alone. No statistically significant improvement in predicted species number was gained by including island elevation, mean annual rainfall, isolation from the mainland or the number of potentially competing species present on the island. Similarly, no single factor other than area was found to influence consistently the presence of individual species. We conclude that the occurrence of indigenous non-volant terrestrial mammal species on these islands indicates a relictual rather than equilibrial fauna. Visitation by Aboriginal people during prehistoric times did not significantly increase mammal extinctions on islands. Examination of patterns of species richness for a given area on a regional basis showed that islands in and around Bass Strait and Tasmania (Bass Region) were the most species-rich, islands off the northern coasts were slightly less rich, and islands off the south western coasts had fewest species. This is in contrast to the usual latitudinal gradient in species richness patterns. However, islands off the northern and eastern coasts had an overall greater number of different species. When considered in relation to the number of different species of mammals occurring within each region, islands of a given size in Bass Region typically bore a higher proportion of this species pool than other regions. The Bass Region was found to be particularly rich in macropoid herbivores and dasyurid carnivores and insectivores. Analyses indicated that there is a very strong relationship between the presence of exotics as a whole and the local extinction of native mammals. Many mammal species formerly widespread on the Australian mainland are now restricted totally to islands (nine species) or are threatened with extinction on the mainland and have island populations of conservation significance (ten species). In all, thirty-five islands protect eighteen taxa of Australian threatened mammals. The land-use and management of these islands is of considerable importance to nature conservation. The introduction of exotic mammals to these islands should be prevented; any introductions that occur should be eradicated immediately.  相似文献   

3.
Abstract. The reasons why some species are resistant to extinction or are better invaders of islands than others remain unexplained. In this study, we test the hypothesis that mammals living on the mainland at higher density than predicted by the density/body mass relationship have a much greater chance to colonize a small island successfully, and/or that they are less likely to become extinct when living on small islands. For this, we used data compiled on mammals from a number of Mediterranean islands. We show a nested pattern for mammals on western Mediterranean islands, which suggests that the distribution of mammals on these islands is not the result of a random process. Using two comparative methods, we show that mammal density on the mainland, corrected for body mass, is negatively correlated with island size. Mammals with a high density compared to the density/mass relationship are the best invaders and/or probably have less chance of going extinct on small islands when population size is small.  相似文献   

4.
Aim Island taxa often attain forms outside the range achieved by mainland relatives. Body size evolution of vertebrates on islands has therefore received much attention, with two seemingly conflicting patterns thought to prevail: (1) islands harbour animals of extreme size, and (2) islands promote evolution towards medium body size (‘the island rule’). We test both hypotheses using body size distributions of mammal, lizard and bird species. Location World‐wide. Methods We assembled body size and insularity datasets for the world’s lizards, birds and mammals. We compared the frequencies with which the largest or smallest member of a group is insular with the frequencies expected if insularity is randomly assigned within groups. We tested whether size extremes on islands considered across mammalian phylogeny depart from a null expectation under a Brownian motion model. We tested the island rule by comparing insular and mainland members of (1) a taxonomic level and (2) mammalian sister species, to determine if large insular animals tend to evolve smaller body sizes while small ones evolve larger sizes. Results The smallest species in a taxon (order, family or genus) are insular no more often than would be expected by chance in all groups. The largest species within lizard families and bird genera (but no other taxonomic levels) are insular more often than expected. The incidence of extreme sizes in insular mammals never departs from the null, except among extant genera, where gigantism is marginally less common than expected under a Brownian motion null. Mammals follow the island rule at the genus level and when comparing sister species and clades. This appears to be driven mainly by insular dwarfing in large‐bodied lineages. A similar pattern in birds is apparent for species within orders. However, lizards follow the converse pattern. Main conclusions The popular misconception that islands have more than their fair share of size extremes may stem from a greater tendency to notice gigantism and dwarfism when they occur on islands. There is compelling evidence for insular dwarfing in large mammals, but not in other taxa, and little evidence for the second component of the island rule – gigantism in small‐bodied taxa.  相似文献   

5.
Summary Thirty-three insular small mammal communities along the coast of Massachusetts (USA) were surveyed to investigate the biogeographic relationships of the insular communities and to examine the distribution patterns of individual species. Nine species of terrestrial small mammals were observed in the total insular fauna, whereas thirteen occurred on the mainland. The species-area relation yielded a z value of 0.06, which is the lowest value yet reported for insular mammal communities.Multiple logistic regression was used to calculate probability functions for each species in order to identify variables potentially important in determining a species' occurrence on islands and to estimate probabilities of occurrence on islands. Statistically significant and ecologically interpretable functions were obtained for all but one species. Occurrence on islands was positively related to increasing island size in four species and to decreasing island isolation in four species. The extremely low z value, negative correlations of species number with isolation variables, and the inclusion of an isolation variable in the logistic functions of four species indicated that immigration was an important determinant of small mammal occurrence on these islands. There was a positive relationship between population density and number of islands occupied.Logistic regression has several advantages over linear discriminant function analysis, and we suggest that it may be useful in other ecological studies and in the preservation of endangered species.  相似文献   

6.
Differences in song repertoires and characteristics of island and mainland populations of the same avian species are usually explained by dispersal, cultural evolution and/or habitat differences. The influence of morphology is often overlooked, even though island populations are frequently morphologically distinct from mainland populations, and morphology could affect vocalizations. I compared morphological features, songs, contact calls and alarm calls of six isolated island populations of silvereye Zosterops lateralis with those of two mainland populations to examine whether differences between mainland and island vocalizations were consistent across vocalization types, and whether these differences could be linked to morphological differences. Vocalizations were lower in frequency on islands. Island individuals were larger (both in mass and body structure), and body mass was an important predictor of frequency in contact and alarm calls. I argue that this strong association results from the island rule (islands promote larger body sizes) and cascading effects of morphology on vocalization frequency in this species.  相似文献   

7.
As stated by the island rule, small mammals evolve toward gigantism on islands. In addition they are known to evolve faster than their mainland counterparts. Body size in island mammals may also be influenced by geographical climatic gradients or climatic change through time. We tested the relative effects of climate change and isolation on the size of the Japanese rodent Apodemus speciosus and calculated evolutionary rates of body size change since the last glacial maximum (LGM). Currently A. speciosus populations conform both to Bergmann's rule, with an increase in body size with latitude, and to the island rule, with larger body sizes on small islands. We also found that fossil representatives of A. speciosus are larger than their extant relatives. Our estimated evolutionary rates since the LGM show that body size evolution on the smaller islands has been less than half as rapid as on Honshu, the mainland-type large island of Japan. We conclude that island populations exhibit larger body sizes today not because they have evolved toward gigantism, but because their evolution toward a smaller size, due to climate warming since the LGM, has been decelerated by the island effect. These combined results suggest that evolution in Quaternary island small mammals may not have been as fast as expected by the island effect because of the counteracting effect of climate change during this period.  相似文献   

8.
The islands of Bocas del Toro, Panama, were sequentially separated from the adjacent mainland by rising sea levels during the past 10,000 years. Three-toed sloths (Bradypus) from five islands are smaller than their mainland counterparts, and the insular populations themselves vary in mean body size. We first examine relationships between body size and physical characteristics of the islands, testing hypotheses regarding optimal body size, evolutionary equilibria, and the presence of dispersal in this system. To do so, we conduct linear regressions of body size onto island area, distance from the mainland, and island age. Second, we retroactively calculate two measures of the evolutionary rate of change in body size (haldanes and darwins) and the standardized linear selection differential, or selection intensity (i). We also test the observed morphological changes against models of evolution by genetic drift. The results indicate that mean body size decreases linearly with island age, explaining up to 97% of the variation among population means. Neither island area nor distance from the mainland is significant in multiple regressions that include island age. Thus, we find no evidence for differential optimal body size among islands, or for dispersal in the system. In contrast, the dependence of body size on island age suggests uniform directional selection for small body size in the insular populations. Although genetic drift cannot be discounted as the cause for this evolution in body size, the probability is small given the consistent direction of evolution (repeated dwarfism). The insular sloths show a sustained rate of evolution similar to those measured in haldanes over tens of generations, appearing to unite micro- and macroevolutionary time scales. Furthermore, the magnitude and rate of this example of rapid differentiation fall within predictions of theoretical models from population genetics. However, the linearity of the relationship between body size and island age is not predicted, suggesting that either more factors are involved than those considered here, or that theoretical advances are necessary to explain constant evolutionary rates over long time spans in new selective environments.  相似文献   

9.
Phenotypic evolution is often exceptionally rapid on islands, resulting in numerous, ecologically diverse species. Although adaptive radiation proceeds along various phenotypic axes, the island effect of faster evolution has been mostly tested with regard to morphology. Here, we leveraged the physiological diversity and species richness of Anolis lizards to examine the evolutionary dynamics of three key traits: heat tolerance, body temperature, and cold tolerance. Contrary to expectation, we discovered slower heat tolerance evolution on islands. Additionally, island species evolve toward higher optimal body temperatures than mainland species. Higher optima and slower evolution in upper physiological limits are consistent with the Bogert effect, or evolutionary inertia due to thermoregulation. Correspondingly, body temperature is higher and more stable on islands than on the American mainland, despite similarity in thermal environments. Greater thermoregulation on islands may occur due to ecological release from competitors and predators compared to mainland environments. By reducing the costs of thermoregulation, ecological opportunity on islands may actually stymie, rather than hasten, physiological evolution. Our results emphasize that physiological diversity is an important axis of ecological differentiation in the adaptive radiation of anoles, and that behavior can impart distinct macroevolutionary footprints on physiological diversity on islands and continents.  相似文献   

10.
Many of the classic examples of adaptive radiation, including Caribbean Anolis lizards, are found on islands. However, Anolis also exhibits substantial species richness and ecomorphological disparity on mainland Central and South America. We compared patterns and rates of morphological evolution to investigate whether, in fact, island Anolis are exceptionally diverse relative to their mainland counterparts. Quite the contrary, we found that rates and extent of diversification were comparable--Anolis adaptive radiation is not an island phenomenon. However, mainland and Caribbean anoles occupy different parts of morphological space; in independent colonizations of both island and mainland habitats, island anoles have evolved shorter limbs and better-developed toe pads. These patterns suggest that the two areas are on different evolutionary trajectories. The ecological causes of these differences are unknown, but may relate to differences in predation or competition among mainland and island communities.  相似文献   

11.
There are a number of ecogeographical “rules” that describe patterns of geographical variation among organisms. The island rule predicts that populations of larger mammals on islands evolve smaller mean body size than their mainland counterparts, whereas smaller‐bodied mammals evolve larger size. Bergmann's rule predicts that populations of a species in colder climates (generally at higher latitudes) have larger mean body sizes than conspecifics in warmer climates (at lower latitudes). These two rules are rarely tested together and neither has been rigorously tested in treeshrews, a clade of small‐bodied mammals in their own order (Scandentia) broadly distributed in mainland Southeast Asia and on islands throughout much of the Sunda Shelf. The common treeshrew, Tupaia glis, is an excellent candidate for study and was used to test these two rules simultaneously for the first time in treeshrews. This species is distributed on the Malay Peninsula and several offshore islands east, west, and south of the mainland. Using craniodental dimensions as a proxy for body size, we investigated how island size, distance from the mainland, and maximum sea depth between the mainland and the islands relate to body size of 13 insular T. glis populations while also controlling for latitude and correlation among variables. We found a strong negative effect of latitude on body size in the common treeshrew, indicating the inverse of Bergmann's rule. We did not detect any overall difference in body size between the island and mainland populations. However, there was an effect of island area and maximum sea depth on body size among island populations. Although there is a strong latitudinal effect on body size, neither Bergmann's rule nor the island rule applies to the common treeshrew. The results of our analyses demonstrate the necessity of assessing multiple variables simultaneously in studies of ecogeographical rules.  相似文献   

12.
Abstract. Data on the birds, amphibians, reptiles and mammalian species of the Bazaruto Archipelago, Mozambique are presented. Species diversity was compared to island size and with data for other East African Islands. There was a low degree of endemism and the different faunas (particularly for mammals and the herpetofauna) were mainland in origin and a nested subset of that on the mainland. Several mammal and bird families were absent from the islands suggesting a process of relaxation on these relatively young islands with little colonization. Reasons for the observed diversity are discussed.  相似文献   

13.
Extreme morphologies of many insular taxa suggest that islands have unusual properties that influence the tempo and mode of evolution. Yet whether insularity per se promotes rapid phenotypic evolution remains largely untested. We extend a phylogenetic comparative approach to test the influence of novel environments versus insularity on rates of body size and sexual size dimorphism diversification in Anolis . Rates of body size diversification among small-island and mainland species were similar to those of anole species on the Greater Antilles. However, the Greater Antilles taxa that colonized small islands and the mainland are ecologically nonrandom: rates of body size diversification among small-island and mainland species are high compared to their large-island sister taxa. Furthermore, rates of diversification in sexual size dimorphism on small islands are high compared to all large-island and mainland lineages. We suggest that elevated diversifying selection, particularly as a result of ecological release, may drive high rates of body size diversification in both small-island and mainland novel environments. In contrast, high abundance (prevalent among small-island lizard communities) mediating intraspecific resource competition and male–male competition may explain why sexual size dimorphism diversifies faster among small-island lineages than among their mainland and large-island relatives.  相似文献   

14.
Aim Island mammals have featured prominently in models of the evolution of body size. Most of these models examine size evolution across a wide range of islands in order to test which island characteristics influence evolutionary pathways. Here, we examine the mammalian fauna of a single island, Borneo, where previous work has detected that some mammal species have evolved a relatively small size. We test whether Borneo is characterized by smaller mammals than adjacent areas, and examine possible causes for the different trajectories of size evolution between different Bornean species. Location Sundaland: Borneo, Sumatra, Java and the Malay/Thai Peninsula. Methods We compared the mammalian body size frequency distributions in the four areas to examine whether the large mammal fauna of Borneo is more depauperate than elsewhere. We measured specimens belonging to 54 mammal species that are shared between Borneo and any of the other areas in order to determine whether there is an intraspecific tendency for Bornean mammals to evolve small body size. Using data on diet, body size and geographical ranges we examine factors that are thought to influence body size. Results Borneo has fewer large mammals than the other areas, but this is not statistically significant. Large Bornean mammals are significantly smaller than their conspecifics in the other regions, while there are no differences between the body sizes of mammals on Sumatra, Java and the Malay/Thai Peninsula. The finding that large mammals show the greatest size difference between Borneo and elsewhere contrasts with some models of size evolution on islands of different areas. Diet does not correlate with the degree of size reduction. Sunda region endemics show a weaker tendency to be small on Borneo than do widespread species. Main conclusions We suggest that soil quality may drive size evolution by affecting primary productivity. On Borneo, where soils are generally poor in nutrients, this may both limit biomass and cause mammals to be reduced in body size. We hypothesize that widespread species respond to low resource abundance by reducing in size, while endemic elements of the fauna have had longer to adjust to local conditions by altering their behaviour, physiology and/or ecology, and are thus similar in size across the region.  相似文献   

15.
Aim We investigated the hypothesis that the insular body size of mammals results from selective forces whose influence varies with characteristics of the focal islands and the focal species, and with interactions among species (ecological displacement and release). Location Islands world‐wide. Methods We assembled data on the geographic characteristics (area, isolation, maximum elevation, latitude) and climate (annual averages and seasonality of temperature and precipitation) of islands, and on the ecological and morphological characteristics of focal species (number of mammalian competitors and predators, diet, body size of mainland reference populations) that were most relevant to our hypothesis (385 insular populations from 98 species of extant, non‐volant mammals across 248 islands). We used regression tree analyses to examine the hypothesized contextual importance of these factors in explaining variation in the insular body size of mammals. Results The results of regression tree analyses were consistent with predictions based on hypotheses of ecological release (more pronounced changes in body size on islands lacking mammalian competitors or predators), immigrant selection (more pronounced gigantism in small species inhabiting more isolated islands), thermoregulation and endurance during periods of climatic or environmental stress (more pronounced gigantism of small mammals on islands of higher latitudes or on those with colder and more seasonal climates), and resource subsidies (larger body size for mammals that utilize aquatic prey). The results, however, were not consistent with a prediction based on resource limitation and island area; that is, the insular body size of large mammals was not positively correlated with island area. Main conclusions These results support the hypothesis that the body size evolution of insular mammals is influenced by a combination of selective forces whose relative importance and nature of influence are contextual. While there may exist a theoretical optimal body size for mammals in general, the optimum for a particular insular population varies in a predictable manner with characteristics of the islands and the species, and with interactions among species. This study did, however, produce some unanticipated results that merit further study – patterns associated with Bergmann’s rule are amplified on islands, and the body size of small mammals appears to peak at intermediate and not maximum values of latitude and island isolation.  相似文献   

16.
Morphological characteristics reflect geographical variation resulting from adaptation to varying environmental conditions. Carnivore species distributed over a wide geographical range generally have highly polymorphic morphological variation. The raccoon dog (Nyctereutes procyonoides) has a longitudinal distribution restricted to East Asia and the northern Indochina Peninsula. Its unique geographical range makes it an appropriate model to examine how morphological differences are influenced by geography. To demonstrate morphological evolution of Russian, Chinese, Korean and Japanese raccoon dogs predicted by geographical differences, we tested the island rule and Bergmann's rule. We compared craniodental variation among populations and examined morphological implications for intraspecific taxonomic status. Insular raccoon dogs possessed substantially smaller body size than those from the mainland. Moreover, different island effects among Japanese islands were demonstrated by markedly larger occipital condyle breath in the Hokkaido population. Larger skull size in Russian and Hokkaido raccoon dogs could be explained by Bergmann's rule. Based on previous chromosomal and molecular studies and results of our morphological analyses, we suggest Japanese raccoon dogs are a distinct species from the mainland N. procyonoides.  相似文献   

17.
Aim This study aims to explain the patterns of species richness and nestedness of a terrestrial bird community in a poorly studied region. Location Twenty‐six islands in the Dahlak Archipelago, Southern Red Sea, Eritrea. Methods The islands and five mainland areas were censused in summer 1999 and winter 2001. To study the importance of island size, isolation from the mainland and inter‐island distance, I used constrained null models for the nestedness temperature calculator and a cluster analysis. Results Species richness depended on island area and isolation from the mainland. Nestedness was detected, even when passive sampling was accounted for. The nested rank of islands was correlated with area and species richness, but not with isolation. Idiosyncrasies appeared among species‐poor and species‐rich islands, and among common and rare species. Cluster analysis showed differences among species‐rich islands, close similarity among species‐poor and idiosyncratic islands, and that the compositional similarity among islands decreased with increasing inter‐island distance. Thus, faunas of species‐poor, smaller islands were more likely to be subsets of faunas of species‐rich, larger islands if the distance between the islands was short. Main conclusions Species richness and nestedness were related to island area, and nestedness also to inter‐island distances but not to isolation from the mainland. Thus, nestedness and species richness are not affected in the same way by area and distance. Moreover, idiosyncrasies may have been the outcome of species distributions among islands being influenced also by non‐nested distributions of habitats, inter–specific interactions, and differences in species distributions across the mainland. Idiosyncrasies in nested patterns may be as important as the nested pattern itself for conservation – and conservation strategies based on nestedness and strong area effects (e.g. protection of only larger islands) may fail to preserve idiosyncratic species/habitats.  相似文献   

18.
Aim Islands are widely considered to be species depauperate relative to mainlands but, somewhat paradoxically, are also host to many striking adaptive radiations. Here, focusing on Anolis lizards, we investigate if cladogenetic processes can reconcile these observations by determining if in situ speciation can reduce, or even reverse, the classical island–mainland richness discrepancy. Location Caribbean islands and the Neotropical mainland. Methods We constructed range maps for 203 mainland anoles from museum records and evaluated whether geographical area could account for differences in species richness between island and mainland anole faunas. We compared the island species–area relationship with total mainland anole diversity and with the richness of island‐sized mainland areas. We evaluated the role of climate in the observed differences by using Bayesian model averaging to predict island richness based on the mainland climate–richness relationship. Lastly, we used a published phylogeny and stochastic mapping of ancestral states to determine if speciation rate was greater on islands, after accounting for differences in geographical area. Results Islands dominated by in situ speciation had, on average, significantly more species than similarly sized mainland regions, but islands where in situ speciation has not occurred were species depauperate relative to mainland areas. Results were similar at the scale of the entire mainland, although marginally non‐significant. These findings held even after accounting for climate. Speciation has not been faster on islands; instead, when extinction was assumed to be low, speciation rate varied consistently with geographical area. When extinction was high, there was some evidence that mainland speciation was faster than expected based on area. Main conclusions Our results indicate that evolutionary assembly of island faunas can reverse the general pattern of reduced species richness on islands relative to mainlands.  相似文献   

19.
We studied effects of physical isolation on geographical variation in mtDNA RFLP polymorphisms and a suite of morphological characters within three species of neotropical forest birds; the crimson-backed tanager Ramphocelus dimidiatus, the blue-gray tanager Thraupis episcopus, and the streaked saltator Saltator albicollis. Variation among populations within continuous habitat on the Isthmus of Panama was compared with that among island populations isolated for about 10000 years. Putative barriers to dispersal were influential, but apparent isolation effects varied by species, geographical scale, and whether molecular or morphological traits were being assessed. We found no geographical structuring among the contiguous, mainland sampling sites. Migration rates among the islands appeared sufficient to maintain homogeneity in mtDNA haplotype frequencies. In contrast, variation in external morphology among islands was significant within two of three species. For all species, we found significant variation in genetic and morphological traits between the island (collectively) and mainland populations. Interspecific variation in the effects of isolation was likely related to differential vagility. These data generally corroborate other studies reporting relatively great geographical structuring within tropical birds over short distances. Behaviourally based traits - low vagility and high ‘sensitivity’ to geographical barriers - may underlie extensive diversification within neotropical forest birds, but more extensive ecological and phylogeographic information are needed on a diverse sample of species.  相似文献   

20.
The tempo and mode of body size evolution on islands are believed to be well known. It is thought that body size evolves relatively quickly on islands toward the mammalian modal value, thus generating extreme cases of size evolution and the island rule. Here, we tested both theories in a phylogenetically explicit context, by using two different species-level mammalian phylogenetic hypotheses limited to sister clades dichotomizing into an exclusively insular and an exclusively mainland daughter nodes. Taken as a whole, mammals were found to show a largely punctuational mode of size evolution. We found that, accounting for this, and regardless of the phylogeny used, size evolution on islands is no faster than on the continents. We compared different selection regimes using a set of Ornstein-Uhlenbeck models to examine the effects of insularity of the mode of evolution. The models strongly supported clade-specific selection regimes. Under this regime, however, an evolutionary model allowing insular species to evolve differently from their mainland relatives performs worse than a model that ignores insularity as a factor. Thus, insular taxa do not experience statistically different selection from their mainland relatives.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号