首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
昆虫体内章鱼胺和酪胺的研究进展   总被引:2,自引:0,他引:2  
吴顺凡  郭建洋  黄佳  叶恭银 《昆虫学报》2010,53(10):1157-1166
章鱼胺(octopamine, OA)和酪胺(tyramine, TA)在昆虫体内扮演着各种重要的生理角色。它们协调控制着昆虫的各种器官和行为, 如调节外周淋巴器官功能和影响昆虫的学习与记忆、昼夜节律等, 使得昆虫能够以合理的方式来应对外界刺激, 并被认为在功能上对应于脊椎动物体内的肾上腺素和去甲肾上腺素。虽然都是酪氨酸脱羧基产物, 且酪胺是章鱼胺的生物合成前体, 但它们都通过不同的G蛋白偶联受体在昆虫体内发挥不同的神经调控作用。近年来, 对昆虫体内章鱼胺和酪胺, 尤其是它们与对应受体作用的研究, 日益受到关注。本文对昆虫体内章鱼胺和酪胺的生物合成, 在神经和非神经组织中的分布, 被突触前结构的再摄取以及它们在昆虫体内的不同生理功能等方面的研究进展进行了综述, 特别对章鱼胺和酪胺受体基因的克隆、信号转导途径以及药理作用特性等相关研究的最新进展进行了详细评述。  相似文献   

2.
多巴胺(dopamine, DA)可以调节昆虫的生殖行为,促进昆虫生殖系统的成熟发育.雄性果蝇(Drosophila)性行为受脑后外侧多巴胺能神经元(PPL2ab)调节,这些神经元的DA合成能力影响雄虫之间以及雌雄之间的求偶行为.果蝇雄成虫脑内DA含量影响性取向, DA水平过高或过低都会诱发雄性果蝇之间的同性求偶行为. DA还参与昆虫生殖行为转变和交配后行为的调节. DA可以作为神经激素,调节昆虫的味觉和嗅觉感受,中枢神经系统内DA对昆虫生殖行为的调节涉及多巴胺/蜕皮激素受体(DopEcR)和蜕皮酮的协同作用,果蝇后脑P1神经元在雄虫求偶信息回路中发挥重要作用. DA可以促进卵成熟发育,调节社会性昆虫生殖状态.对卵成熟发育的促进与DA受体表达的发育阶段性差异有关,并涉及DA、章鱼胺(octopamine, OA)、保幼激素(juvenile hormone, JH)、蜕皮激素(molting hormone, MH)之间的相互作用.黑腹果蝇幼龄雌虫咽侧体(corpus allatum, CA)内多巴胺D2型受体(DD2R)表达水平远低于性成熟雌虫,多巴胺D1型受体(DopR)表达水平远高于成熟雌虫,而DD2R在性成熟雌虫咽侧体内的表达水平远高于幼龄雌虫. DopR, DD2R在脂肪体细胞中的表达情况与CA相反. DA, JH, MH, OA之间的互作通过对相关基因表达和代谢酶活性调节实现.上述激素间的互作还涉及类胰岛素(insulin-like peptides, ILPs)及其信号途径.蜜蜂工蜂的生殖状态受蜂王上颚信息素(queen’s mandibular gland pheromone, QMP)、幼虫信息素、卵巢D2型受体基因的调节. DA对昆虫生殖调控的研究,可以为新药剂开发以及人类脑科学和神经系统疾病机制研究提供参考.  相似文献   

3.
多巴胺Ⅱ型受体在大脑基底神经节纹状体区域表达丰富,可反馈性调节突触前多巴胺合成并介导细胞信号转导。纹状体神经元突触可塑性受多巴胺Ⅱ型受体介导的cAMP/PKA和PLC信号通路调节,也是自主运动控制的神经基础。在运动性疲劳及以帕金森病为代表的运动功能障碍的中枢疾病中,多巴胺Ⅱ型受体通过平衡基底神经节直接通路和间接通路发挥重要作用。本文对多巴胺Ⅱ型受体在纹状体神经元突触可塑性和运动功能障碍中枢调控中的作用进行综述,为相关疾病的靶向干预和治疗提供理论基础。  相似文献   

4.
中等多棘神经元(medium spiny neurons,MSNs)是纹状体的主要投射神经元,其细胞膜上表达的不同类型多巴胺(dopamine,DA)受体,分别参与基底神经节直接与间接两条运动神经通路功能的调节。近年来发现,纹状体相邻MSNs之间还存在突触连接,这种突触结构对直接或间接通路的电活动产生侧抑制效应(lateral inhibition),并通过其前馈作用进一步调节基底神经节信息输出核团的兴奋性。因此,纹状体MSNs的侧抑制效应对运动的精确调节具有重要意义。本文拟从纹状体神经元构筑与侧抑制突触效应、纹状体MSNs侧抑制突触效应参与基底神经节调控的生理学机制、MSNs侧抑制效应异常与帕金森病(Parkinson's disease,PD)等方面对纹状体MSNs侧抑制效应与基底神经节功能调控的机制进行综述。  相似文献   

5.
谈及人脑的化学 ,人们注意的是神经递质多巴胺与 5 羟色胺 ,它们激发并调节神经冲动的电信号 .但人脑中还有一种化学物质称为痕量胺却为人所忽视 .痕量胺包括酪胺、β 苯乙胺 (β PEA)、色胺以及章鱼胺 ,在人脑中存在浓度很低 .由于证明了痕量胺是昆虫脑中的主要神经递质 ,在 2 0世纪 6 0年代引起了相当大的兴趣 .但由于科学家未能在脊椎动物中找到痕量胺的受体 ,对它的兴趣便减少了 .现在 ,美国科学家BethBorom sky及其同事搜寻到了新的 5 羟色胺受体 .她们证明该新受体与章鱼胺、酪胺和苯乙胺能起反应 .她们也进一步证实…  相似文献   

6.
AMPA受体(α-amino-3-hydroxy-5-methyl-4-isoxa-zolep-propionate receptor,AMPAR)介导中枢神经系统快速兴奋性突触传递,其在突触后膜的动态表达与长时程增强、长时程抑制的诱发和维持有关,参与调节学习记忆活动。AMPAR在β-淀粉样蛋白作用下的过度胞吞和裂解致其在突触后膜缺失,可致突触损伤和功能障碍,与阿尔茨海默病早期认知障碍密切相关。AMPAR还参与谷氨酸介导的兴奋性损伤,Ca2+通透性AMPAR亚型的过度激活能导致阿尔茨海默病神经元的功能障碍甚至死亡。此外,AMPAR还参与tau蛋白的异常磷酸化,与神经原纤维缠结的形成有关。因而突触后膜AMPA受体数目和功能异常可能是导致阿尔兹海默病发生的重要环节。  相似文献   

7.
β-淀粉样蛋白前体蛋白(β-amyloid precursor protein,APP)是体内广泛表达的跨膜蛋白质,已知APP经β-分泌酶切割产生的β-淀粉样蛋白(Aβ)是阿尔茨海默病(AD)的标志性病理分子之一,但对APP生理功能的认识比较有限。近年的研究却发现,APP经分泌酶切割的可溶性胞外片段sAPP对于兴奋性神经毒性、脑缺血、脑创伤等病理状况具有与β-淀粉样蛋白相反的神经保护作用。离体和在体研究证明,APP的α-分泌酶切割片段sAPPα可促进神经元的增殖、分化以及促进突触的发育,并改善突触传递和突触可塑性,进而提升学习与认知功能;APP基因缺失则造成不良后果。已报道的sAPPα神经保护作用机制包括激活高电导钾通道,抑制电压依赖性钙通道和NMDA受体通道介导的钙内流,调节神经细胞的离子稳态,平衡神经元和突触的兴奋性。值得注意的是,最新的研究鉴定出sAPP在细胞表面的特异性受体GABA_BR1a,sAPP通过与该受体结合调节突触传递,协同降低神经元的异常兴奋性。可以预见,深入研究与发掘sAPP神经保护作用的机制与替代方法,恢复退行性病变脑组织已经降低的sAPPα水平与下游效应分子功能,将可能为相关脑疾病的发病机制与防治提供新思路或新策略。  相似文献   

8.
植物源挥发物对昆虫信息素的增效作用及其增效机制   总被引:4,自引:0,他引:4  
植物源挥发物和昆虫信息素是昆虫的重要信息物质,二者协同作用以调节昆虫的行为.通过增加触角电位、信息素接收神经元动作电位和脉冲频率,特异性植物源挥发物能显著增强昆虫性信息素和聚集信息素的引诱力.这种对昆虫信息素的增效作用受昆虫体内的章鱼胺及其受体介导.特异性植物源挥发物和章鱼胺受体结合,降低性信息素接收神经元对性信息素的反应阈值,增强性信息素接收神经元敏感性.这可能是植物源挥发物对昆虫信息素具有增效作用的主要机制.  相似文献   

9.
徐刚  叶恭银 《昆虫学报》2020,(1):104-122
多巴胺(dopamine,DA)是一种重要的神经递质,通过特异地结合其相关的多巴胺受体(dopamine receptors,DARs)发挥作用。昆虫DARs可分为D1-like DARs,D2-like DARs和多巴胺/蜕皮激素受体(dopamine/ecdysteroid receptor,DopEcR)。D1-like DARs包含两种亚型即DOP1和DOP2,都能偶联G s蛋白引起胞内cAMP上升,且DOP2还能偶联G q蛋白引起胞内Ca 2+浓度升高;D2-like DARs只有一种亚型DOP3,偶联G i蛋白导致胞内cAMP下降;DopEcR可以同时被DA和蜕皮激素激活。本文综述了近年来关于昆虫DA的调控、多巴胺神经元、DARs的药理学特性及生理功能等方面的研究进展。DA合成、转运和降解过程中的基因调控昆虫的多种表型,如表皮黑化、翅的颜色和图案等。DA在多巴胺神经元中合成和释放,不同类型的多巴胺神经元参与调控不同的功能。随着近年来单细胞测序和DA实时成像技术的兴起,这将有利于进一步探讨特异神经元的功能。不同昆虫DARs的激动剂和拮抗剂活性存在很大异同,这些药理学差异将为以昆虫DARs为作用靶标开发高效选择性杀虫剂提供重要依据。DARs参与调控昆虫的多种生理与行为过程,如取食、学习、记忆、遗忘、求偶、交配、睡眠及觉醒等。随着CRISPR/Cas9技术在不同昆虫中成功地应用,以及结合模式昆虫黑腹果蝇中丰富的遗传学操作手段,这些都将有利于精准解析DARs的功能。  相似文献   

10.
苍白球γ-氨基丁酸能神经传递及其与神经系统疾病的关系   总被引:1,自引:0,他引:1  
Chen L  Yung WH 《生理学报》2004,56(4):427-435
苍白球是基底神经节间接环路的重要核团,在机体运动功能调节中发挥重要作用。近年来,苍白球在基底神经节正常及异常功能调节中的重要性已日渐受到重视。然而,目前对苍白球内各种神经递质系统的功能活动了解较少。GABA是苍白球主要的神经递质。采用电生理记录、免疫组织化学及行为测试等实验方法,人们对大鼠苍白球GABA能神经传递系统的受体分布及功能活动有了新的认识。形态学研究揭示,苍白球存在GABAA受体及其苯二氮卓结合位点和GABAB受体。在亚细胞水平,GABAA受体主要位于对称性突触(GABA能突触)的突触后膜,而GABAB受体则位于对称性突触和非对称性突触(兴奋性突触)的突触前膜及突触后膜。功能学研究进一步揭示,激活苍白球突触前膜GABAB自身和异源性受体可分别减少GABA和谷氨酸释放;激活突触后膜GABAB受体,可引起苍白球神经元超极化。除GABAB受体外,激活苍白球GABAA受体苯二氮卓结合位点及阻断GABA重摄取可延长GABA电流持续时间,从而改变苍白球神经元兴奋性。与离体实验结果相一致,激活苍向球GABAB受体和苯二氮卓结合位点及阻断GABA重摄取可引起整体动物旋转行为。苍白球GABA神经递质系统与帕金森病病因学及癫痫发病有关。已证实,苍白球神经元放电频率的降低及簇状放电的产生与帕金森病运动减少及静止性震颤等症状直接相关。此外,电牛理及行为学实验发现,新型抗癫痫药物替加平可调节苍白球神经元功能活动.这为进一步了解苍白球与癫痫发病的关系提供了新的理论及实验依据。  相似文献   

11.
GPR81是乳酸的特异性受体,具有调节脂肪细胞发育和分化、抑制脂肪分解、抑制炎性反应,以及调节脑能量代谢、脑血流量和神经元功能的协同变化等生物学功能。GPR81生物学功能的分子机制包括:(1)通过GPR81/Gi/c AMP信号转导通路抑制脂肪分解和调节脑能量代谢、脑血流量和神经元功能的协同变化;(2)通过GPR81/β-arrestin 2/NF-κB及GPR81/β-arrestin 2/NLRP3信号通路抑制巨噬细胞炎性反应。GPR81功能异常与肥胖、血脂异常、胰岛素抵抗、糖耐量减低和2型糖尿病密切相关,还可能参与了颞叶癫痫、中枢性疲乏及缺血性脑血管疾病的发生发展。就乳酸受体GPR81在脂质代谢、炎性反应及中枢神经系统中的作用进行综述。  相似文献   

12.
用6-羟多巴胺破坏黑质纹状体通路,使大鼠多巴胺耗竭后,应用原位杂交组织化学方法测量D1多巴胺受体对即早基因c-fos和zif268诱导反应,分析强啡肽对突触前、后调节作用。先用D1多巴胺受体激动剂SKF-38393反复处理动物,促进纹状体内强啡肽表达,在伏隔核强啡肽表达增加,同时伴随着即早基因c-fos和zif268的减少.在纹状体的背部和两侧,强啡肽表达虽大量增加,而D1多巴胺受体反应仍然维持原水平.在中央纹状体区,即早基因的表达处于中间水平。结果提示,纹状体内强啡肽起着调节多巴胺输入到纹状体黑质神经元的作用,包括突触前、后位置;并且调节作用在纹状体的腹、背侧区是不同的  相似文献   

13.
趋化因子受体与信号转导   总被引:5,自引:0,他引:5  
趋化因子受体是一类表达于不同类型细胞上的含有7个跨膜区的G蛋白偶联受体超家族,通过与趋化因子作用参与细胞的生长、发育、分化、凋亡、组织分布等,同时亦是HIV的协同受体。它可激活磷脂酶、脂类激酶、蛋白激酶、调节细胞Ca^2 浓度,激活JAK/STAT途径,引发一系列的信号转导通路。  相似文献   

14.
GDNF来自于小胶质神经元,首先作为中脑多巴胺能神经元的复活因子被发现,可促进细胞存活,并有增加多巴胺神经元细胞大小及轴突长度的作用。GDNF通过与锚定蛋白细胞表面受体糖基磷脂酰肌醇的相互作用来调节细胞活性。GDNF家族a-1受体,通过跨膜酪氨酸受体或者神经元细胞黏附分子,来促进细胞存活,神经突生长,以及突触发育。后续的研究提示,无论未成年还是成体大脑,GDNF对多种神经细胞都有复活的作用,并与一些周围神经复活、迁移、分化相关。不同的脑缺血实验模型均证实了外源性GDNF对于病灶部位及全脑的神经保护作用,包括局部应用营养因子,利用病毒载体运载GDNF基因以及移植表达GDNF的细胞。近来研究还证实,GDNF不仅对多巴胺能神经元,中枢和周围神经系统的运动、感觉神经元,以及自主神经元有营养和保护作用,对于非神经系统也有不同调节作用。本文将重点讨论这些GDNF作用的不同策略以及机制。  相似文献   

15.
多巴胺是脑内重要的信息传递物质,不仅可以作为递质释放到前额叶、伏隔核等脑区,直接进行信息传递,也可以作为调质调节其它突触递质的传递,并影响神经元可塑性。海马参与构成边缘系统,受多巴胺能神经支配,执行着有关学习记忆以及空间定位的功能。海马神经元的可塑性是学习记忆的细胞分子基础。研究表明,多巴胺对海马神经元的突触可塑性和兴奋性可塑性都具有重要的调节作用。本文扼要综述多巴胺对海马神经元突触可塑性和兴奋性可塑性的调节机制的研究进展,以期为DA系统参与海马区学习记忆功能的研究提供新思路,更深入地了解学习记忆的神经机制。  相似文献   

16.
在中枢神经系统(central nervous system,CNS)中,锌离子对配体门控型离子通道具有重要的调节作用。锌离子随着神经元的活动从突触前膜的囊泡中释放到突触间隙,对突触内受体进行调控。锌离子抑制N-甲基-D-天冬氨酸(N-methyl-D-aspartate,NMDA)型谷氨酸受体的活性,而对非NMDA型谷氨酸受体的调控具有多样性。由γ氨基丁酸(γ-aminobutyric acid,GABA)受体所介导的抑制性突触传递活动也受到锌离子的抑制;而锌离子对glycine受体则呈现出浓度依赖的双向调节效应。病理条件下,锌离子参与了兴奋性细胞毒作用所触发的神经元凋亡过程。本文主要阐述了在CNS中,锌离子对配体门控型离子通道所介导的突触传递活动的调控作用,以及这些调控作用的生理功能和病理意义。  相似文献   

17.
本研究目的是考察红花黄色素B(SYB)对冈田酸(OA)致SH-SY5Y神经元损伤的保护作用。采用全反式维甲酸(ATRA)诱导SH-SY5Y细胞分化为成熟神经元,OA诱导神经元损伤,建立Tau蛋白过度磷酸化的神经元突触萎缩模型;Giemsa染色法观察SH-SY5Y细胞形态学变化;Western Blot检测Tau蛋白262位点磷酸化水平;流式细胞术检测细胞总活性氧(ROS)和线粒体源ROS水平,以及线粒体膜电位的变化。结果表明,ATRA可诱导SH-SY5Y细胞分化为成熟神经元;OA可致神经元突触萎缩和Tau蛋白在262位点过度磷酸化;SYB能够改善OA所致成熟神经元损伤,降低Tau蛋白在262位点的磷酸化水平,其保护作用机制可能与减少胞内及线粒体源ROS产生,提高线粒体膜电位有关。  相似文献   

18.
大量实验证明,肾上腺素能神经-效应器接点突触前膜和突触后膜上的α-受体性质不同,Langers首先提出,将调节效应器官反应的突触后α-受体命名为α_1-受体,而将突触前膜上调节NA释放的α-受体命名为α_2-受体。一些药物可选择性地激动或阻断突触前、后两种不同的α-受体。例如,甲氧胺、新福林选择性地激动α_1-受体;可乐宁(clonidine)、托马唑啉(tramazoline)选择性地激动α_2-受体。哌唑嗪(prazosin)主要阻断α_1-受体;育亨宾(yohimbine)主要阻断α_2-受体。在大多数血管,NA激活突触后α-受体,使血管平滑肌收缩,并因此使血管收缩。但并非所有血管平滑肌细胞上的α-受体均属同一亚型。多数离体动脉平滑肌对A、甲氧胺、NA新福林等α-激动剂发生收缩反应,但对可乐宁和托马唑啉相  相似文献   

19.
苍白球是基底神经节间接环路的重要核团,在机体正常及病理状态下调节运动功能。前期研究工作显示苍白球接受来自黑质纹状体轴突侧支的多巴胺能纤维支配。苍白球表达多巴胺D1和D_2样受体。本研究旨在采用多管微电极细胞外电生理记录技术,探讨多巴胺D_2样受体对正常及帕金森病模型大鼠苍白球神经元自发放电的直接调控效应。结果显示,在正常大鼠上,微压力给予多巴胺D_2样受体激动剂quinpirole对苍白球神经元自发放电发挥不同的电生理效应。在所记录的61个苍白球神经元,quinpirole可使24个神经元的放电频率增加(62.7±11.2)%,而使另外16个神经元放电频率降低(37.5±2.9)%,联合给予D_2样受体阻断剂sulpride可阻断quinpirole对苍白球神经元自发放电的调控效应。在6-羟基多巴胺(6-hydroxydopamine,6-OHDA)帕金森病模型大鼠损毁侧所记录的47个苍白球神经元中,quinpirole可使其中25个神经元的放电频率增加(64.2±10.1)%,而使另外11个神经元放电频率降低(51.9±6.2)%。以上结果提示,多巴胺D_2样受体双向调节苍白球神经元的自发放电活动;在帕金森病状态下,多巴胺D_2样受体仍具有双向调节苍白球神经元兴奋性的效应。  相似文献   

20.
芳香族氨基酸脱羧酶(aromatic L-amino acid decarboxylases, AADCs)在生物体内的作用是将芳香族氨基酸脱羧转化为芳香族单胺(aromatic monoamines),磷酸吡哆醛(pyridoxal 5′-phosphate, PLP)是其行使催化功能时必不可少的辅酶。AADCs催化芳香族氨基酸产生的芳香族单胺,主要包括多巴胺、血清素、酪胺、色胺等,这些芳香族单胺在生物体内是维持正常生理功能的神经递质,也是参与合成某些化合物的重要前体,还可作为药物中的活性成分参与治疗多种人类疾病,具有广阔的应用前景。作为生物合成芳香族单胺所必需的酶,有关AADCs的研究也越来越深入,基于AADCs的芳香族单胺生物合成也取得了长足进步。对几种主要AADCs进行综述,为AADCs更好应用于芳香族单胺的生物合成提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号