首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Seasonal reproduction in some Arctic Laminariales coincides with increased UV-B radiation due to stratospheric ozone depletion and relatively high water temperatures during polar spring. To find out the capacity to cope with different spectral irradiance, the kinetics of photosynthetic recovery was investigated in zoospores of four Arctic species of the order Laminariales, the kelps Saccorhiza dermatodea, Alaria esculenta, Laminaria digitata, and Laminaria saccharina. The physiology of light harvesting, changes in photosynthetic efficiency and kinetics of photosynthetic recovery were measured by in vivo fluorescence changes of Photosystem II (PSII). Saturation irradiance of freshly released spores showed minimal I k values (photon fluence rate where initial slope intersects horizontal asymptote of the curve) values ranging from 13 to 18 μmol photons m−2 s−1 among species collected at different depths, confirming that spores are low-light adapted. Exposure to different radiation spectra consisting of photosynthetically active radiation (PAR; 400–700 nm), PAR+UV-A radiation (UV-A; 320–400 nm), and PAR+ UV-A+UV-B radiation (UV-B; 280–320 nm) showed that the cumulative effects of increasing PAR fluence and the additional effect of UV-A and UV-B radiations on photoinhibition of photosynthesis are species specific. After long exposures, Laminaria saccharina was more sensitive to the different light treatments than the other three species investigated. Kinetics of recovery in zoospores showed a fast phase in S. dermatodea, which indicates a reduction of the photoprotective process while a slow phase in L. saccharina indicates recovery from severe photodamage. This first attempt to study photoinhibition and kinetics of recovery in zoospores showed that zoospores are the stage in the life history of seaweeds most susceptible to light stress and that ultraviolet radiation (UVR) effectively delays photosynthetic recovery. The viability of spores is important on the recruitment of the gametophytic and sporophytic life stages. The impact of UVR on the zoospores is related to the vertical depth distribution of the large sporophytes in the field.  相似文献   

2.
The UV-absorbing mycosporine-like amino acids (MAAs) are hypothesized to protect organisms against harmful UV radiation (UVR). Since the physiology and metabolism of these compounds are unknown, the induction and kinetics of MAA biosynthesis by various natural radiation conditions were investigated in the marine red alga Chondrus crispus collected from Helgoland, Germany. Three photosynthetically active radiation (PAR, 400–700 nm) treatments without UVR and three UV-A/B (290–400 nm) treatments without PAR were given. Chondrus crispus collected from 4–6 m depth contained only traces of the MAA palythine. After 24 h exposure to 100% ambient PAR, traces of three additional MAAs, shinorine, palythinol and palythene, were detected, and their concentrations increased strongly during a one-week exposure to all PAR treatments. The concentration of all MAAs varied directly with PAR dose, with palythine and shinorine being four- to sevenfold higher than palythinol and palythene. Likewise, naturally high doses of both UV-A and UV-B resulted in a strong accumulation of all MAAs, in particular shinorine. While shinorine accumulation was much more stimulated by UVR, the content of all other MAAs was more affected by high PAR, indicating an MAA-specific induction triggered by UVR or PAR. Received: 24 September 1997 / Accepted: 17 December 1997  相似文献   

3.
The sensitivity of different life stages of the eulittoral green alga Urospora penicilliformis (Roth) Aresch. to ultraviolet radiation (UVR) was examined in the laboratory. Gametophytic filaments and propagules (zoospores and gametes) released from filaments were separately exposed to different fluence of radiation treatments consisting of PAR (P = 400–700 nm), PAR + ultraviolet A (UVA) (PA, UVA = 320–400 nm), and PAR + UVA + ultraviolet B (UVB) (PAB, UVB = 280–320 nm). Photophysiological indices (ETRmax, Ek, and α) derived from rapid light curves were measured in controls, while photosynthetic efficiency and amount of DNA lesions in terms of cyclobutane pyrimidine dimers (CPDs) were measured after exposure to radiation treatments and after recovery in low PAR; pigments of propagules were quantified after exposure treatment only. The photosynthetic conversion efficiency (α) and photosynthetic capacity (rETRmax) were higher in gametophytes compared with the propagules. The propagules were slightly more sensitive to UVB‐induced DNA damage; however, both life stages of the eulittoral inhabiting turf alga were not severely affected by the negative impacts of UVR. Exposure to a maximum of 8 h UVR caused mild effects on the photochemical efficiency of PSII and induced minimal DNA lesions in both the gametophytes and propagules. Pigment concentrations were not significantly different between PAR‐exposed and PAR + UVR–exposed propagules. Our data showed that U. penicilliformis from the Antarctic is rather insensitive to the applied UVR. This amphi‐equatorial species possesses different protective mechanisms that can cope with high UVR in cold‐temperate waters of both hemispheres and in polar regions under conditions of increasing UVR as a consequence of further reduction of stratospheric ozone.  相似文献   

4.
Stratospheric ozone depletion leads to enhanced UV-B radiation. Therefore, the capacity of reproductive cells to cope with different spectral irradiance was investigated in the laboratory. Zoospores of the upper sublittoral kelp Saccorhiza dermatodea were exposed to varying fluence of spectral irradiance consisting of photosynthetically active radiation (PAR, 400-700 nm; =P), PAR+UV-A radiation (UV-A, 320-400 nm; =PA), and PAR+UV-A+UV-B radiation (UV-B, 280-320 nm; =PAB). Structural changes, localization of phlorotannin-containing physodes, accumulation of UV-absorbing phlorotannins, and physiological responses of zoospores were measured after exposure treatments as well as after 2-6 d recovery in dim white light (8 mumol photon m(-2) s(-1)). Physodes increased in size under PAB treatment. Extrusion of phlorotannins into the medium and accumulation of physodes was induced not only under UVR treatment but also under PAR. UV-B radiation caused photodestruction indicated by a loss of pigmentation. Photosynthetic efficiency of spores was photoinhibited after 8 h exposure to 22 and 30 mumol photon m(-2) s(-1) of PAR, while supplement of UVR had a significant additional effect on photoinhibition. A relatively low recovery of photosystem II function was observed after 2 d recovery in spores exposed to 1.7 x 10(4) J m(-2) of UV-B, with a germination rate of only 49% of P treatment after 6 d recovery. The amount of UV-B-induced DNA damage measured as cyclobutane-pyrimidine dimers (CPDs) increased with the biologically effective UV-B dose (BED(DNA)). Significant removal of CPDs indicating repair of DNA damage was observed after 2 d in low white light. The protective function of phlorotannins has restricted efficiency for a single cell. Within a plume of zoospores, however, each cell can buffer each other and protect the lower layer of spores from excessive radiation. Exudation of phlorotannins into the water can also reduce the impact of UV-B radiation on UV-sensitive spores. The results of this study showed that the impact of UVR on reproductive cells can be mitigated by protective and repair mechanisms.  相似文献   

5.
1. Lake Titicaca is a large, high altitude (3810 m a.s.l.) tropical lake (16°S, 68°W) that lies on the border of Bolivia and Perú, receiving high fluxes of ultraviolet radiation (UVR) throughout the year. Our studies were conducted during September of 1997 with the main objective of studying the impact of solar UVR upon phytoplankton photosynthesis.
2. Water samples were taken daily and incubated in situ (down to 14 m depth) under three radiation treatments to study the relative responses to PAR (Photosynthetic Available Radiation, 400–700 nm), UV-A (320–400 nm), and UV-B (280–320 nm) radiation.
3. Photosynthetic inhibition by UVR in surface waters was about 80%, with UV-A accounting for 60% and UV-B for 20%; the inhibition by high levels of PAR was less than 20%. The inhibition due to UVR decreased with depth so that there were no significant differences between treatments at 8.5 m depth.
4. The amount of inhibition per unit energy received by phytoplankton indicates that even though there was a significant inhibition of photosynthesis due to UVR, species in Lake Titicaca seem to be better adapted than species in high latitude environments.
5. The cellular concentration of UV-absorbing compounds, a possible mechanism of photoadaptation, was low in phytoplanktonic species. However, they were abundant in zooplankton, suggesting a high rate of bioaccumulation through the diet.  相似文献   

6.
To study the impact of solar UV radiation (UVR) (280 to 400 nm) on the filamentous cyanobacterium Arthrospira (Spirulina) platensis, we examined the morphological changes and photosynthetic performance using an indoor-grown strain (which had not been exposed to sunlight for decades) and an outdoor-grown strain (which had been grown under sunlight for decades) while they were cultured with three solar radiation treatments: PAB (photosynthetically active radiation [PAR] plus UVR; 280 to 700 nm), PA (PAR plus UV-A; 320 to 700 nm), and P (PAR only; 400 to 700 nm). Solar UVR broke the spiral filaments of A. platensis exposed to full solar radiation in short-term low-cell-density cultures. This breakage was observed after 2 h for the indoor strain but after 4 to 6 h for the outdoor strain. Filament breakage also occurred in the cultures exposed to PAR alone; however, the extent of breakage was less than that observed for filaments exposed to full solar radiation. The spiral filaments broke and compressed when high-cell-density cultures were exposed to full solar radiation during long-term experiments. When UV-B was screened off, the filaments initially broke, but they elongated and became loosely arranged later (i.e., there were fewer spirals per unit of filament length). When UVR was filtered out, the spiral structure hardly broke or became looser. Photosynthetic O(2) evolution in the presence of UVR was significantly suppressed in the indoor strain compared to the outdoor strain. UVR-induced inhibition increased with exposure time, and it was significantly lower in the outdoor strain. The concentration of UV-absorbing compounds was low in both strains, and there was no significant change in the amount regardless of the radiation treatment, suggesting that these compounds were not effectively used as protection against solar UVR. Self-shading, on the other hand, produced by compression of the spirals over adaptive time scales, seems to play an important role in protecting this species against deleterious UVR. Our findings suggest that the increase in UV-B irradiance due to ozone depletion not only might affect photosynthesis but also might alter the morphological development of filamentous cyanobacteria during acclimation or over adaptive time scales.  相似文献   

7.
Zacher K  Roleda MY  Hanelt D  Wiencke C 《Planta》2007,225(6):1505-1516
Ozone depletion is highest during spring and summer in Antarctica, coinciding with the seasonal reproduction of most macroalgae. Propagules are the life-stage of an alga most susceptible to environmental perturbations therefore, reproductive cells of three intertidal macroalgal species Adenocystis utricularis (Bory) Skottsberg, Monostroma hariotii Gain, and Porphyra endiviifolium (A and E Gepp) Chamberlain were exposed to photosynthetically active radiation (PAR), PAR + UV-A and PAR + UV-A + UV-B radiation in the laboratory. During 1, 2, 4, and 8 h of exposure and after 48 h of recovery, photosynthetic efficiency, and DNA damage were determined. Saturation irradiance of freshly released propagules varied between 33 and 83 μmol photons m−2 s−1 with lowest values in P. endiviifolium and highest values in M. hariotii. Exposure to 22 μmol photons m−2 s−1 PAR significantly reduced photosynthetic efficiency in P. endiviifolium and M. hariotii, but not in A. utricularis. UV radiation (UVR) further decreased the photosynthetic efficiency in all species but all propagules recovered completely after 48 h. DNA damage was minimal or not existing. Repeated exposure of A. utricularis spores to 4 h of UVR daily did not show any acclimation of photosynthesis to UVR but fully recovered after 20 h. UVR effects on photosynthesis are shown to be species-specific. Among the tested species, A. utricularis propagules were the most light adapted. Propagules obviously possess good repair and protective mechanisms. Our study indicates that the applied UV dose has no long-lasting negative effects on the propagules, a precondition for the ecological success of macroalgal species in the intertidal.  相似文献   

8.
Global warming and ozone depletion, and the resulting increase of ultraviolet radiation (UVR), have far-reaching impacts on biota, especially affecting the algae that form the basis of the food webs in aquatic ecosystems. The aim of the present study was to investigate the interactive effects of temperature and UVR by comparing the photosynthetic responses of similar taxa of Chlorella from Antarctic (Chlorella UMACC 237), temperate (Chlorella vulgaris UMACC 248) and tropical (Chlorella vulgaris UMACC 001) environments. The cultures were exposed to three different treatments: photosynthetically active radiation (PAR; 400–700 nm), PAR plus ultraviolet-A (320–400 nm) radiation (PAR + UV-A) and PAR plus UV-A and ultraviolet-B (280–320 nm) radiation (PAR + UV-A + UV-B) for one hour in incubators set at different temperatures. The Antarctic Chlorella was exposed to 4, 14 and 20°C. The temperate Chlorella was exposed to 11, 18 and 25°C while the tropical Chlorella was exposed to 24, 28 and 30°C. A pulse-amplitude modulated (PAM) fluorometer was used to assess the photosynthetic response of microalgae. Parameters such as the photoadaptive index (Ek) and light harvesting efficiency (α) were determined from rapid light curves. The damage (k) and repair (r) rates were calculated from the decrease in ΦPSIIeff over time during exposure response curves where cells were exposed to the various combinations of PAR and UVR, and fitting the data to the Kok model. The results showed that UV-A caused much lower inhibition than UV-B in photosynthesis in all Chlorella isolates. The three isolates of Chlorella from different regions showed different trends in their photosynthesis responses under the combined effects of UVR (PAR + UV-A + UV-B) and temperature. In accordance with the noted strain-specific characteristics, we can conclude that the repair (r) mechanisms at higher temperatures were not sufficient to overcome damage caused by UVR in the Antarctic Chlorella strain, suggesting negative effects of global climate change on microalgae inhabiting (circum-) polar regions. For temperate and tropical strains of Chlorella, damage from UVR was independent of temperature but the repair constant increased with increasing temperature, implying an improved ability of these strains to recover from UVR stress under global warming.  相似文献   

9.
The invasive success of Gracilaria vermiculophylla has been attributed to its wide tolerance range to different abiotic factors, but its response to ultraviolet radiation (UVR) is yet to be investigated. In the laboratory, carpospores and vegetative thalli of an Atlantic population were exposed to different radiation treatments consisting of high PAR (photosynthetically active radiation) only (P), PAR+UV-A (PA) and PAR+UV-A+UV-B (PAB). Photosynthesis of carpospores was photoinhibited under different radiation treatments but photosystem II (PSII) function was restored after 12 h under dim white light. Growth of vegetative thalli was significantly higher under radiation supplemented with UVR. Decrease in chlorophyll a (Chl a) under daily continuous 16-h exposure to 300 μmol photons m(-2) s(-1) of PAR suggests preventive accumulation of excited chlorophyll molecules within the antennae to minimize the generation of dangerous reactive oxygen species. Moreover, an increase in total carotenoids and xanthophyll cycle pigments (i.e. violaxanthin, antheraxanthin and zeaxanthin) further suggests effective photoprotection under UVR. The presence of the ketocarotenoid β-cryptoxanthin also indicates protection against UVR and oxidative stress. The initial concentration of total mycosporine-like amino acids (MAAs) in freshly-released spores increased approximately four times after 8-h laboratory radiation treatments. On the other hand, initial specific MAAs in vegetative thalli changed in composition after 7-day exposure to laboratory radiation conditions without affecting the total concentration. The above responses suggest that G. vermiculophylla have multiple UVR defense mechanisms to cope with the dynamic variation in light quantity and quality encountered in its habitat. Beside being eurytopic, the UVR photoprotective mechanisms likely contribute to the current invasive success of the species in shallow lagoons and estuaries exposed to high solar radiation.  相似文献   

10.
During spring 2002 and fall 2003 we carried out experiment in tropical southern China to determine the short- and long-term effects of solar ultraviolet radiation (UVR, 280-400 nm) on photosynthesis and growth in the unicellular red alga Porphyridium cruentum. During the experimentation, cells of P. cruentum were exposed to three radiation treatments: (a) samples exposed to PAR (400-700 nm) + UV-A (315-400 nm) + UV-B (280-315 nm)(PAB treatment); (b) samples exposed to PAR + UV-A (PA treatment) and, (c) samples exposed only to PAR (P treatment). To assess the short-term impact of UVR as a function of irradiance, we determined photosynthesis versus irradiance (Pvs.E) curves. From these curves the maximum carbon uptake rate (P(max)) and the light saturation parameter (E(k)) were obtained, with values of approximately 12.8-14.4 microg C (microg chl a)(-1) h(-1), and approximately 250 micromol m(-2) s(-1), respectively. A significant UVR effect on assimilation numbers was observed when samples were exposed at irradiances higher than E(k), with samples exposed to full solar radiation having significant less carbon fixation than those exposed only to PAR. Biological weighting functions of P. cruentum were used to evaluate the UVR impact per unit energy received by the cells; the data indicate that the species is as sensitive as natural phytoplankton from the southern China Sea; however, it is much more resistant than Antarctic assemblages. When evaluating the combined effects of mixing speed and UVR, it was seen that samples rotating fast within the upper mixed layer were less inhibited by UVR as compared to those under slow mixing or in fixed samples. Growth of P. cruentum over a week-long experiment was not affected by neither UVR nor UV-A; additionally, low photoinhibition was found at the end as compared to that at the beginning of this experiment. Our results thus indicate that, although on short-term basis P. cruentum is affected by solar UVR, it can acclimate to minimize UVR-induced effects when given enough time.  相似文献   

11.
In situ experiments were conducted at various depths in the water column to determine the effects of solar ultraviolet radiation (UVR, 280–400 nm) on photosynthesis of natural phytoplankton assemblages from the subtropical Lake La Angostura (Argentina, 26°45′ S; 65°37° W, 1980 m asl.). Water samples were taken daily and incubated under three radiation treatments: (a) Samples exposed to UVR + Photosynthetic Available Radiation (PAR) – PAB treatment (280–700 nm); (b) Samples exposed to ultraviolet-A radiation (UV-A) + PAR – PA treatment (320–700 nm), and, (c) Samples exposed to PAR only – P treatment (400–700 nm). Additionally, depth profiles were done to determine different physical (i.e., temperature and underwater radiation field) and biological characteristics of the water column – photosynthetic pigments, UV-absorbing compounds, cell concentration, deoxyribonucleic acid (DNA) and cyclobutane pyrimidine dimers (CPDs). The effects of UVR on natural phytoplankton assemblages were significant only in the first 50 cm of the water column, causing a decrease in photosynthetic rates of 36 and 20% due to UV-A and ultraviolet-B radiation (UV-B), respectively; below this depth, however, there were no significant differences between radiation treatments. Concentration of CPDs per mega base of DNA in natural phytoplankton was low, <27 CPDs MB−1 between 0 and 4 m. Data on net DNA damage, together with that on mixing conditions of the water column, suggest that mixing can favour phytoplankton by allowing cells to be transported to depths where active repair can take place. This mechanism to reduce UVR-induced DNA damage would be of great advantage for these assemblages dominated by small cyanobacteria and chlorophytes where UV-absorbing compounds that could act as sunscreens are virtually absent.  相似文献   

12.
The minor variant of the economically important cyanobacterium, Arthrospira platensis, usually appears in commercial production ponds under solar radiation. However, how sensitive the minor variant to solar UVR and whether its occurrence relates to the solar exposures are not known. We investigated the photochemical efficiency of PSII and growth rate of D-0083 strain and its minor variant in semi-continuous cultures under PAR (400–700 nm) alone, PAR + UV-A (320–400 nm) and PAR + UV-A + UV-B (280–700 nm) of solar radiation. The effective quantum yield of D-0083 at 14:00 p.m. decreased by about 86% under PAR, 87% under PAR + UV-A and 92% under PAR + UV-A + UV-B (280–315 nm), respectively. That of the minor variant was reduced by 93% under PAR and to undetectable values in the presence of UV-A or UV-A + UV-B. Diurnal change of the yield showed constant pattern during long-term (10 days) exposures, high in the early morning and late afternoon but the lowest at noontime in both strains, with the UVR-related inhibition being always higher in the variant than D-0083. During the long-term exposures, cells of D-0083 acclimated faster to solar UV radiation and showed paralleled growth rates among the treatments with or without UVR at the end of the experiment; however, growth of the minor variant was significantly reduced by UV-A and UV-B throughout the period. Comparing to the major strain D-0083, the minor variant was more sensitive to UVR in terms of its growth, quantum yield and acclimation to solar radiation.  相似文献   

13.
To study the impact of solar UV radiation (UVR) (280 to 400 nm) on the filamentous cyanobacterium Arthrospira (Spirulina) platensis, we examined the morphological changes and photosynthetic performance using an indoor-grown strain (which had not been exposed to sunlight for decades) and an outdoor-grown strain (which had been grown under sunlight for decades) while they were cultured with three solar radiation treatments: PAB (photosynthetically active radiation [PAR] plus UVR; 280 to 700 nm), PA (PAR plus UV-A; 320 to 700 nm), and P (PAR only; 400 to 700 nm). Solar UVR broke the spiral filaments of A. platensis exposed to full solar radiation in short-term low-cell-density cultures. This breakage was observed after 2 h for the indoor strain but after 4 to 6 h for the outdoor strain. Filament breakage also occurred in the cultures exposed to PAR alone; however, the extent of breakage was less than that observed for filaments exposed to full solar radiation. The spiral filaments broke and compressed when high-cell-density cultures were exposed to full solar radiation during long-term experiments. When UV-B was screened off, the filaments initially broke, but they elongated and became loosely arranged later (i.e., there were fewer spirals per unit of filament length). When UVR was filtered out, the spiral structure hardly broke or became looser. Photosynthetic O2 evolution in the presence of UVR was significantly suppressed in the indoor strain compared to the outdoor strain. UVR-induced inhibition increased with exposure time, and it was significantly lower in the outdoor strain. The concentration of UV-absorbing compounds was low in both strains, and there was no significant change in the amount regardless of the radiation treatment, suggesting that these compounds were not effectively used as protection against solar UVR. Self-shading, on the other hand, produced by compression of the spirals over adaptive time scales, seems to play an important role in protecting this species against deleterious UVR. Our findings suggest that the increase in UV-B irradiance due to ozone depletion not only might affect photosynthesis but also might alter the morphological development of filamentous cyanobacteria during acclimation or over adaptive time scales.  相似文献   

14.
Abstract: The effects of solar ultraviolet radiation (UV) on carbon uptake, oxygen evolution and motility of marine phytoplankton were investigated in coastal waters at Kristineberg Marine Research Station on the west coast of Sweden (58° 30'N, 11° 30'E). The mean irradiances at noon above the water surface during the investigation period were: photosynthetic active radiation (PAR, 400–700 nm) 1670 μmol m−2 s−1; ultraviolet-A radiation (UV-A, 320–400 nm) 35.9 W m−2 and ultraviolet-B radiation (UV-B, 280–320 nm) 1.7 W m−2. UV-B radiation was much more attenuated with depth in the water column than were PAR and UV-A radiation. UV-B radiation could not be detected at depths greater than 100–150 cm. Inhibition of carbon uptake by UV-A and UV-B in natural phytoplankton populations was greatest at 50 cm depth and the effects of UV-B were greater than those of UV-A. At depths greater than 50 cm there was almost no effect of ultraviolet radiation on carbon uptake. PAR, UV-A and UV-B decreased oxygen evolution by the dinoflagellate Prorocentrum minimum . Inhibition of oxygen evolution was greater after 4 h than 2 h but it was not possible to distinguish the negative effects of the different light regimes. The motility of P. minimum was not affected by PAR, UV-A and UV-B. The importance of exposure of phytoplankton to different light regimes before being exposed to natural solar radiation is discussed.  相似文献   

15.
Exposure of the filamentous turf green alga Urospora penicilliformis to ambient and artificial ultraviolet radiation (UVR) revealed a considerable resilient species. This explains the ability of this alga to thrive in the middle–upper intertidal zones of the Arctic sea where it is periodically exposed to environmental extremes. A transient UVR effect on photosynthesis under photosynthetically active radiation (PAR) + UV-A and PAR + UV-A + UV-B was found, but dynamic recovery of photoinhibition was observed immediately after reduction of the photon fluence rate of PAR in the absence or presence of background UVR under laboratory and natural solar radiation, respectively. Chlorophylls, carotenoids, and xanthophyll cycle pigments (violaxanthin, antheraxanthin, and zeaxanthin) concentrations were not significantly different between freshly collected samples and filaments exposed to additional laboratory radiation treatment. The ultrastructure of the U. penicilliformis gametophytes showed that the cells are well adapted to UVR. No significant ultrastructural alterations were observed in filaments exposed to different spectral irradiance in the laboratory compared to in situ acclimated specimen. The antioxidant α-tocopherol was detected in minute quantity while the search for flavonoid-like compounds was negative. Other UV screening strategies or certain genetically fixed physiological protective mechanism could be operating in this species responsible for their occurrence in higher shoreline and ecological success. Further molecular and biochemical studies are needed to elucidate the stress resistance in this turf alga. There is an indication that the extremely thick cell wall of U. penicilliformis gametophytes covered with mucilage sheath and dense layer of mineral depositions may provide a shield against unfavorable environmental conditions in general and against UVR in particular.  相似文献   

16.
阳光紫外辐射对室内水培发状念珠藻生理特性的影响   总被引:2,自引:0,他引:2  
发状念珠藻(Nostoc flagelliforme Bornet & Flahault)是一种重要的陆生经济蓝藻,室内培育出的原植体如何适应阳光辐射的问题尚需探讨。为此,作者将室内水培发菜置于阳光下培养,测定了其生长、有效光化学效率(F/Fm&#900;)和色素的变化。结果表明,较高的可见光(PAR,395-700 nm)和紫外辐射(UVR,280-395 nm)均导致水培发菜的F/Fm&#900;下降。第1天中午,PAR和UVR分别使F/Fm&#900;下降了54%和13%;傍晚,F/Fm&#900;有部分恢复。UVR对发菜适应阳光2d后的生长无负面作用。发菜在适应全阳光辐射期间,紫外吸收物质(Scytonemin和Mycosporine-like amino acids)含量不断增加,9d后,分别增加了124倍和9倍。这些紫外吸收物质的增加对发菜细胞降低光抑制,适应阳光辐射,起到了重要作用。本研究的结果可为水培发菜室外培养方法的建立提供一定的理论依据。  相似文献   

17.
The light-induced de-epoxidation of xanthophylls is an important photoprotective mechanism in plants and algae. Exposure to ultraviolet radiation (UVR, 280–400 nm) can change the extent of xanthophyll de-epoxidation, but different types of responses have been reported. The de-epoxidation of violaxanthin (V) to zeaxanthin (Z), via the intermediate antheraxanthin, during exposure to UVR and photosynthetically active radiation (PAR, 400–700 nm) was studied in the marine picoplankter Nannochloropsis gaditana (Eustigmatophyceae) Lubián. Exposures used a filtered xenon lamp, which gives PAR and UVR similar to natural proportions. Exposure to UVR plus PAR increased de-epoxidation compared with under PAR alone. In addition, de-epoxidation increased with the irradiance and with the inclusion of shorter wavelengths in the spectrum. The spectral dependence of light-induced de-epoxidation under UVR and PAR exposure was well described by a model of epoxidation state (EPS) employing a biological weighting function (BWF). This model fit measured EPS in eight spectral treatments using Schott long pass filters, with six intensities for each filter, with a R2 = 0.90. The model predicts that 56% of violaxanthin is de-epoxidated, of which UVR can induce as much as 24%. The BWF for EPS was similar in shape to the BWF for UVR inhibition of photosynthetic carbon assimilation in N. gaditana but with about 22-fold lower effectiveness. These results demonstrate a connection between the presence of de-epoxidated Z and the inhibition under UVR exposures in N. gaditana . Nevertheless, they also indicate that de-epoxidation is insufficient to prevent UVR inhibition in this species.  相似文献   

18.
In field studies conducted at the Kongsfjord (Spitsbergen), the effect of filtered natural radiation conditions (solar without ulraviolet [UV]-A+UV-B, solar without UV-B, solar) on photosynthesis and the metabolism of UV-absorbing mycosporine-like amino acids (MAAs) in the marine red alga Devaleraea ramentacea have been studied. While solar treatment without UV-A+UV-B did not affect photosynthesis during the course of a day, solar without UV-B and the full solar spectrum led to a strong inhibition. However, after offset of the various radiation conditions, all algae fully recovered. Isolates collected from different depths were exposed in the laboratory to artificial fluence rates of photosynthetic active radiation (PAR), PAR+UV-A, and PAR+UV-A+UV-B. The photosynthetic capacity was affected in accordance with the original sampling depth, i.e. shallow-water isolates were more resistant than algae from deeper waters, indicating that D. ramentacea is able to acclimate to changes in irradiance. Seven different UV-absorbing MAAs were detected in this alga, namely mycosporine-glycine, shinorine, porphyra-334, palythine, asterina-330, palythinol, and palythene. The total amount of MAAs continuously decreased with increasing collecting depth when sampled in mid June, and algae taken in late August from the same depths contained on average 30–45% higher MAA concentrations, indicating a seasonal effect as well. The presence of increasing MAA contents with decreasing depth correlated with a more insensitive photosynthetic capacity under both UV-A and UV-B treatments. Populations of D. ramentacea collected from 1 m depth, with one fully exposed to solar radiation and the other growing protected as understorey vegetation underneath the kelp Laminaria saccharina, exhibited quantitatively different MAA compositions in the apices. The exposed seaweeds contained 2.5-fold higher MAA values compared with the more shaded algae. Moreover, the exposed isolates showed a strong tissue gradient in MAAs, pigments, and proteins. The green apices contained 5-fold higher MAA contents than the red bases. Transplantation of D. ramentacea from 2 m depth to the surface induced the formation and accumulation of MAAs after 1 week exposure to the full solar spectrum. Control samples which were treated with the solar spectrum without UV-A+B or with solar without UV-B showed unchanged MAA contents, indicating a strong UV-B effect on MAA metabolism. All data well supported the suggested physiological function of MAAs as natural UV sunscreens in macroalgae.  相似文献   

19.
Aquatic organisms respond to environmental challenges such as thermal stress with the rapid induction of highly conserved polypeptides known as stress proteins or heat shock proteins (Hsps). Solar ultraviolet radiation (UVR, 280-400 nm) is an important environmental stressor in marine ecosystems. Here, we present results of experiments conducted with the marine copepod Acartia tonsa to follow the de novo protein synthesis and measure the level of constitutive and inducible isoforms of the Hsp70 gene family of stress proteins after UV exposure. Animals were collected from Tampa Bay, Florida (USA), and exposed to solar radiation (full spectrum), UV-A (320-400 nm) and PAR (400-700 nm), or PAR only, for periods of 0.5-4 h. Controls were kept in the dark. Protein synthesis was robust under all treatments when the copepods were exposed to low solar radiation intensities. Conversely, high solar radiation intensities (both UV-B and UV-A) caused an overall suppression in the protein synthesis of the copepods with no detectable induction of stress-inducible isoforms of Hsps. Immunochemical assays (western blotting) showed that UVR increased levels (3.5-4-fold increase compared to the dark control) of the constitutively expressed 70 kDa heat-shock (Hsc70) protein in A. tonsa, without indication of inducible isoform upregulation.  相似文献   

20.
To test the effects of photosynthetic active radiation (PAR, 400–700 nm) and ultraviolet radiation (UVR, 280–400 nm) on phototaxis and photosynthesis of free swimming microalgae, experiments were performed with Tetraselmis subcordiformis (Wille) Butcher under a solar simulator. In particular, we evaluated the effects of different PAR levels and radiation regimes (i.e., PAR only and PAR+UVR) on those two processes. We found that the cells preferred to move to a particular area (e.g., receiving 100 W m?2 PAR) with little photochemical suppression or inhibition of carbon fixation. Adding UV-A to high PAR decreased its swimming capacity and photosynthetic capability, and further adding UV-B led to more inhibition. The suppression of the moving capability of T. subcordiformis was reversible but the cells exposed to PAR combined with UVR needed longer time intervals to recover their motility as compared with those irradiated only with PAR. Based on the above results, we postulate that in nature, the motile capability and photosynthesis of free swimming the green microalga might be impaired by enhanced solar UVR. On the other hand, the cells can reduce the damage caused by high irradiances (and even get the optimum light level for photosynthesis) by a behavioral swimming response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号