首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this study we assessed the effect of GnRH on the recovery rate, meiotic synchronization and in vitro developmental competence of oocytes recovered close to the expected time of ovulation. Twenty-three heifers were superstimulated with FSH, and luteolysis was induced by PGF(2alpha) injection 48 h after the start of treatment Twelve heifers received 200 microg GnRH at 34 h after PGF(2alpha) treatment, Blood samples were collected between 35 to 47 h after PGF(2alpha) administration to determine the time of the LH surge. Transvaginal follicular aspiration was performed at 60 h after PGF(2alpha), and the recovered oocytes were fertilized or fixed either immediately or after 24 h of maturation in vitro. GnRH-treated heifers showed an LH surge within 3 h after treatment, while only 4 of the 10 heifers in the control group exhibited an LH surge by 47 h after treatment with PGF(2alpha). The average number of large follicles (> 10 mm) was 21.3 +/- 2.3 and 19.3 +/- 2.4 for GnRH-treated and control heifers, respectively. The oocyte recovery rate was 87.7 and 63.1% (P < 0.05), respectively, and most of the cumulus-oocyte-complexes (COC) recovered from the 2 groups had an expanded cumulus (80.4 and 80.5%, respectively). Oocytes with an expanded cumulus from the GnRH group had completed meiotic maturation at higher rate than the controls (97 vs 20%;P < 0.05). In vitro development to the blastocyst stage of cumulus-expanded oocytes fertilized immediately after recovery was higher in GnRH-treated than in control heifers (60.3 vs 40.0%; P < 0.05). No difference was observed when oocytes with compact or expanded cumulus were matured in vitro for 24 h before fertilization. These results indicate that GnRH injections improve the oocyte recovery rate and that oocytes have a higher development competence than those obtained from non-GnRH-treated animals. We propose that this higher in vitro developmental competence may result from a more synchronous or further advanced meiotic maturation. However, due to the small number of oocytes in our study, we must emphasize that our findings on meiotic resumption are of preliminary nature.  相似文献   

2.
Kim UH  Suh GH  Nam HW  Kang HG  Kim IH 《Theriogenology》2005,63(1):260-268
This study evaluated the effect of GnRH or estradiol benzoate (EB) on follicular wave emergence and progesterone concentrations, and following a second injection of GnRH, synchrony of ovulation, and pregnancy rates in a controlled internal drug release (CIDR)-based timed AI (TAI) protocol in lactating Holstein cows. Cows received a CIDR device without hormone (controls), with an injection of 100 microg GnRH or with an injection of 4 mg EB. Thereafter, all received PGF(2 alpha) at the time of CIDR removal on Day 7, GnRH on Day 9, and TAI 16 h later. Follicular wave emergence occurred within 7 days in 19/20 GnRH-treated, 14/20 EB-treated and 5/20 control cows (P < 0.05). The interval to wave emergence was the shorter and less variable (P < 0.01) in the GnRH group (2.9 +/- 0.2 days) than in the EB (4.7 +/- 0.5 days) or control (4.8 +/- 1.0 days) groups. Serum progesterone concentrations from Days 4 to 7 were higher (P < 0.01) in the GnRH-treated cows that ovulated than in those that did not ovulate, or in control and EB-treated cows. The diameters of dominant follicle on Day 7 differed among groups (P < 0.01), and the diameters of the preovulatory follicle on Day 9 were larger (P < 0.01) in the control and GnRH groups than in the EB group. The proportion of cows with synchronized ovulations did not differ among groups, but pregnancy rate to TAI was higher (P < 0.05) in the GnRH group (65%; 13/20) than in the control (30%; 6/20) or EB (35%; 7/20) groups. Results suggest that GnRH treatment of CIDR-treated lactating Holstein cows will result in synchronous follicular wave emergence, large preovulatory follicles and synchronous ovulation, resulting in an acceptable pregnancy rates to TAI.  相似文献   

3.
We hypothesized that reducing the size of the ovulatory follicle using aspiration and GnRH would reduce the size of the resulting CL, reduce circulating progesterone concentrations, and alter conception rates. Lactating dairy cows (n=52) had synchronized ovulation and AI by treating with GnRH and PGF2alpha as follows: Day -9, GnRH (100 microg); Day -2, PGF2alpha (25 mg); Day 0, GnRH (100 microg); Day 1, AI. Treated cows (aspirated group; n=29) had all follicles > 4 mm in diameter aspirated on Days -5 or -6 in order to start a new follicular wave. Control cows (nonaspirated group: n=23) had no follicle aspiration. The size of follicles and CL were monitored by ultrasonography. The synchronized ovulation rate (ovulation rate to second GnRH injection: 42/52=80.8%) and double ovulation rate of synchronized cows (6/42=14.3%) did not differ (P > 0.05) between groups. Aspiration reduced the size of the ovulatory follicle (P < 0.0001; 11.5 +/- 0.2 vs 14.5 +/- 0.4 mm), and serum estradiol concentrations at second GnRH treatment (P < 0.0002; 2.5 +/- 0.4 vs 5.7 +/- 0.6 pg/mL). The volume of CL was less (P < 0.05) for aspirated than nonaspirated cows on Day 7 (2,862 +/- 228 vs 5,363 +/- 342 mm3) or Day 14 (4,652 +/- 283 vs 6,526 +/- 373 mm3). Similarly, serum progesterone concentrations were less on Day 7 (P < 0.05) and Day 14 (P < 0.10) for aspirated cows. Pregnancy rate per AI for synchronized cows was lower (P < 0.05) for aspirated (3/21=14.3%) than nonaspirated (10/21=47.6%) cows. In conclusion, ovulation of smaller follicles produced lowered fertility possibly because development of smaller CL decreased circulating progesterone concentrations.  相似文献   

4.
Two experiments were conducted to investigate the effects of timing of prostaglandin F2(alpha) (PGF2(alpha)) administration, controlled internal drug release device (CIDR) removal and second gonodotropin releasing hormone (GnRH) administration on the pregnancy outcome in CIDR-based synchronization protocols. In Experiment 1, suckled Angus crossbred beef cows (n = 580) were given 100 microg of GnRH+a CIDR on Day 0. Cows in Group 1 (modified Ovsynch-P) received 25 mg of dinoprost (PGF2(alpha)) and CIDR device removal on Day 8 (AM), 100 microg of GnRH 36 h later on Day 9 (p.m.), and fixed-time AI (FTAI) 16 h later on Day 10 (47.5+/-1.1 h after PGF2(alpha)). Cows in Group 2 (Ovsynch-P) received 25mg of PGF2(alpha) and CIDR device removal on Day 7 (p.m.), 100 microg of GnRH 48 h later on Day 9 and FTAI 16 h later on Day 10 (66.6+/-1.2 h after PGF2(alpha)). Pregnancy rates were 56.5% (170/301) for Group 1 and 55.6% (155/279) for Group 2, respectively (P = 0.47). In Experiment 2, beef cows (n=734) were synchronized with 100 microg of GnRH+CIDR on Day 0, 25 mg of PGF2(alpha) and CIDR device removal on Day 7 and either 100 microg of GnRH 48 h later on Day 9 (Ovsynch-P) and FTAI 16 h later on Day 10 (64.9+/-3.3 h from PGF2(alpha)) or 100 microg of GnRH on Day 10 (CO-Synch-P) at the time of AI (63.2+/-4.2 h from PGF2(alpha)). Pregnancy rates were 48.8% (180/369) for Ovsynch-P and 44.7% (163/365) for CO-synch-P groups, respectively (P = 0.11). In both experiments, there was a locationxtreatment interaction (P<0.05); pregnancy rates between locations were different (P < 0.05) in the Ovsynch-P group. In conclusion, in a CIDR-based Ovsynch synchronization protocol, delaying administration of prostaglandin and CIDR removal by 12 h, or timing of the second GnRH by 16 h, did not affect pregnancy rates to FTAI. Therefore, there may be an opportunity to make changes in synchronization protocols with out adversely affecting FTAI pregnancy rates.  相似文献   

5.
Variability in the superovulation response is an important problem for the embryo transfer industry. The objective of this study was to determine whether FSH treatment at the beginning of the cycle would improve the ovulation rate and embryo yield in dairy cows. Twenty-eight postpartum cyclic dairy cows were allocated at random to 4 treatment groups (A, B, C and D). Group A cows (n = 10) received FSH (35 mg) at a decreasing dose, starting on Day 9 (Day 0 = day of estrus) for 5 days followed by PGF(2alpha) (35 mg) on Day 12. Cows assigned to Groups B, C and D (n = 6 cows each, respectively) were given 35 mg FSH at a decreasing dose from Days 2 to 6 followed by PGF(2alpha) on Day 7. Group C and D cows received PRID inserts from Day 3 to Day 7. Cows in Group D additionally received 1000 IU hCG 60 hours after PGF(2alpha) treatment. Ovaries were scanned daily using a real time ultrasound scanner from the beginning of FSH treatment until embryo recovery, to monitor follicular development, ovulation and the number of unovulated follicles. Embryos were recovered from the uterus by a nonsurgical flushing technique 7 days after breeding. There were no differences (P>0.01) in the number of follicles > 10 mm at 48 hours after PGF(2alpha) treatment among the 4 groups. The mean numbers of follicles were 10.6 +/- 1.2, 9.3 +/- 1.3, 12.2 +/- 1.3 and 15.0 +/- 2.9 for Groups A, B, C and D, respectively. A significantly (P<0.001) higher number of ovulations was observed and a larger number of embryos was recovered in Group A than in the other groups. The results of this study indicate that superovulation with FSH at the beginning of the cycle causes sufficient follicular development but results in very low ovulation and embryo recovery rates.  相似文献   

6.
Llamas are copulation-induced single-ovulators, and multiple ovulation and embryo transfer (MOET) methods have not yet been developed for this species. Superovulatory responses to eCG given during an induced (Group A) or simulated (Group B) luteal phase were investigated using ultrasound to observe ovarian follicles and corpora lutea (CLs) and plasma progesterone was used to assess luteal function. Embryos were recovered nonsurgically. Group A (n = 19): donors were given 8 microg, im GnRH analogue (Day 0) to induce ovulation of a mature follicle, 1000 IU, im eCG (Day 7), and 250 microg PGF(2alpha) analogue (Day 9). Group B (n = 17): donors were given a subcutaneous progestagen implant (3 mg Norgestomet) at Days 0 to 7) and 1000 IU, im eCG (Day 5). When most (>65%) of the follicles in both Groups A and B had matured at 5 to 11 d post eCG, the donors were given 8 microg, im GnRH and mated once (n = 26) or twice within a 24-h interval (n = 10); embryos were recovered 6 to 9 d post ovulation. More follicles and corpora lutea were induced in Group B than in Group A, but a similar mean number of embryos were recovered (1.3 vs 1.6), and a similar proportion of donors yielded multiple embryos (35 vs 32%). The embryo recovery rate was similar for Groups A and B (39 and 37%), but it was higher (P < 0.001) with 2 (72%) rather than 1 (22%) mating, and it was negatively correlated with CL number (P < 0.05). Overall, 80% of the llamas had a precocious CL and elevated plasma progesterone concentrations when multiple follicles reached maturity. This was associated with increased subsequent superovulation and embryo recovery (P < 0.01). Peak plasma progesterone was positively correlated with the CL number (P < 0.05). From these results we conclude that superovulation may be achieved with eCG given during either an induced or a simulated luteal phase, that embryo recovery is improved following 2 matings rather than 1, and that MOET may indeed be feasible for use in the llama.  相似文献   

7.
The objective of this study was to evaluate protocols for synchronizing ovulation in beef cattle. In Experiment 1, Nelore cows (Bos indicus) at random stages of the estrous cycle were assigned to 1 of the following treatments: Group GP controls (nonlactating, n=7) received GnRH agonist (Day 0) and PGF2alpha (Day 7); while Groups GPG (nonlactating, n=8) and GPG-L (lactating, n=9) cows were given GnRH (Day 0), PGF2alpha (Day 7) and GnRH again (Day 8, 30 h after PGF2alpha). A new follicular wave was observed 1.79+/-0.34 d after GnRH in 19/24 cows. After PGF2alpha, ovulation occurred in 19/24 cows (6/7 GP, 6/8 GPG, 7/9 GPG-L). Most cows (83.3%) exhibited a dominant follicle just before PGF2alpha, and 17/19 ovulatory follicles were from a new follicular wave. There was a more precise synchrony of ovulation (within 12 h) in cows that received a second dose of GnRH (GPG and GPG-L) than controls (GP, ovulation within 48 h; P<0.01). In Experiment 2, lactating Nelore cows with a visible corpus luteum (CL) by ultrasonography were allocated to 2 treatments: Group GPE (n=10) received GnRH agonist (Day 0), PGF2alpha (Day 7) and estradiol benzoate (EB; Day 8, 24 h after PGF2alpha); while Group EPE (n=11), received EB (Day 0), PGF2alpha (Day 9) and EB (Day 10, 24 h after PGF2alpha). Emergence of a new follicular wave was observed 1.6+/-0.31 d after GnRH (Group GPE). After EB injection (Day 8) ovulation was observed at 45.38+/-2.03 h in 7/10 cows within 12 h. In Group EPE the emergence of a new follicular wave was observed later (4.36+/-0.31 d) than in Group GEP (1.6+/-0.31 d; P<0.001). After the second EB injection (Day 10) ovulation was observed at 44.16+/-2.21 h within 12 (7/11 cows) or 18 h (8/11 cows). All 3 treatments were effective in synchronizing ovulation in beef cows. However, GPE and, particularly, EPE treatments offer a promising alternative to the GPG protocol in timed artificial insemination of beef cattle, due to the low cost of EB compared with GnRH agonists.  相似文献   

8.
Anestrus is common during the postpartum period in high-producing dairy cows. In a previous investigation, we were able to diagnose persistent follicles of 8 to 12 mm in anestrous cows. This report describes 2 consecutive studies. The objectives of the first were to 1) assess the association of persistent follicles with anestrus; and 2) evaluate 2 therapeutic treatments. In the second study, we compared the effectiveness of the best treatment established in Study 1 with the Ovsynch protocol. For Study 1, anestrous cows were considered to have a persistent follicle if it was possible to observe a single follicular structure > 8 mm in the absence of a corpus luteum or a cyst in 2 ultrasonographic examinations performed at an interval of 7 d. At diagnosis (Day 0), cows were assigned to 1 of 3 treatment groups. Cows in Group GnRH/PGF (n=17) were treated with 100 microg GnRH i.m., and 25 mg PGF2alpha i.m. on Day 14. Cows in Group PRID (n=18) were fitted with a progesterone releasing intravaginal device (PRID, containing 1.55 g of progesterone) for 9 d and were given 100 microg GnRH i.m. at the time of PRID insertion, and 25 mg PGF2alpha i.m. on Day 7. Cows in Group Control (n=18) received no treatment. The animals were inseminated at observed estrus and were monitored weekly by ultrasonography until AI or 5 weeks from diagnosis. Blood samples were also collected on a weekly basis for progesterone determination. The mean size of persistent follicles on Day 0 was 9.4 +/- 0.04 mm. Progesterone levels were < 0.2 ng/mL during the first 35 d in 16 of 18 Control cows. Cows in the PRID group showed a lower persistent follicle rate (16.7% < 70.6% < 88.9%; P < 0.0001; PRID vs GnRH/PGF vs Control, respectively); a higher estrus detection rate (83.3% > 29.4% > 11.1%; P < 0.0001) and a higher pregnancy rate (27.8% > 5.9% > 0%; P = 0.02). For the second study, 145 cows with persistent follicles were randomly assigned to 1 of 2 treatment groups: cows in Group Ovsynch (n=73) were treated with 100 microg GnRH i.m. on Day 0, 25 mg PGF2alpha i.m. on Day 7, and 100 microm GnRH i.m. 32 h later. Cows in this group were inseminated 16 to 20 h after the second GnRH dose (Ovsynch protocol). Cows in Group PRID (n=72) were treated as those in the PRID group of Study 1, and were inseminated 56 h after PRID removal. Cows in the PRID group showed a higher ovulation rate (84.8% > 8.2%: P < 0.0001); a higher pregnancy rate (34.2% > 4.1%; P < 0.0001) and lower follicular persistence rate (22.2% < 63%; P < 0.0001) than those in Ovsynch. Our results indicate that persistent follicles affect cyclic ovarian function in lactating dairy cows. Cows with persistent follicles can be successfully synchronized and time inseminated using progesterone, GnRH and PGF2alpha but show a limited response to treatment with GnRH plus PGF2alpha.  相似文献   

9.
Kim IH  Suh GH  Son DS 《Theriogenology》2003,60(5):809-817
The objective of this study was to evaluate pregnancy rates in lactating Holstein cows treated with an Ovsynch protocol (GnRH-PGF(2alpha)-GnRH) or a progesterone-based timed AI (TAI) protocol, and to determine the factors that may influence pregnancy rate following protocol treatment. In experiment 1, lactating Holstein cows were randomly assigned to three treatments: (1) an injection of GnRH (Day 0), an injection of PGF(2alpha) on Day 7, a second injection of GnRH on Day 9, and TAI 16h after the second GnRH injection (GPG group, n = 34); (2) insertion of a CIDR intravaginal progesterone (1.9g) device combined with a capsule containing 10mg estradiol benzoate (Day 0), an injection of PGF(2alpha) and removal of the device on Day 7, an injection of GnRH on Day 9, and TAI 16h after the GnRH injection (CPG group, n = 34); (3) an injection of PGF(2alpha) after confirming the presence of CL by ultrasonographical observation and artificial insemination at estrus (AIE) (P group, n = 75). The pregnancy rate after TAI following the CPG protocol (41.2%) was higher (P<0.05) than that after TAI following the GPG protocol (20.6%) and that after AIE (20.0%). In experiment 2, lactating Holstein cows were randomly assigned to two treatments: a GPG group (n = 31) and a CPG group (n = 31). The GPG and CPG protocols were identical to those used in experiment 1. The proportion of cows with premature estrus prior to injection of PGF(2alpha) and with incomplete luteal regression tended (P = 0.056) to be or were greater (P<0.05) in the GPG group (4/31, 8/31) than in the CPG group (0/31, 2/31), respectively. Average diameters of dominant follicles (1.5+/-0.1mm versus 1.4+/-0.1mm) on Day 7 and preovulatory follicles (1.8+/-0.1mm versus 1.6+/-0.1mm) on Day 9, and the proportion of cows with synchronized ovulation by 40h after the second GnRH injection were not different (81.5% versus 87.1%, P>0.05) between groups, respectively. We conclude that the pregnancy rate after TAI following the CPG protocol was higher than that after TAI following the GPG protocol, probably due to a decreased incidence of premature estrus and incomplete luteal regression.  相似文献   

10.
Prevention of high plasma progesterone concentrations in the early postpartum period may improve fertility. Our objective was to determine whether a Deslorelin implant (DESL; 2100 microg, s.c.) would reduce secretion of LH and alter follicle dynamics, plasma concentrations of progesterone, estradiol and PGF2alpha metabolite (PGFM) in postpartum dairy cows. Cows received DESL on Day 7 postpartum (Day 7, n=8) or were untreated (Control, n=9). All cows were injected with GnRH (100 microg, i.m.) on Day 14 to assess LH response. A protocol for synchronization of ovulation with timed AI was initiated on Day 60 (GnRH [Day 60], CIDR [Day 60 to Day 67], PGF2alpha [Day 67, 25 mg and Day 68, 15 mg], GnRH [Day 69] , AI [Day 70]). The LH response to injection of GnRH on Day 14 was blocked in animals treated with DESL. Numbers of Class 1 (<6 mm) follicles were unaffected (P > 0.05) whereas numbers of Class 2 (6 to 9 mm) (P < 0.01) and Class 3 (>9 mm) follicles were less (P < 0.01) in DESL cows between Day 7 and Day 21. From Day 22 to Day 60, DESL-treated cows had more of Class 1 follicles and less Class 2 (P < 0.01) and Class 3 (P < 0.01) follicles, and lower plasma concentrations of progesterone and estradiol (P < 0.01). Concentrations of PGFM between Day 7 and Day 42 were not affected by treatment (P > 0.05). All cows ovulated in response to GnRH on Day 69. Subsequent luteal phase increases in plasma progesterone concentrations (Day 70 to Day 84) did not differ. The use of the DESL implant associated with PGF2alpha given 14 days later suppressed ovarian activity and caused plasma progesterone concentrations to remain < 1 ng/mL between Day 22 and Day 51. The DESL implant did not affect milk production.  相似文献   

11.
A GnRH analogue was used to synchronize ovarian follicular development prior to an injection of PGF(2alpha) for the synchronization of estrus in lactating Holstein cows. On Day 12 (estrus = Day 0) of the experimental cycle, cows (n = 8) were injected with 8 mug Buserelin (BUS group), followed by 25 mg PGF(2alpha) 7 d later (Day 19). Control cows (n = 7) received PGF(2alpha) on Day 12 (PGF group). Ovaries were scanned daily via ultrasonography, and plasma progesterone and estradiol concentrations were determined. Sizes of all visible follicles were recorded. Follicles were classified as small (3 to 5 mm), medium (6 to 9 mm), or large (>/= 10 mm). Between Days 12 and 16 of the cycle, the number of large follicles in PGF cows remained unchanged (1.2), whereas in the BUS group, the number of large follicles decreased from 1.3 on Day 12 to 0.5 on Day 15. Only 4 of 7 PGF cows ovulated a second-wave dominant follicle. In the BUS group, 7 of 8 cows ovulated a GnRH analogue induced dominant follicle that was first identified on Day 15. During the follicular phase (last 5 d prior to estrus), plasma progesterone declined in association with CL regression in both groups, and estradiol concentrations increased, reaching higher (P<.0.05) preovulatory peak concentration in BUS cows than in PGF cows (14.0 +/- 1.0 vs 10.4 +/- 1.1 pg/ml). The number of medium-size follicles was smaller and the number of small-size follicles tended to be higher in BUS cows than in the PGF-treated group. On the day of estrus, the size of the ovulatory follicle (16.1 vs 13.3 mm) and the size difference between the ovulatory and second largest follicle (11.4 vs 6.2 mm) were both larger in BUS cows than in PGF-treated cows, suggesting a more potent dominance effect of the ovulatory follicle in the BUS cows. This study suggests that a GnRH analogue can alter follicular development prior to synchronization of estrus with an injection of PGF(2alpha) in lactating dairy cows.  相似文献   

12.
The aim of this study was to determine, for goats, the effects of daily doses of GnRH antagonist on ovarian endocrine and follicular function. Ten does were given 45 mg FGA intravaginal sponges and then five were treated with daily injections of 0.5mg of the GnRH antagonist Teverelix for 11 days from 2 days after the day of sponge insertion, while five does acted as controls. Pituitary activity was monitored by measuring plasma FSH and LH daily from 2 days before the first GnRH injection to Day 12. Follicular activity was determined by ultrasonographic monitoring and by assessing plasma inhibin A levels during the same period. In treated does, the FSH levels decreased linearly (0.8 +/- 0.1 ng/ml to 0.5 +/- 0.1 ng/ml, P < 0.01) and remained lower than the mean concentration in control goats (0.8 +/- 0.1 ng/ml, P < 0.005). LH levels were also lower during the period of antagonist treatment (0.6 +/- 0.2 ng/ml versus 0.4 +/- 0.1 ng/ml, P < 0.0005). During GnRH antagonist treatment, there was a significant decrease in the number of large follicles (> or = 6 mm) from Day 3 of treatment (1.2 +/- 0.6, P < 0.0001), with no large follicles from Day 9. The number of medium follicles (4-5 mm in size) also decrease during the period of treatment (4.2 +/- 0.7 to 1.0 +/- 0.6, P < 0.0001), leading to a significant decrease in inhibin A levels when compared to the control (143.7 +/- 31.3 pg/ml versus 65.2 +/- 19.1 pg/ml, P < 0.00005). In contrast, the number of small follicles (2-3 mm) increased in treated goats from Day 4 of treatment (9.6 +/- 2.9 to 20.2 +/- 6.3, P < 0.005). Such data indicate that GnRH antagonist reduced plasma levels of FSH and LH with suppression of the growth of large dominant ovarian follicles and a two-fold increase in number of smaller follicles. The results confirm that GnRH antagonist treatment can be used in goats to control gonadotrophin secretion and ovarian follicle growth in superovulatory regimes.  相似文献   

13.
An experiment was conducted to evaluate the role of the dominant follicle (DF) of the first wave in regulating follicular and ovulatory responses and embryonic yield to a superovulation regime with FSH-P. Twenty normally cycling Holstein-Freisian heifers (n = 20) were synchronized with GnRH and pgf(2alpha) and randomly assigned to a control or a treated group (n = 10 each). Treated heifers had the first wave dominant follicle removed via transvaginal, ultrasound-guided aspiration on Day 6 after a synchronized estrus. All heifers received a total of 32 mg FSH-P given in decreasing doses at 12 h intervals from Day 8 to Day 11 plus two injections of pgf(2alpha) (35 mg and 20 mg, respectively) on Day 10. Heifers were inseminated at 6 h and 16 h after onset of estrus. Follicular dynamics were examined daily by transrectal ultrasonography from Day 4 to estrus, once following ovulation, and at the time of embryo collection on Day 7. Blood samples were collected daily during the superovulatory treatment and at embryo collection. Follicles were classified as: small, /= 10 mm. Aspiration of the dominant follicle was associated with an immediate decrease in large follicles, and a linear rate increase in small follicles from Day 4 to Day 8 just prior to the FSH-P injections, (treatment > control: +0.33 vs. -0.22, number of small follicles per day; P < 0.10). During FSH-P injections, the increase in number of medium follicles was greater (P < 0.01) for treatment on Day 9-11 (treatment > control: Day 9, 3.2 > 1.8; Day 10, 9.2 > 4.7; Day 11, 13.1 > 8.3; +/- 0.56). Number of large follicles was greater in treatment at Day 11 (5.12 > 1.4 +/-0.21; P < 0.01). Mean number of induced ovulatory follicles (difference between number of follicles at estrus and Day 2 after estrus) was greater in treatment (13.4 > 6.3 +/- 1.82; P < 0.01). Plasma estradiol at Day 11 during FSH-P treatment was greater in treatment (32.5 > 15.8 +/- 2.6; P < 0.01). Plasma progesterone at embryo flushing (Day 7 after ovulation) was greater in treatment (7.4 > 4.9; P < 0.02); technical difficulties at embryo recovery reduced sensitivity of embryonic measurements. No changes in the distribution of unfertilized oocytes and embryo developmental stages were detected between control and treatment groups. Presence of dominant follicle of the first wave inhibited intraovarian follicular responses to exogenous FSH.  相似文献   

14.
Results of two experiments are described. In the first experiment, forty-one mixed-breed goats (does) with unknown gestation lengths were given 10 mg prostaglandin F(2alpha) (PGF(2alpha)) (2 doses of 5 mg each, 24 h apart) i.m. Blood samples were obtained before each treatment with PGF(2alpha) by jugular venipuncture, and plasma progesterone (P(4)) concentrations were determined by a nonextraction solid-phase radioimmunoassay. P(4) concentrations (ng/ml) were significantly decreased (15.47 vs 1.55, P<0.005) 24 h after the first injection of PGF(2alpha). A total of 63 fetuses was collected within 46.5 h following the first injection. Mean (+/- SE) crownrump lengths and body weights of 62 fetuses were 21.46 +/- 0.29 centimeters (cm) and 575.00 +/- 20.60 g, respectively. Based on these findings, the mean gestation length of these does was estimated to be 86.96 +/- 0.74 d. Thirty-one does retained their placenta for 12 to 72 h and were treated with a single injection of 5 mg PGF(2alpha) and 800 mg oxytetracycline i.m. Placental expulsion in all does occurred within 24 h posttreatment. The results of this study suggest that two doses of 5 mg PGF(2alpha) intramuscularly (i.m.) 24 h apart is an effective abortifacient at about 3 mo of pregnancy in does. In the second experiment, 38 does from the first experiment were divided in two groups of 19 each on Day 13 postabortion. Group A (treated) was given 50 ug GnRH i.m. while Group B (control) received 1 ml 0.9% saline i.m. Blood samples were obtained prior to treatment and on Day 23 postabortion and assayed for P(4) concentrations. There was no significant difference (P>0.10) in P(4) concentrations of samples obtained pre- and post-GnRH treatment. However, 14 of 19 and 12 of 19 in Groups A and B, respectively, exhibited estrus within 52 days following abortion. Twenty-six does were bred naturally and 17 became pregnant.  相似文献   

15.
A previous study showed that noncyclic dairy cows treated with 10 microg of GnRH and a progesterone-releasing CIDR insert on Day 0, 25 mg of PGF2alpha and CIDR removal on Day 7, followed by 1 mg estradiol benzoate on Day 9 for those cows that still had not shown estrus (CGPE program) had higher conception rate (47% vs. 29%) than cows treated only with CIDR and estradiol benzoate as above (CE program). This study was to investigate the mechanisms by which the CGPE program improved conception rate compared with the CE program. Sixteen noncyclic Holstein-Friesian cows were randomly assigned to 2 groups balanced for the size and growth pattern of the dominant follicles, which were determined by ultrasonography over a 3-d period. One group received the above CGPE treatment, and the other group received the CE treatment. Follicular and luteal development were monitored by daily ultrasonography. Blood samples were collected daily from Day -2 to Day 11, and thereafter milk samples were collected thrice weekly for a further 24 d. Blood and milk samples were analyzed for progesterone. The GnRH treatment induced ovulation in 7 of 8 cows, resulting in elevated (P<0.05) progesterone concentrations between Days 4 and 7 for cows in the CGPE group. All induced CL underwent luteolysis by 24 h after PGF2alpha treatment. Within 5 d of CIDR removal, 7 of 8 cows in both the CE and CGPE groups ovulated. The interval from emergence of the ovulatory follicle to ovulation was similar (P=0.32) but less (P<0.05) variable for the CGPE group (9.0+/-0.3 d) compared with the CE group (10.3+/-1.2 d). Progesterone concentration in milk samples was similar between the two groups up to 10 d after ovulation. In summary, the GnRH treatment induced ovulation or turnover of dominant follicles, induced a synchronized initiation of a new follicular wave, and increased the progesterone concentration from 4 d after treatment. These could be the reasons for the increased conception rate of cows treated with the CGPE program.  相似文献   

16.
This study examined the effect of estradiol benzoate (EB) plus progesterone (P4) as compared with GnRH on follicular wave emergence and follicular development, and synchrony of ovulation and pregnancy rates following a second injection of GnRH in a controlled internal drug release (CIDR)-based timed AI (TAI) protocol in lactating dairy cows with follicular cysts. Lactating dairy cows diagnosed with follicular cysts received a CIDR device, with an injection of 2mg EB plus 50mg P4 (EB+P4 group) or with an injection of 100 microg GnRH (GnRH group) at the beginning of the experiment (day 0). Thereafter, all received PGF(2alpha) at the time of CIDR removal on day 7, GnRH on day 9, and TAI 16 h later. Follicular wave emergence occurred within 7 days in 12/15 EB plus P4-treated and 14/15 GnRH-treated cows (P>0.05). The interval to wave emergence was longer in the EB+P4 group (4.8+/-0.4 days) than in the GnRH group (2.0+/-0.2 days). The mean diameters of preovulatory follicles and the proportion of cows with preovulatory follicles greater than 12 mm on day 9 did not differ between groups (P>0.05). The proportion of cows with synchronized ovulations by 40 h after the GnRH injection on day 11 and pregnancy rates to TAI did not differ between the EB+P4 (13/15 and 36.7%) and the GnRH (14/15 and 53.3%) groups, respectively. Results suggest that a single treatment with EB plus P4 as compared with GnRH simultaneously with CIDR insertion in lactating dairy cows with follicular cysts will result in relatively asynchronous emergence of a new follicular wave, but subsequently similar sizes of preovulatory follicles and synchronous ovulation, resulting in similar pregnancy rates to TAI.  相似文献   

17.
Luteal function and blastocyst development were compared in ewes treated with GnRH (100 mug) on Day 1 (Day 0 = day of estrus) or in ewes previously induced into estrus with PGF(2)alpha. In Experiment 1, the duration of estrous cycles of ewes previously treated with PGF(2)alpha were longer (P<0.06) than those that received PGF(2)alpha plus GnRH, GnRH alone, or remained untreated (control) ewes. Progesterone concentrations were lower (P<0.07) on Day 1 and higher (P<0.01) on Days 16 and 17 of the estrous cycles following PGF(2)alpha treatment relative to those of the natural (control) cycles. In Experiment 2, blastocysts of ewes treated with PGF(2)alpha were less developed (P<0.06) by Day 13 of pregnancy than those of the control ewes. The GnRH treatment did not influence any of these characteristics. Treatment with PGF(2)alpha delayed luteal formation during the subsequent estrous cycle, increased the duration of the estrous cycle and slowed the rate of blastocyst development relative to GnRH-treated and untreated ewes.  相似文献   

18.
The objective of this study was to evaluate ovarian function after inducing ovulation with a deslorelin implant in nonlactating dairy cows and heifers. Cattle received GnRH on Day -9, and PGF2alpha on Day -2. On Day 0, in Experiment 1, cows received either 100 microg GnRH (Control), a 750 microg (DESLORELIN 750) or 1000 microg (DESLORELIN 1000) deslorelin implant. On Day 0, in Experiment 2, cows received 100 microg of GnRH or a 450 microg (DESLORELIN 450) deslorelin implant. In Experiments 1 and 2, cows received PGF2alpha on Day 16. Ultrasonography and blood sampling for plasma progesterone (P4) were used to monitor ovarian activity. On Day 0, in Experiment 3, heifers received either 100 microg of GnRH or 750 microg (DESLORELIN 750) deslorelin implant. On Day 16, all heifers received PGF2alpha. Blood samples were collected on Days 7, 13 and 16. In Experiments 1-3, deslorelin implants did not elevate plasma concentrations of P4 in a systematic manner during the late luteal phase. In Experiments 1 and 2, deslorelin implants decreased the size of the largest follicle and the number of Class II and III follicles. In Experiments 1 and 2, deslorelin-treated cows failed to ovulate by Day 28. In conclusion, deslorelin implants induced ovulation, stimulated development of a normal CL, and delayed follicular growth during the subsequent diestrus period. For future applications, the dose of the deslorelin implant will have to be adjusted, and if used for timed-inseminations, nonpregnant cows will have to be resynchronized to minimize delayed returns to estrus and ovulation.  相似文献   

19.
A field experiment was conducted to determine the influence of follicular alteration on superovulatory responses. Ultrasonography was performed once daily over 4 d prior to gonadotropin treatment (Day 0), on the day of estrus during superstimulation, and on the day of embryo collection to monitor follicular development. Animals were superstimulated between Days 8 and 12 of the estrous cycle. Follicular status was altered 2 d prior to initiation of superstimulation (Day 0) with GnRH (Cystorelin, 200 micrograms i.m.) administered with (GnRH-puncture group, n = 31) or without (GnRH-no puncture group, n = 52) concomitant removal of the largest follicle by follicular aspiration. Responses were compared with those of an untreated control group superovulated 8 to 12 d after estrus (n = 102). The proportion of animals with a high number (> or = 2) of large follicles (> = 7 mm) on Day 0 was lower (P < 0.001) in the 2 GnRH-treated groups than in the control group, while the increase in the number of medium size follicles (4 to 6 mm) on Day 0 was greater (P < 0.02) in the GnRH-puncture group. During superstimulation, the proportion of superovulatory cycles with a high follicular (> or = 10 follicles) response was similar in the control and GnRH-no puncture groups. Within the GnRH-treated animals, follicular and ovulatory responses were greater in the GnRH-puncture than in the GnRH-no puncture group (P < 0.001 to P < 0.02). Despite these changes in follicular and ovulatory responses, however, the mean number of embryos produced did not differ (P < 0.1) among treatments (4.3 +/- 0.4, 3.7 +/- 0.7, and 5.4 +/- 0.8 in control, GnRH-no puncture, and GnRH-puncture groups, respectively). This was due primarily to an increase in the mean numbers of unfertilized ova (P < 0.005) and in degenerated embryos (P < 0.06) in the GnRH-puncture group. Results indicate that the beneficial effects of treatment with GnRH and follicular puncture 2 d prior to superstimulation on follicular and ovulatory responses were limited by an increase in the number of unfertilized ova and degenerated embryos.  相似文献   

20.
Kim IH  Son DS  Yeon SH  Choi SH  Park SB  Ryu IS  Suh GH  Lee DW  Lee CS  Lee HJ  Yoon JT 《Theriogenology》2001,55(4):937-945
This study was to investigate whether removing the dominant follicle 48 h before superstimulation influences follicular growth, ovulation and embryo production in Holstein cows. After synchronization, ovaries were scanned to assess the presence of a dominant follicle by ultrasonography with a real-time linear scanning ultrasound system on Days 4, 6 and 8 of the estrus cycle (Day 0 = day of estrus). Twenty-six Holstein cows with a dominant follicle were divided into 2 groups in which the dominant follicle was either removed (DFR group, n=13) by ultrasound-guided follicular aspiration or left intact (control group, n=13) on Day 8 of the estrus cycle. Superovulation treatment was initiated on Day 10. All donors were superovulated with injections of porcine FSH (Folltropin) twice daily with constant doses (total: 400 mg) over 4 d. On the 6th and 7th injections of Folltropin, 30 mg and 15 mg of PGF2alpha (Lutalyse) were given. Donors were inseminated twice at 12 h and 24 h after the onset of estrus. Embryos were recovered on Day 6 or 7 after AI. During superstimulation, the number of follicles 2 to 5 mm (small), 6 to 9 mm (medium) and > or = 10 mm (large) was determined by ultrasonography on a daily basis. At embryo recovery, the number of corpora lutea (CL) was also determined by ultrasonography and blood samples were collected for analysis of progesterone concentration. Follicular growth during superstimulation was earlier in the DFR group than in the control group. The number of medium and large follicles was greater (P < 0.01) in the DFR group than in the control group on Days 1 to 2 and Days 3 to 4 of superstimulation, respectively. The numbers of CL (9.6+/-1.1 vs 6.1+/-0.9) and progesterone concentration (30.9+/-5.4 vs 18.6+/-3.5 ng/mL) were greater (P < 0.05) in the DFR group than in the control group, respectively. The numbers of total ova (7.7+/-1.3 vs 3.9+/-1.0) and transferable embryos (4.6+/-0.9 vs 2.3+/-0.8) were also greater (P < 0.05) in the DFR group than in the control group, respectively. It is concluded that the removal of the dominant follicle 48 h before superstimulation promoted follicular growth, and increased ovulation and embryo production in Holstein cows.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号