首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 109 毫秒
1.
PI3K/Akt信号传导通路与肿瘤   总被引:3,自引:0,他引:3  
信号转导通路的异常激活是肿瘤细胞的发生、发展重要步骤,PI3K/Akt 信号通路在人类绝大多数恶性肿瘤中被异常激活,其在肿瘤的增殖、存活、细胞运动、抵抗凋亡、血管发生和转移以及对化疗耐药、放疗抗拒中发挥了重要作用.因此,通过对PI3K/Akt 通路的研究进一步了解肿瘤的发生、发展机制,并寻求抗肿瘤药物的新靶点,本文就 PI3K/Akt 信号转导通路的结构特点、与肿瘤发生、发展的关系及其时放化疗的影响作一综述.  相似文献   

2.
肺纤维化(pulmonary fibrosis)是进行性、致命性的疾病。其致病机制不明,治疗效果差。PI3K/Akt信号通路主要与细胞的生长、增殖、分化、凋亡及血管形成等有关。近年来,随着对PI3K/Akt信号通路的深入研究,发现其活化后可激活下游中的一些因子参与肺纤维化,且与其他通路协同作用促进肺纤维化的形成。因此该通路有可能成为治疗肺纤维化的新靶点。将PI3K/Akt信号通路参与肺纤维化形成的研究进展作一综述。  相似文献   

3.
目的:通过观察电针预处理对磷脂酰肌醇3激酶/蛋白质丝氨酸苏氨酸激酶(PI3K/Akt)通路的变化以及该通路抑制剂对电针预处理的脑保护的影响,探讨电针预处理诱导脑缺血耐受的可能机制。方法:线栓法单侧阻断大脑中动脉120min,再灌注24h制备大鼠大脑局灶性缺血再灌注(I/R)模型;Western Blot检测Akt磷酸化水平的变化;侧脑室注射PI3K/Akt通路抑制剂LY294002;神经行为学评分(Garcia标准)及TTC染色检测脑梗死体积比评价脑损伤程度。结果:电针预处理使大鼠神经行为学评分增高,脑梗死体积比降低(P<0.05);可上调Akt磷酸化水平,I/R2h达高峰(P<0.05)。侧脑室注射PI3K/Akt抑制剂LY294002,拮抗电针预处理的脑保护作用(P<0.05)。结论:电针预处理增加Ak(tSer473)磷酸化水平,在缺血再灌注早期上调PI3K/Akt通路可能是诱导大鼠脑缺血耐受的产生的主要机制。  相似文献   

4.
滕艳  杨晓 《生物技术通讯》2006,17(4):621-623
转化生长因子-β(TGF-β)超家族分子通过跨膜受体和胞浆内信号转导分子Smad进行信号转导,调节细胞的增殖、分化和凋亡。许多生长因子和激素通过其受体激活磷脂酰肌醇3-激酶(PI3K),PI3K可以使肌醇环上的3位羟基磷酸化,磷酸化的肌醇脂可招募和激活许多信号通路分子,促进细胞增殖、细胞迁移和细胞存活。近几年来的研究表明这两条信号通路通过多水平的相互作用共同调节细胞增殖、分化及凋亡,在维持组织稳态的过程中发挥重要的作用。  相似文献   

5.
越来越多的研究表明,雷公藤红素可以诱导细胞凋亡,但是其对食管癌细胞的作用尚未可知.该研究通过体外实验探讨了雷公藤红素对食管癌ECA-109细胞增殖和凋亡的影响,结果显示雷公藤红素对细胞增殖的抑制有明显的剂量依赖性,且在高浓度(≥1.0 mol/L)时细胞增殖受到明显抑制.雷公藤红素处理显著增加了Bax和p53的mRNA...  相似文献   

6.
自噬是一种以胞质内出现双层膜结构包裹长寿命蛋白和细胞器的自噬体为特征的细胞“自我消化”过程,在维持细胞内稳态、发育、肿瘤发生和感染中发挥重要作用。近来,诸多研究表明,自噬作为一把“双刃剑”,对肿瘤的发生发展既有促进作用,也有抑制作用。PI3K/Akt/mTOR通路由PI3激酶(PI3K)、蛋白激酶B(PKB/Akt)和哺乳动物类雷帕霉素靶蛋白(mTOR)3个作用分子组成,是一个中心的调节机构,对肿瘤细胞的生长与增殖有促进作用,同时对自噬进行抑制。本文就PI3K/Akt/mTOR通路与自噬及肿瘤发生发展的关系作一综述。  相似文献   

7.
8.
摘要 目的:探讨阿尔茨海默病(AD)患者血清微小核糖核酸(miR)-137、miR-138表达与认知功能损害和外周血淋巴细胞磷脂酰肌醇-3激酶/蛋白激酶(PI3K/Akt)信号通路的关系。方法:选取2020年1月至2022年5月青岛大学附属医院神经内科收治的95例AD患者(AD组),根据临床痴呆评定量表(CDR)评分将患者分为轻度组(1分,35例)、中度组(2分,42例)、重度组(3分,18例),另选取63例体检健康志愿者为对照组。检测AD组、对照组血清miR-137、miR-138表达水平以及外周血淋巴细胞PI3K/Akt信号通路相关蛋白表达,采用简易智能精神状态检查量表(MMSE)、蒙特利尔认知评估量表(MoCA)评估认知功能。分析血清miR-137、miR-138与MMSE、MoCA评分以及外周血淋巴细胞PI3K、Akt、B淋巴细胞瘤-2基因(Bcl-2)、Bcl-2相关X蛋白基因(Bax)表达的相关性。结果:AD组血清miR-137水平、外周血淋巴细胞PI3K、Akt、Bcl-2蛋白表达水平及MMSE、MoCA评分低于对照组(P<0.05),血清miR-138、外周血淋巴细胞Bax蛋白表达水平高于对照组(P<0.05)。重度组血清miR-137水平、外周血淋巴细胞PI3K、Akt、Bcl-2蛋白表达水平及MMSE、MoCA评分低于中度组和轻度组(P<0.05),且中度组低于轻度组(P<0.05);重度组血清miR-138、外周血淋巴细胞Bax蛋白表达水平高于中度组和轻度组(P<0.05),且中度组高于轻度组(P<0.05)。AD患者血清miR-137水平与MMSE、MoCA评分、外周血淋巴细胞PI3K、Akt、Bcl-2蛋白表达呈正相关(P<0.05),与外周血淋巴细胞Bax蛋白表达呈负相关(P<0.05);AD患者血清miR-138水平与MMSE、MoCA评分、外周血淋巴细胞PI3K、Akt、Bcl-2蛋白表达呈负相关(P<0.05),与外周血淋巴细胞Bax蛋白表达呈正相关(P<0.05)。结论:AD患者的血清miR-137表达水平降低、miR-138表达水平增高,与认知功能障碍有关,且miR-137、miR-138可能通过调控PI3K/Akt信号通路参与AD发病过程。  相似文献   

9.
肿瘤对人类的生存危害极大,恶性肿瘤的治疗一直是世界性的难题。肿瘤血管生成是肿瘤赖以生长、转移的基础,受多种因子的调节。目前发现有多条信号网络参与调控肿瘤血管生成,PI3K/Akt是其中比较重要的一条信号传导途径,该通路与肿瘤的发生发展密切相关。本文介绍了PI3K/Akt信号通路的结构组成与活性调控,并重点阐述PI3K/Akt信号途径与肿瘤血管生成的关系。  相似文献   

10.
自噬是一种以胞质内出现双层膜结构包裹长寿命蛋白和细胞器的自噬体为特征的细胞"自我消化"过程,在维持细胞内稳态、发育、肿瘤发生和感染中发挥重要作用。近来,诸多研究表明,自噬作为一把"双刃剑",对肿瘤的发生发展既有促进作用,也有抑制作用。PI3K/Akt/m TOR通路由PI3激酶(PI3K)、蛋白激酶B(PKB/Akt)和哺乳动物类雷帕霉素靶蛋白(m TOR)3个作用分子组成,是一个中心的调节机构,对肿瘤细胞的生长与增殖有促进作用,同时对自噬进行抑制。本文就PI3K/Akt/m TOR通路与自噬及肿瘤发生发展的关系作一综述。  相似文献   

11.
This review focuses on the syntheses of PI3K/Akt/mTOR inhibitors that have been reported outside of the patent literature in the last 5 years but is largely centered on synthetic work reported in 2011 and 2012. While focused on syntheses of inhibitors, some information on in vitro and in vivo testing of compounds is also included. Many of these reported compounds are reversible, competitive adenosine triphosphate (ATP) binding inhibitors, so given the structural similarities of many of these compounds to the adenine core, this review presents recent work on inhibitors based on where the synthetic chemistry was started, that is, inhibitor syntheses which started with purines/pyrimidines are followed by inhibitor syntheses which began with pyridines, pyrazines, azoles, and triazines then moves to inhibitors which bear no structural resemblance to adenine: liphagal, wortmannin and quercetin analogs. The review then finishes with a short section on recent syntheses of phosphotidyl inositol (PI) analogs since competitive PI binding inhibitors represent an alternative to the competitive ATP binding inhibitors which have received the most attention.  相似文献   

12.
13.
The fucosyltransferase (FUT) family is the key enzymes in cell-surface antigen synthesis during various biological processes such as tumor multidrug resistance (MDR). The aim of this work was to analyze the alteration of FUTs involved in MDR in human hepatocellular carcinoma (HCC) cell lines. Using mass spectrometry (MS) analysis, the composition profiling of fucosylated N-glycans differed between drug-resistant BEL7402/5-FU (BEL/FU) cells and the sensitive line BEL7402. Further analysis of the expressional profiles of the FUT family in three pairs of parental and chemoresistant human HCC cell lines showed that FUT4, FUT6 and FUT8 were predominant expressed in MDR cell lines. The altered levels of FUT4, FUT6 and FUT8 were responsible for changed drug-resistant phenotypes of BEL7402 and BEL/FU cells both in vitro and in vivo. In addition, regulating FUT4, FUT6 or FUT8 expression markedly modulated the activity of the phosphoinositide 3 kinase (PI3K)/Akt signaling pathway and MDR-related protein 1 (MRP1) expression. Inhibition of the PI3K/Akt pathway by its specific inhibitor wortmannin, or by Akt small interfering RNA (siRNA), resulted in decreased MDR of BEL/FU cells, partly through the downregulation of MRP1. Taken together, our results suggest that FUT4-, FUT6- or FUT8-mediated MDR in human HCC is associated with the activation of the PI3K/Akt pathway and the expression of MRP1, but not of P-gp, indicating a possible novel mechanism by which the FUT family regulates MDR in human HCC.  相似文献   

14.
Tamoxifen (TAM) resistance has indicated a significant challenge during endocrine therapy for hormone-sensitive breast cancer. Thus, it is significant to elucidate the molecular events endowing TAM resistance to endocrine therapy. In this study, we found that epithelial-mesenchymal transition (EMT) was an important event to confer TAM resistance, and attenuating EMT by elevating connexin (Cx) 43 expression could reverse TAM resistance. Specifically, Cx43 overexpression improved TAM sensitivity, while Cx43 depletion facilitated TAM insensitivity by modulating EMT in T47D TAM-resistant and -sensitive cells, and transplanted xenografts. Importantly, we found a novel reciprocal regulation between Cx43 and c-Src/PI3K/Akt pathway contributing to EMT and TAM resistance in breast cancer. Moreover, we identified that Cx43 deficiency was significantly correlated with poor relapse-free survival in patients undergoing TAM treatment. Therefore, Cx43 represents a prognostic marker and an attractive target for breast cancer treatments. Therapeutic strategies designed to increase or maintain Cx43 function may be beneficial to overcome TAM resistance.  相似文献   

15.
Objective: It has been proved that lactate-4.25% dialysate could result in peritoneal fibrosis by inducing alternative activation of macrophages in our previous study, but the mechanism of high glucose-induced alternative activation has not been elucidated. This study was, therefore, to investigate the mechanism by high glucose stimuli.

Methods: In this study, Raw264.7 (murine macrophage cell line) cells were cultured and stimulated by 4.25% glucose medium, and mannitol medium was used as osmotic pressure control. Cells were harvested at 0?h, 4?h, 8?h, and 12?h to examine the expression of Arg-1, CD206, and p-Akt. After blocking PI3K by LY294002, the expression of Arg-1, CD206, and p-Akt was examined again.

Results: The expression of Arg-1 and CD206 was increased in a time-dependent manner induced by high glucose medium. On the contrary, there was mainly no Agr-1 or CD206 expressed in cells cultured in the mannitol medium with the same osmotic pressure. What’s more, Akt was phosphorylated at the eighth hour stimulated by high glucose medium, and LY294002 inhibited the expression of Arg-1 and CD206 by blocking the phosphorylation of Akt.

Conclusions: Our study indicated that high glucose rather than high osmotic pressure induced M2 phenotype via PI3K/Akt signaling pathway.  相似文献   

16.
Signaling through the PI3K/Akt/FOXO pathway plays an important role in vertebrates in protecting cells from programmed cell death. PI3K and Akt have been similarly shown to be involved in survival signaling in the invertebrate model organism Drosophila. However, it is not known whether PI3K and Akt execute this function by controlling a pro-apoptotic activity of Drosophila FOXO. In this study, we show that elevated signaling through PI3K and Akt can prevent developmentally controlled death in the salivary glands of the fruit fly. We further show that Drosophila FOXO is not required for normal salivary gland death and that the rescue of salivary gland death by PI3K occurs independent of FOXO. These results give support to the notion that FOXOs have acquired pro-apoptotic functions after separation of the vertebrate and invertebrate lineages.  相似文献   

17.
Nicorandil exerts myocardial protection through its antihypoxia and antioxidant effects. Here, we investigated whether it plays an anti‐apoptotic role in diabetic cardiomyopathy. Sprague‐Dawley rats were fed with high‐fat diet; then single intraperitoneal injection of streptozotocin was performed. Rats with fasting blood glucose (FBG) higher than 11.1 mmol/L were selected as models. Eight weeks after the models were built, rats were treated with nicorandil (7.5 mg/kg day and 15 mg/kg day respectively) for 4 weeks. H9c2 cardiomyocytes were treated with nicorandil and then stimulated with high glucose (33.3 mmol/L). TUNEL assay and level of bcl‐2, bax and caspase‐3 were measured. 5‐HD was used to inhibit nicorandil. Also, PI3K inhibitor (Miltefosine) and mTOR inhibitor (rapamycin) were used to inhibit PI3K/Akt pathway. The results revealed that nicorandil (both 7.5 mg/kg day and 15mg/kg day) treatment can increase the level of NO in the serum and eNOS in the heart of diabetic rats compared with the untreated diabetic group. Nicorandil can also improve relieve cardiac dysfunction and reduce the level of apoptosis. In vitro experiments, nicorandil (100 µmol) can attenuate the level of apoptosis stimulated by high glucose significantly in H9C2 cardiomyocyte compared with the untreated group. The effect of nicorandil on apoptosis was blocked by 5‐HD, and it was accompanied with inhibition of the phosphorylation of PI3K, Akt, eNOS, and mTOR. After inhibition of PI3K/Akt pathway, the protective effect of nicorandil is restrained. These results verified that as a NO donor, nicorandil can also inhibit apoptosis in diabetic cardiomyopathy which is mediated by PI3K/Akt pathway.  相似文献   

18.
The hypofunction of osteoblasts induced by glucocorticoids (GCs) has been identified as a major contributing factor for GC-induced osteoporosis (GIO). However, the biological mechanism underlying the effect of GC in osteoblasts are not fully elucidated. Recent studies implicated an important role of phosphoinositide 3-kinase (PI3K)/protein kinase B(Akt) signaling pathway in the regulation of bone growth. We propose that the PI3K/Akt signaling may be implicated in the process of GC-induced osteogenic inhibition in osteoblasts. In this study, primary osteoblasts were used in vitro and in rats in vivo to evaluate the biological significance of the PI3K/Akt pathway in GC-induced bone loss. In vivo, dexamethasone (Dex)-treated rats had low bone mineral density and decreased expression levels of alkaline phosphatase (ALP), osteocalcin (OCN), and phosphorylated Akt (p-Akt) in bone tissue. In vitro study shows that Dex over the dose of 10–8 M remarkably inhibited cellular osteogenesis, as represented by decreased cell viability, lessened ALP activity, and suppressed osteogenic protein expressions including ALP and OCN. Meanwhile, a dramatic downregulation in the PI3K/Akt pathway phosphorylation was also observed in Dex-treated osteoblasts. These changes were marked rescued by treatment with a PI3K agonist 740Y-P. Moreover, downregulation of ALP and OCN expressions by LY294002 can mimic the suppressive effects of Dex. These data together reveal that the suppressed PI3K/Akt pathway is involved in the regulatory action of Dex on osteogenesis.  相似文献   

19.
With the improvement in children's acute lymphoblastic leukemia (ALL) care, the survival rate in children ALL has improved much. Methotrexate (MTX) plays an essential role in the success of children's ALL treatment. Since hepatotoxicity is commonly reported in individuals treated with intravenous or oral MTX, our study further examined the hepatic effect following intrathecal MTX treatment, which is an essential treatment for leukemia patients. Specifically, we examined the pathogenesis of MTX hepatotoxicity in young rats and explored the impact of melatonin treatment in protection against MTX hepatotoxicity. Successfully, we found that melatonin was able to protect against MTX hepatotoxicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号