首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The tempo and mode of body size evolution on islands are believed to be well known. It is thought that body size evolves relatively quickly on islands toward the mammalian modal value, thus generating extreme cases of size evolution and the island rule. Here, we tested both theories in a phylogenetically explicit context, by using two different species-level mammalian phylogenetic hypotheses limited to sister clades dichotomizing into an exclusively insular and an exclusively mainland daughter nodes. Taken as a whole, mammals were found to show a largely punctuational mode of size evolution. We found that, accounting for this, and regardless of the phylogeny used, size evolution on islands is no faster than on the continents. We compared different selection regimes using a set of Ornstein-Uhlenbeck models to examine the effects of insularity of the mode of evolution. The models strongly supported clade-specific selection regimes. Under this regime, however, an evolutionary model allowing insular species to evolve differently from their mainland relatives performs worse than a model that ignores insularity as a factor. Thus, insular taxa do not experience statistically different selection from their mainland relatives.  相似文献   

3.
Survival probability is predicted to underlie the evolution of life histories along a slow-fast continuum. Hibernation allows a diverse range of small mammals to exhibit seasonal dormancy, which might increase survival and consequently be associated with relatively slow life histories. We used phylogenetically informed GLS models to test for an effect of hibernation on seasonal and annual survival, and on key attributes of life histories among mammals. Monthly survival was in most cases higher during hibernation compared with the active season, probably because inactivity minimizes predation. Hibernators also have approximately 15 per cent higher annual survival than similar sized non-hibernating species. As predicted, we found an effect of hibernation on the relationships between life history attributes and body mass: small hibernating mammals generally have longer maximum life spans (50% greater for a 50 g species), reproduce at slower rates, mature at older ages and have longer generation times compared with similar-sized non-hibernators. In accordance with evolutionary theories, however, hibernating species do not have longer life spans than non-hibernators with similar survival rates, nor do they have lower reproductive rates than non-hibernators with similar maximum life spans. Thus, our combined results suggest that (i) hibernation is associated with high rates of overwinter and annual survival, and (ii) an increase in survival in hibernating species is linked with the coevolution of traits indicative of relatively slow life histories.  相似文献   

4.
Interferon (IFN) is thought to play an important role in the vertebrate immune system, but systemic knowledge of IFN evolution has yet to be elucidated. To evaluate the phylogenic distribution and evolutionary history of type I IFNs, 13gen omes were searched using BLASTn program, and a phylogenetic tree of vertebrate type I IFNs was constructed. In the present study, an IFNδ-like gene in the human genome was identified, refuting the concept that humans have no IFNδ genes, and other mammalian IFN genes were also identified. In the phylogenetic tree, the mammalian IFNβ, IFN?, and IFNκ formed a clad e sepa rate f rom the other mammalian type I IFNs, while piscine and avian IFNs formed distinct clades. Based on this phylogenetic analysis and the various characteristics of type I IFNs, the evolutionary history of type I IFNs was further evaluated. Our data indicate that an ancestral IFNα-like gene forms a core from which new IFNs divided during vertebrate evolution. In addition, the data suggest how the other type I IFNs evolved from IFNα and shaped the complex type I IFN system. The promoters of type I IFNs were conserved among different mammals, as well as their genic regions. However, the intergenic regions of type I IFN clusters were not conserved among different mammals, demonstrating a high selec tion pressure upon type I IFNs during their evolution.  相似文献   

5.
Rapid diversification of sexual traits is frequently attributed to sexual selection, though explicit tests of this hypothesis remain limited. Spermatozoa exhibit remarkable variability in size and shape, and studies report a correlation between sperm morphology (sperm length and shape) and sperm competition risk or female reproductive tract morphology. However, whether postcopulatory processes (e.g., sperm competition and cryptic female choice) influence the speed of evolutionary diversification in sperm form is unknown. Using passerine birds, we quantified evolutionary rates of sperm length divergence among lineages (i.e., species pairs) and determined whether these rates varied with the level of sperm competition (estimated as relative testes mass). We found that relative testes mass was significantly and positively associated with more rapid phenotypic divergence in sperm midpiece and flagellum lengths, as well as total sperm length. In contrast, there was no association between relative testes mass and rates of evolutionary divergence in sperm head size, and models suggested that head length is evolutionarily constrained. Our results are the first to show an association between the strength of sperm competition and the speed of sperm evolution, and suggest that postcopulatory sexual selection promotes rapid evolutionary diversification of sperm morphology.  相似文献   

6.
Size evolution in island lizards   总被引:2,自引:0,他引:2  
Aim  The island rule, small animal gigantism and large animal dwarfism on islands, is a topic of much recent debate. While size evolution of insular lizards has been widely studied, whether or not they follow the island rule has never been investigated. I examined whether lizards show patterns consistent with the island rule.
Location  Islands worldwide.
Methods  I used literature data on the sizes of island–mainland population pairs in 59 species of lizards, spanning the entire size range of the group, and tested whether small insular lizards are larger than their mainland conspecifics and large insular lizards are smaller. I examined the influence of island area, island isolation, and dietary preferences on lizard size evolution.
Results  Using mean snout–vent length as an index of body size, I found that small lizards on islands become smaller than their mainland conspecifics, while large ones become larger still, opposite to predictions of the island rule. This was especially strong in carnivorous lizards; omnivorous and herbivorous species showed a pattern consistent with the island rule but this result was not statistically significant. No trends consistent with the island rule were found when maximum snout–vent length was used. Island area had, at best, a weak effect on body size. Using maximum snout–vent length as an index of body size resulted in most lizard populations appearing to be dwarfed on islands, but no such pattern was revealed when mean snout–vent length was used as a size index.
Main conclusions  I suggest that lizard body size is mostly influenced by resource availability, with large size allowing some lizard populations to exploit resources that are unavailable on the mainland. Lizards do not follow the island rule. Maximum snout–vent length may be biased by sampling effort, which should be taken into account when one uses this size index.  相似文献   

7.
Anagenetic evolution in island plants   总被引:1,自引:2,他引:1  
Aim  Plants in islands have often evolved through adaptive radiation, providing the classical model of evolution of closely related species each with strikingly different morphological and ecological features and with low levels of genetic divergence. We emphasize the importance of an alternative (anagenetic) model of evolution, whereby a single island endemic evolves from a progenitor and slowly builds up genetic variation through time.
Location  Continental and oceanic islands.
Methods  We surveyed 2640 endemic angiosperm species in 13 island systems of the world, both oceanic and continental, for anagenetic and cladogenetic patterns of speciation. Genetic data were evaluated from a progenitor and derivative species pair in Ullung Island, Korea, and Japan.
Results  We show that the anagenetic model of evolution is much more important in oceanic islands than previously believed, accounting for levels of endemic specific diversity from 7% in the Hawaiian Islands to 88% in Ullung Island, Korea, with a mean for all islands of 25%. Examination of an anagenetically derived endemic species in Ullung Island reveals genetic (amplified fragment length polymorphism) variation equal or nearly equal to that of its continental progenitor.
Main conclusions  We hypothesize that, during anagenetic speciation, initial founder populations proliferate, and then accumulate genetic variation slowly through time by mutation and recombination in a relatively uniform environment, with drift and/or selection yielding genetic and morphological divergence sufficient for the recognition of new species. Low-elevation islands with low habitat heterogeneity are highly correlated with high levels of anagenetic evolution, allowing prediction of levels of the two models of evolution from these data alone. Both anagenetic and adaptive radiation models of speciation are needed to explain the observed levels of specific and genetic diversity in oceanic islands.  相似文献   

8.
Abstract This review provides a synthesis, from published and unpublished sources, of records of mycophagy (fungus-feeding) by Australian mammals. Mycophagy is shown to be widespread among Australian mammals, paralleling the previously well-documented situation in North America. Mycophagy appears to be most prevalent within the Potoroidae (rat-kangaroo family) but has also been recorded for a variety of other mammals. Information is presented on the classification, morphology and ecology of the fungi consumed, on the nutritional benefits (or otherwise) of mycophagy, and on the role of mammals in spore dispersal. Fungi whose sporocarps are hypogeal (truffles, false-truffles and sporocarpic Endogonaceae) and which enter into mycorrhizal relationships with plants predominate among the species recorded in mammal diets.  相似文献   

9.
10.
11.
The evolution of placental mammals.   总被引:2,自引:0,他引:2  
J R Harris 《FEBS letters》1991,295(1-3):3-4
Based on morphological, virological, biochemical and molecular biological data, it is proposed that the presence of endogenous retrovirus particles in the placental cytotrophoblasts of many mammals is indicative of some beneficial action provided by the virus in relation to cell fusion, syncytiotrophoblast formation and the creation of the placenta. Further, it is hypothesised that the germ line retroviral infection of some primitive mammal-like species resulted in the evolution of the placental mammals.  相似文献   

12.
The island rule is the phenomenon of the miniaturization of large animals and the gigantism of small animals on islands, with mammals providing the classic case studies. Several explanations for this pattern have been suggested, and departures from the predictions of this rule are common among mammals of differing body size, trophic habits, and phylogenetic affinities. Here we offer a new explanation for the evolution of body size of large insular mammals, using evidence from both living and fossil island faunal assemblages. We demonstrate that the extent of dwarfism in ungulates depends on the existence of competitors and, to a lesser extent, on the presence of predators. In contrast, competition and predation have little or no effect on insular carnivore body size, which is influenced by the nature of the resource base. We suggest dwarfism in large herbivores is an outcome of the fitness increase resulting from the acceleration of reproduction in low-mortality environments. Carnivore size is dependent on the abundance and size of their prey. Size evolution of large mammals in different trophic levels has different underlying mechanisms, resulting in different patterns. Absolute body size may be only an indirect predictor of size evolution, with ecological interactions playing a major role.  相似文献   

13.
Animal populations have undergone substantial declines in recent decades. These declines have occurred alongside rapid, human‐driven environmental change, including climate warming. An association between population declines and environmental change is well established, yet there has been relatively little analysis of the importance of the rates of climate warming and its interaction with conversion to anthropogenic land use in causing population declines. Here we present a global assessment of the impact of rapid climate warming and anthropogenic land use conversion on 987 populations of 481 species of terrestrial birds and mammals since 1950. We collated spatially referenced population trends of at least 5 years’ duration from the Living Planet database and used mixed effects models to assess the association of these trends with observed rates of climate warming, rates of conversion to anthropogenic land use, body mass, and protected area coverage. We found that declines in population abundance for both birds and mammals are greater in areas where mean temperature has increased more rapidly, and that this effect is more pronounced for birds. However, we do not find a strong effect of conversion to anthropogenic land use, body mass, or protected area coverage. Our results identify a link between rapid warming and population declines, thus supporting the notion that rapid climate warming is a global threat to biodiversity.  相似文献   

14.
15.
Positive selection drives lactoferrin evolution in mammals   总被引:1,自引:0,他引:1  
Lactoferrin (LF) is a member of the transferrin family that is abundantly expressed and secreted by glandular epithelial cells. The biological functions of LF involve in iron homeostasis regulation of the body and antibacterial activity. Previous studies demonstrated that it had a high cationic N-terminal domain that could interact with glycosaminoglycans, lipopolysaccharides and the bacterial virulence protein. Two anti-microbial peptides, lactoferricin (LFcin) and lactoferrampin (LFampin), were also isolated and identified in N-terminal of LF. Although the antibacterial mechanism was carefully studied, little was known about the molecular evolution of LF. In this study, we estimated the nonsynonymous-to-synonymous substitution ratios ( w = dN \mathord
/ \vphantom dN dS dS \omega = {{d_{N} } \mathord{\left/ {\vphantom {{d_{N} } {d_{S} }}} \right. \kern-\nulldelimiterspace} {d_{S} }} ) per site using maximum likelihood method to analyze the LF evolution. The results of ω > 1 and five identified positive selection sites of amino acid suggested that the evolution of LF gene was characterized by positive selection. Further study found that the positive selection sites were either located in the LF-bacteria binding region or the peptides of LFcin and LFampin, indicating that the selection pressure was related to LF-bacteria interaction. The identification of these sites may contribute to the mechanism of bacteria-LF interaction.  相似文献   

16.
Aim A positive power relationship between maximal body mass and land area has previously been reported of the form Mmax ∝ Area0.5 whilst allometric scaling theory predicts either Mmax ∝ Area1.33 or Mmax ∝ Area1. We provide an analysis of the maximal mass–area relationship for four island systems, to test the hypothesis that community relaxation following isolation converges in each case to a slope of Area0.5. Location Islands of the Japanese archipelago, the western Mediterranean, the Sea of Cortés and Southeast Asia. Methods We calculated the relationship between island area and the maximal body mass of the largest mammal species on the island using linear regression models with log‐transformed variables, and tested the hypothesis that the slopes were not significantly different from 0.5. Results We found a slope of 0.47 within the Japanese archipelago, 0.42 for western Mediterranean islands, 0.73 for the Sea of Cortés islands and 0.50 for Southeast Asian islands. None of these slopes were significantly different from 0.5. Main conclusions Our results provide further empirical support for previous findings of a general maximal body mass–area relationship of Mmax ∝ Area0.5, but they deviate from theoretical predictions. We hypothesize that this mass–area relationship was the ultimate end point of community relaxation initiated by the isolation of the mammal communities. Maximal body mass on each island today probably reflects the interaction between energetic constraints, home range size and island area.  相似文献   

17.
Morphological relationship among sympatric animal species have often been seen as indirect evidence for competition. Many early ecomorphological studies revealed patterns that were taken as indicating character displacement and character release, driven by competition or lack thereof. These patterns may result from a coevolutionary morphological response or from species sorting according to size. Thus, the relationship between morphology and competition may be crucial for understanding both the morphological evolution of animals and the role of competition in structuring communities. Some earlier research perceived as indicating morphological relationships conditioned by interaction of species was conducted on mammals, particularly carnivores. Subsequent criticism in the ecological literature demonstrated that many of the perceived patterns could not be statistically confirmed, thus calling into question this line of evidence for competition. More recent ecological literature relies on strong statistical analyses and careful consideration both of guild composition and of which morphological traits should be examined. This literature, resting largely on mammals, includes several cases that suggest a coevolutionary morphological response to interspecific competition. These studies have focused on the thropic apparatus directly related to food procurement by mammals — the teeth. Island mammals often show striking morphological patterns, some of which have been interpreted as resulting from release from competition with mainland species that have not reached islands. However, few of these patterns were critically evaluated to demonstrate their support for the hypothesis of character release. Despite several decades of interest and research, many questions regarding competitively induced morphological patterns remain unresolved and require further research. Mammals are especially promising subjects for such researh.  相似文献   

18.
Only some island populations of Podarcis sicula are hyperchromatic. The study of this phenomenon and its relationship with the lizards of the mainland and other islands, exhibiting a "normal" coloration, provides useful hints in our understanding of evolutionary mechanisms that have created the observed morphological variation. We performed a comparative morphological and genetic analysis of a hyperchromatic lizard population from Licosa Island, and compared the data with that obtained from normal-colored lizard populations both from Ustica and Cirella islands in the Tyrrhenian sea and from nearby mainland Italy. Morphological and microsatellite gene differentiation in the hyperchromatic Licosa population appears to have been much more rapid than the molecular evolution of the mtDNA. We discuss herein that the comparison of hyperchromatism and other types of morphological variation with molecular data in island populations of lizards may provide useful hints as to evolutionary mechanisms.  相似文献   

19.
Interpopulation variation in morphology, such as that among small island populations, plays a key role in speciation and diversification. There are two approaches to investigating evolution of morphological characters: comparing patterns of trait variances and covariances within and among populations, and testing particular adaptive scenarios. Here, we combine both approaches to infer the role of natural selection in shaping morphological variation in body size, head color pattern, and body shape among 10 populations of a day gecko, Phelsuma ornata, and its close relative, P. inexpectata, in the Mascarene Islands. We find that local populations are morphologically distinct, and that natural selection has likely influenced phenotypic diversification in the group. Lizards on small outer islands tend to be larger than lizards on the mainland of Mauritius. For body shape and head color pattern, comparisons of variation within and among populations reveal that differences among populations for some variables are too great to be explained by neutral processes alone, although we cannot identify the causal agents for this selection. These results reveal that the forces shaping different sets of organismal traits may be distinct, such that a variety of statistical approaches are needed to investigate selection in natural populations.  相似文献   

20.
《Cell》2023,186(9):2040-2040.e1
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号