首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
由于线粒体能敏感地感受机体内氧浓度的变化,缺氧时会影响线粒体氧化磷酸化过程中电子传递链的正常功能,抑制ATP生成,产生大量活性氧(ROS)。ROS蓄积导致氧化损伤细胞内脂质、DNA和蛋白质等大分子物质,线粒体肿胀,通透性转换孔开放,释放细胞色素C等促凋亡因子,最终严重影响细胞的存活。因此这些功能异常或受损线粒体是缺氧应激状态下细胞是否存活的危险因素,及时清除这些线粒体,对维持线粒体质量、数量及细胞稳态具有重要意义。线粒体自噬是近年来发现的细胞适应缺氧的一种防御性代谢过程,它通过自噬途径选择性清除损伤、衰老和过量产生ROS的线粒体,促进线粒体更新和循环利用,确保细胞内线粒体功能稳定,保护缺氧应激下细胞的正常生长发挥重要的调节作用。本文就线粒体自噬在缺氧条件下发生过程、参与相关蛋白及调节机制等方面研究进行了综述。  相似文献   

2.
线粒体自噬(mitochondrial autophagy, or mitophagy)指的是细胞通过自吞噬作用,降解与清除受损线粒体或者多余线粒体,其对整个线粒体网络的功能完整性和细胞存活具有重要作用。线粒体自噬过程受多种途径调控,PINK1/Parkin通路是其中的一条,其异常与多种疾病的发生密切相关,如心血管疾病、肿瘤和帕金森病等。在去极化线粒体中,磷酸酶及张力蛋白同源物(PTEN)诱导的激酶1(PTEN-induced kinase 1,PINK1)作为受损线粒体的分子传感器,触发线粒体自噬的起始信号,并将Parkin募集至线粒体;Parkin作为线粒体自噬信号的“增强子”,通过对线粒体蛋白质进一步泛素化介导自噬信号的扩大;去泛素化酶和PTEN-long蛋白参与调控该过程,并对维持线粒体稳态具有重要作用。本文主要对PINK1与Parkin蛋白质的分子结构和其介导线粒体自噬发生的分子机制,以及参与调控该途径的关键蛋白质进行综述,为进一步研究以线粒体自噬缺陷为特征的疾病治疗提供理论基础。  相似文献   

3.
宋运佳  钟晴  张蓉  孙许涛 《生命的化学》2023,(10):1547-1555
二氧化硫(sulfur dioxide,SO2)是一种具有强烈刺激性气味的酸性气体,以往常被认为是有害物质。内源性SO2是继一氧化氮(nitric oxide,NO)、一氧化碳(carbon monoxide,CO)和硫化氢(hydrogen sulfide,H2S)之后的第四种气体信号分子,可以在心血管组织中内源性生成,并且在心血管系统调节中发挥着重要的生理和病理学作用。SO2对心功能发挥剂量依赖性的负性肌力作用,其中三磷酸腺苷敏感钾通道参与其中。SO2还能减轻各种有害刺激引起的心肌损伤,在心肌缺血-再灌注损伤和心肌肥厚中发挥重要作用,作用机制与SO2的抑制炎症和抗氧化作用有关。此外,SO2还可以抑制心肌细胞的凋亡和自噬。因此,内源性SO2在维持心血管系统的稳态中发挥重要作用。本文将围绕内源性SO2生成代谢、心血管生物学效应及对内源性SO2/天冬氨酸氨基转移酶(asp...  相似文献   

4.
线粒体上与心血管疾病相关的位点突变(mtDNA突变)是心血管疾病发病的分子机制之一。线粒体的代谢与线粒体活性氧簇(mROS)、钙离子、一氧化氮、激素等信号分子相关。这些信号分子的变化,如mROS增加、ATP减少等,影响线粒体及细胞功能,进而引发相关生物应激反应,最终导致心血管相关疾病。现讨论线粒体相关的信号分子参与转录、细胞凋亡与自噬、血管紧张和炎症等活动的过程,并详细介绍线粒体相关的信号分子与心血管疾病(着重介绍高血压和冠心病)之间的关系。  相似文献   

5.
胰岛素抵抗(IR)是诱发许多代谢疾病的关键因素,包括代谢综合征、非酒精性脂肪性肝病、动脉粥样硬化和2型糖尿病(T2DM)。随着相关代谢疾病日益增多,寻找新的治疗靶点迫在眉睫。线粒体自噬是一种选择性自噬,其通过清除受损和功能失调的线粒体以维持正常线粒体功能和能量代谢。研究发现,线粒体自噬在代谢疾病中有积极作用,线粒体自噬受到各种信号通路与信号分子调控而改善代谢疾病,如AMPK/ULK1、PINK1/Parkin信号通路以及BNIP3/Nix和FUNDC1等信号分子。本文阐述了线粒体自噬在胰岛素抵抗中的作用及调控机制,综述了近年的相关研究进展。  相似文献   

6.
阿尔茨海默病(AD)已成为威胁老年人生活的一种常见病,对老年人的生活质量有着严重的影响,目前尚无有效地防治方法。最新研究发现在阿尔茨海默病的病理发生中,神经细胞伴有显著的线粒体代谢紊乱和动态变化的异常,其中动力相关蛋白1(Drp1)是参与线粒体动态变化的关键分子。深入研究阿尔茨海默病中线粒体动态变化的异常及Drp1等关键分子的作用机制,对于揭示AD的发生机制及寻找药物作用靶点具有重要意义。综述了Drp1在阿尔茨海默病中的调控机制。  相似文献   

7.
含硫气体信号分子硫化氢(hydrogen sulfide,H2S)和二氧化硫(sulfur dioxide,SO2)过去被认为是废气,但是研究先后发现这两种含硫气体能在哺乳动物体内通过含硫氨基酸代谢内源性生成。心血管系统存在H2S和SO2的生成体系,并且H2S和SO2具有重要的心血管生理学效应,包括舒张血管和心肌负性肌力作用。H2S和SO2的心血管病理生理学效应也逐渐被认识,如缓解高血压和肺动脉高压、抑制动脉粥样硬化进展、保护心肌缺血再灌注损伤和异丙肾诱导的心肌损伤。ATP敏感性钾通道、L型钙通道、c GMP、NF-κB信号通路及MAPK信号通路等都参与H2S和SO2的生物学效应。以上发现表明H2S和SO2是重要的心血管内源性气体信号分子,为阐明心血管疾病的发病机制和治疗靶点提供新的思路。  相似文献   

8.
随人口老龄化进程加速,由心脏衰老引发的各类心血管疾病已成为不可忽略的健康问题。心脏中,约95%的ATP来源于心肌线粒体,以维持心脏泵血功能。线粒体功能障碍可导致心肌能量不足,心肌细胞受损死亡或心肌衰老。因此,线粒体的功能完好对于维持心脏正常功能具有重要作用,并被认为是心脏衰老的一个关键特征。本文对心脏衰老与线粒体功能障碍进行综述,主要概述了衰老心脏的特征,衰老心肌细胞线粒体结构与功能的变化,重点阐述线粒体功能障碍导致心脏衰老的5大因素,包括线粒体形态数量的改变,线粒体DNA突变,线粒体质量控制失败,线粒体酶的改变,线粒体相关代谢产物及应激信号的变化。总结了靶向线粒体的心脏衰老治疗方式及作用机制,同时探讨了靶向年龄相关的线粒体治疗心脏衰老的现状和未来方向。  相似文献   

9.
线粒体作为细胞的重要能量来源,其数量、质量及功能的稳定对维持细胞的正常活动至关重要,且其稳态的调节依赖于线粒体质量控制系统(包括线粒体自噬、线粒体融合/分裂及线粒体生物合成等)。线粒体蛋白ATP合酶抑制因子1(ATP synthase inhibitor 1, IF1)是线粒体基质中抑制F1FoATP酶/合酶活性的天然小分子蛋白质。在细胞缺氧缺血等特殊生理情况下, IF1通过改变自身的聚合状态,抑制F1FoATP酶水解ATP的活性,从而抑制细胞内的ATP被过度水解。最近的研究证实, IF1的抑制作用是双向的,其即可抑制F1FoATP酶活性,又可抑制F1FoATP合酶活性。因此, IF1可通过靶向F1FoATP酶/合酶活性及相关信号通路,参与调节线粒体质量,维持线粒体稳态。该文综述IF1在线粒体质量控制中的相关调节机制,包括IF1维持线粒体氧化还原平衡、IF1介导线粒体自噬、IF1促进线粒体融合/分裂三条通路,以及三者之间相互作用的关系,为探索IF1在相关疾病的发生、发展及治疗中的作用提供理论参考。  相似文献   

10.
线粒体是细胞有氧呼吸的场所和能量供给中心,其数量和质量是影响细胞正常功能的主要因素。线粒体自噬作为一种选择性自噬,通过靶向清除功能障碍的线粒体以维持细胞的动态平衡。FUNDC1(FUN14 domain containing 1)是定位于线粒体外膜的一种受体蛋白,能与LC3结合而启动线粒体自噬。FUNDC1在心脏中高表达,预示其介导的线粒体自噬在维持心肌细胞稳态中扮演重要角色,其在心肌缺血/再灌注损伤中的作用也越发引起人们的重视。此外,血小板活化、心脏微血管内皮细胞损伤与心肌细胞损伤也密切相关。本文就FUNDC1在上述细胞中介导的线粒体自噬与心肌缺血/再灌注损伤进行综述。  相似文献   

11.
线粒体是真核生物细胞重要的细胞器,不仅通过氧化磷酸化为细胞生命活动提供能量,而且与细胞代谢和胁迫信号的传导、钙离子稳态、活性氧(reactive oxygen species,ROS)产生及细胞凋亡等重要生物过程密切相关。线粒体的质量控制系统对于维持细胞正常生理功能具有重要作用,其功能障碍将导致多种疾病的发生。该文综述了哺乳动物线粒体质量调控的分子机制,为通过调控线粒体质量维持机体健康、降低疾病发生提供理论依据。  相似文献   

12.
恢复心肌血流量是目前针对急性心肌梗塞的有效治疗方式,但是在心肌再灌注过程中会进一步引起心肌细胞的坏死和调亡。二氮嗪是一种线粒体ATP敏感型钾离子通道开放剂,研究证明二氮嗪预处理具有心肌保护功能。本研究主要探讨二氮嗪再灌注处理是否具有心肌细胞保护作用并探讨其分子机制。以体外培养的H9c2心肌细胞为研究对象,通过联合缺氧模拟在体心肌缺血复灌损伤,检测细胞凋亡、线粒体膜电位、细胞内活性氧及钙离子各项指标的变化。结果发现,与正常组(control)相比,缺血再灌损伤组(ischemia-reperfusion injury,IRI)细胞活性显著下降,细胞凋亡率显著升高,线粒体跨膜电位(MMP)下降,同时细胞内活性氧(reactive oxygen species,ROS)和钙离子大量爆发,二氮嗪在这一过程中通过抑制细胞内ROS的增加、保护线粒体膜电位起到心肌细胞保护作用,并且其保护作用与细胞内另一种重要的第二信使钙离子没有直接关系。  相似文献   

13.
生物体内合成的内源性气体分子:NO,CO以及H_2S,具有多种生物学功能因而被称为气体信号分子。这三种气体信号分子在许多生理与病理过程中发挥重要作用,如调节血管紧张性、炎症反应、生殖功能等。本文主要对这三种气体信号分子在女性和雌性动物生殖系统中的分布和生物学功能进行综述。  相似文献   

14.
由于线粒体在生物氧化和能量转换过程中会产生活性氧,线粒体DNA又比核DNA更容易发生突变,因此线粒体是一种比较容易受到损伤的细胞器.及时清除细胞内受损的线粒体对细胞维持正常的状态具有重要的作用.细胞主要通过自噬来清除损伤线粒体,维持细胞稳态.越来越多的研究表明,线粒体自噬是一种特异性的过程,线粒体通透性孔道通透性的改变在这个过程中起着重要的作用.线粒体自噬在维持细胞内线粒体的正常功能和基因组稳定性上起着重要作用,但是线粒体发生自噬的信号通路及其调控机制还有待进一步深入研究.  相似文献   

15.
胆汁酸作为胆固醇代谢的副产物,除具有调节脂质消化及胆固醇代谢等功能外,对心脏功能也有一定的影响。不同的胆汁酸对心脏功能的影响及作用程度不同,熊去氧胆酸对心肌细胞具有保护作用,可改善心力衰竭病人的心血管功能。牛磺胆酸及甘氨胆酸均可影响心肌细胞的收缩,使心肌细胞发生负性变时性、变力性传导作用。未成熟心肌细胞较成熟心肌细胞更易受到胆汁酸的影响。此外发现,心肌细胞上具有毒蕈碱受体(muscarine receptor,MR)及胆汁酸转运体,且胆汁酸可通过M2型毒蕈碱受体抑制心肌细胞的收缩。现就胆汁酸对心功能的影响及调节机制的研究进展从动物水平、细胞水平、分子水平做一综述。  相似文献   

16.
蒽环类化疗药物,如阿霉素是目前许多肿瘤的重要治疗手段之一,但是此类化学药物容易产生心脏毒性。阿霉素治疗引起的急性或长期的心脏毒性受到了临床极大的关注。阿霉素诱导的线粒体功能障碍是阿霉素心脏毒性作用的重要机制,进而诱导活性氧增多、心肌细胞凋亡增加和心脏功能下降。Sirtuins是蛋白质去乙酰化酶,在低能量水平状态下,可被激活并活化相关转录因子,促进能量生成、改善心脏能量代谢。此外,Sirtuins还具有拮抗细胞氧化应激损伤的作用。Sirt1和Sirt3在心肌细胞中高水平表达,通过调节心脏线粒体功能在心力衰竭中起着重要的保护作用。现总结和讨论主要的Sirtuins家族成员Sirt1和Sirt3维持心血管稳态、拮抗阿霉素心脏毒性的作用,探讨Sirt1和Sirt3活化缓解蒽环类化疗药物的心脏毒性而不影响其抗肿瘤活性的可能性。  相似文献   

17.
丝氨酸/苏氨酸激酶(serine/threonine kinase,AKT)是真核细胞中参与细胞信号转导的关键分子。目前已经证实PI3K(phosphatidylinositol-3-kinase,PI3K)/AKT信号通路在人类肿瘤、代谢紊乱、肾脏疾病以及精神障碍等疾病中发挥着重要的作用。近年来的研究还发现PI3K/AKT信号通路的激活会对心肌细胞的生长、代谢以及凋亡等活动产生影响,且该通路及其中的很多受体、激酶被证实与心力衰竭关系密切,这使该信号通路在心力衰竭的发病机制、诊断及治疗等方面的研究日益受到重视。总结PI3K/AKT的结构特点、相关信号转导机制及其与心力衰竭的关系将有利于更好地理解心力衰竭的发病机制。  相似文献   

18.
硫化氢(H2S)是继一氧化氮(NO)和一氧化碳(CO)之后第3个气体信号分子, 在植物体内参与许多重要的生理活动, 能够促进植物光合作用和有机物的积累, 缓解各种生物和非生物胁迫并促进植物生长发育。该文综述了植物体内H2S的物理化学性质、产生机制、主要生理功能和作用机制以及与其它信号分子的互作关系, 并展望了H2S信号分子的研究前景。  相似文献   

19.
朊病毒病(Prion diseases)是一类具有致死性、传染性和进行性的神经退行性疾病。研究发现朊病毒感染的细胞和动物模型中均存在着线粒体功能异常和氧化应激,这很有可能在朊病毒病发生发展中起重要作用。为探究线粒体靶向抗氧化剂对朊病毒感染是否具有一定的治疗作用,我们选出两种线粒体靶向抗氧化剂,以一定浓度作用于朊病毒感染神经细胞系,并观察细胞活性和线粒体功能的变化情况。结果显示,Mitoquinone(MitoQ)和积雪草酸(Asiatic acid,AA)这两种药物能够显著提高朊病毒感染细胞的活性,降低其活性氧(Reactive oxygen species,ROS)水平,上调ATP5β的表达水平,提示这两种药物对朊病毒感染细胞有一定的治疗作用,本研究为朊病毒病发病机制以及治疗的研究提供了新的思路。  相似文献   

20.
肥胖、代谢综合症、Ⅱ型糖尿病等代谢系统疾病,经常导致线粒体呼吸复合物中活性氧(ROS)生成增加,进而导致脂肪在心肌细胞、脂肪细胞、骨骼肌、肝细胞中积累。动物实验表明,在心肌细胞中,脂质积累会产生脂毒性,从而进一步导致细胞凋亡、心脏衰竭。因此,心肌细胞等通过高表达解偶联蛋白(UCP)来进行抗氧化应激和脂毒性适应。在肥胖的啮齿类动物和人类心脏中,UCP2和UCP3通过下调细胞程序死亡,使心肌细胞免于死亡以致心力衰竭。UCP激活后通过减少ROS的生成和细胞凋亡,影响细胞色素c和促凋亡蛋白的释放。本综述简要总结了UCP如何通过抗ROS生成及维持生物能量代谢平衡来起到保护心肌细胞、保护心脏的作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号