首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
H1 histones bind to linker DNA. H1t (H1f6), a testis‐specific linker histone variant, is present in pachytene spermatocytes and spermatids. The expression of H1t histone coincides with the acquisition of metaphase I competence in pachytene spermatocytes. Here we report the generation of H1t‐GFP transgenic mice. The H1t‐GFP (H1 histone testis‐green fluorescence protein) fusion protein expression recapitulates the endogenous H1t expression pattern. This protein appears first in mid pachytene spermatocytes in stage V seminiferous tubules, persists in round spermatids and elongating spermatids, but is absent in elongated spermatids. The strong green fluorescence signal, due to the high abundance of H1t‐GFP, is maintained in spermatocytes after induction towards metaphase I through treatment with okadaic acid. Therefore, H1t‐GFP can be used as a visual marker for monitoring the progression of meiosis in vitro and in vivo, as well as fluorescence‐activated cell sorting (FACS) sorting of germ cells.  相似文献   

11.
12.
13.
14.
15.
16.
Testis-specific transcriptional control   总被引:9,自引:0,他引:9  
Grimes SR 《Gene》2004,343(1):11-22
  相似文献   

17.
In this study, histone H4 was shown to be extensively hyperacetylated in mid-spermatids of the rat during the time period when the entire complement of histones is replaced by basic spermatidal transition proteins. The degree of hyperacetylation of histone H4 was minimal in pachytene spermatocytes. Therefore, the hyperacetylation appears to be directly involved in the histone replacement process late in spermatogenesis in mid-spermatids. In order to investigate further the possible effects of histone H4 hyperacetylation and the other dramatic changes in the nuclear proteins on the structure of chromatin in germinal cells, we examined the thermal denaturation profiles of chromatin from various purified germinal cell types. Our analyses revealed that chromatins from pachytene spermatocytes and early spermatids have similar thermal denaturation profiles, with their major thermal transitions slightly lower than those for rat liver. However, the major thermal transitions for chromatin from mid-spermatids are much lower than those from pachytene spermatocytes and early-spermatids. We propose that the greatly lowered thermal stability of mid-spermatid chromatin represents a dramatic relaxation or decondensation of the chromatin in this cell type in preparation for the replacement of histone by the basic spermatidal transition proteins and that the decondensation is due in large part to the extensive histones hyperacetylation which occurs in these cells.  相似文献   

18.
19.
Ca(2+)/calmodulin-dependent protein kinase IV and calspermin are two proteins encoded by the Camk4 gene. Both are highly expressed in the testis, where in situ hybridization studies in rat testes have demonstrated that CaMKIV mRNA is localized to pachytene spermatocytes, while calspermin mRNA is restricted to spermatids. We have examined the expression patterns of both CaMKIV and calspermin in mouse testis and unexpectedly find that CaMKIV is expressed in spermatogonia and spermatids but excluded from spermatocytes, while calspermin is found only in spermatids. CaMKIV and calspermin expression in the testis are stage-dependent and appear to be coordinately regulated. In germ cells, we find that CaMKIV is associated with the chromatin. We further demonstrate that a fraction of CaMKIV in spermatids is hyperphosphorylated and specifically localized to the nuclear matrix. These novel findings may implicate CaMKIV in chromatin remodeling during nuclear condensation of spermatids.  相似文献   

20.
The mouse testis contains two isotypes of cytochrome c, which differ in 14 of 104 amino acids: cytochrome cs is present in all somatic tissues and cytochrome cT is testis specific. The regulation of cytochrome cS and cytochrome cT gene expression during spermatogenesis was examined by Northern blot analysis using specific cDNA probes. Total RNA was isolated from adult tissues, enriched germinal cell populations and polysomal gradients of total testis and isolated germinal cells. Three cytochrome cS mRNAs were detected averaging 1.3 kb, 1.1 kb and 0.7 kb in all tissues examined; an additional 1.7 kb mRNA was observed in testis. Isolated germinal cells through prepuberal pachytene spermatocytes contained only the three smaller mRNAs; the 1.7 kb mRNA was enriched in round spermatids. All three smaller cytochrome cS mRNAs were present on polysomes; the 1.7 kb mRNA was non-polysomal. Cytochrome cT mRNA of 0.6-0.9 kb was detected in testis; mRNA levels were low in early spermatogonia and peaked in prepuberal pachytene spermatocytes. In adult pachytene spermatocytes, a subset of the cytochrome cT mRNAs, 0.7-0.9 kb, was present on polysomes; a shortened size class, 0.6-0.75 kb, was non-polysomal. A distinct, primarily non-polysomal, cytochrome cT 0.7 kb mRNA was present in round spermatids. These results indicate that (1) both cytochrome cS and cytochrome cT mRNAs are present in early meiotic cells, (2) a 1.7 kb cytochrome cS mRNA is post-meiotically expressed and non-polysomal and (3) cytochrome cS and cytochrome cT mRNAs are each developmentally and translationally regulated during spermatogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号