首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
M E Cardenas  R S Muir  T Breuder    J Heitman 《The EMBO journal》1995,14(12):2772-2783
The immunosuppressive complexes cyclophilin A-cyclosporin A (CsA) and FKBP12-FK506 inhibit calcineurin, a heterodimeric Ca(2+)-calmodulin-dependent protein phosphatase that regulates signal transduction. We have characterized CsA- or FK506-resistant mutants isolated from a CsA-FK506-sensitive Saccharomyces cerevisiae strain. Three mutations that confer dominant CsA resistance are single amino acid substitutions (T350K, T350R, Y377F) in the calcineurin A catalytic subunit CMP1. One mutation that confers dominant FK506 resistance alters a single residue (W430C) in the calcineurin A catalytic subunit CMP2. In vitro and in vivo, the CsA-resistant calcineurin mutants bind FKBP12-FK506 but have reduced affinity for cyclophilin A-CsA. When introduced into the CMP1 subunit, the FK506 resistance mutation (W388C) blocks binding by FKBP12-FK506, but not by cyclophilin A-CsA. Co-expression of CsA-resistant and FK506-resistant calcineurin A subunits confers resistance to CsA and to FK506 but not to CsA plus FK506. Double mutant calcineurin A subunits (Y377F, W388C CMP1 and Y419F, W430C CMP2) confer resistance to CsA, to FK506 and to CsA plus FK506. These studies identify cyclophilin A-CsA and FKBP12-FK506 binding targets as distinct, highly conserved regions of calcineurin A that overlap the binding domain for the calcineurin B regulatory subunit.  相似文献   

2.
Although the immediate receptors (immunophilins) of the immunosuppressants cyclosporin A (CsA) and FK506 are distinct, their similar mechanisms of inhibition of cell signaling suggest that their associated immunophilin complexes interact with a common target. We report here that the complexes cyclophilin-CsA and FKBP-FK506 (but not cyclophilin, FKBP, FKBP-rapamycin, or FKBP-506BD) competitively bind to and inhibit the Ca(2+)- and calmodulin-dependent phosphatase calcineurin, although the binding and inhibition of calcineurin do not require calmodulin. These results suggest that calcineurin is involved in a common step associated with T cell receptor and IgE receptor signaling pathways and that cyclophilin and FKBP mediate the actions of CsA and FK506, respectively, by forming drug-dependent complexes with and altering the activity of calcineurin-calmodulin.  相似文献   

3.
4.
The peptidyl-prolyl isomerases FKBP12 and cyclophilin A (immunophilins) form complexes with the immunosuppressants FK506 and cyclosporin A that inhibit the phosphatase calcineurin. With the yeast two hybrid system, we detect complexes between FKBP12 and the calcineurin A catalytic subunit in both the presence and absence of FK506. Mutations in FKBP12 surface residues or the absence of the calcineurin B regulatory subunit perturb the FK506-dependent, but not the ligand-independent, FKBP12-calcineurin complex. By affinity chromatography, both FKBP12 and cyclophilin A bind calcineurin A in the absence of ligand, and FK506 and cyclosporin A respectively potentiate these interactions. Both in vivo and in vitro, the peptidyl-prolyl isomerase active sites are dispensable for ligand-independent immunophilin-calcineurin complexes. Lastly, by genetic analyses we demonstrate that FKBP12 modulates calcineurin functions in vivo. These findings reveal that immunophilins interact with calcineurin in the absence of exogenous ligands and suggest that immunosuppressants may take advantage of the inherent ability of immunophilins to interact with calcineurin.  相似文献   

5.
The immunosuppressants cyclosporin A (CsA) and FK506 inhibit the protein phosphatase calcineurin and block T-cell activation and transplant rejection. Calcineurin is conserved in microorganisms and plays a general role in stress survival. CsA and FK506 are toxic to several fungi, but the common human fungal pathogen Candida albicans is resistant. However, combination of either CsA or FK506 with the antifungal drug fluconazole that perturbs synthesis of the membrane lipid ergosterol results in potent, synergistic fungicidal activity. Here we show that the C.albicans FK506 binding protein FKBP12 homolog is required for FK506 synergistic action with fluconazole. A mutation in the calcineurin B regulatory subunit that confers dominant FK506 resistance (CNB1-1/CNB1) abolished FK506-fluconazole synergism. Candida albicans mutants lacking calcineurin B (cnb1/cnb1) were found to be viable and markedly hypersensitive to fluconazole or membrane perturbation with SDS. FK506 was synergistic with fluconazole against azole-resistant C.albicans mutants, against other Candida species, or when combined with different azoles. We propose that calcineurin is part of a membrane stress survival pathway that could be targeted for therapy.  相似文献   

6.
We have characterized a Saccharomyces cerevisiae mutant strain that is hypersensitive to cyclosporin A (CsA) and FK506, immunosuppressants that inhibit calcineurin, a serine-threonine-specific phosphatase (PP2B). A single nuclear mutation, designated cev1 for calcineurin essential for viability, is responsible for the CsA-FK506-sensitive phenotype. The peptidyl-prolyl cis-trans isomerases cyclophilin A and FKBP12, respectively, mediate CsA and FK506 toxicity in the cev1 mutant strain. We demonstrate that cev1 is an allele of the VPH6 gene and that vph6 mutant strains fail to assemble the vacuolar H(+)-ATPase (V-ATPase). The VPH6 gene was mapped on chromosome VIII and is predicted to encode a 181-amino acid (21 kD) protein with no identity to other known proteins. We find that calcineurin is essential for viability in many mutant strains with defects in V-ATPase function or vacuolar acidification. In addition, we find that calcineurin modulates extracellular acidification in response to glucose, which we propose occurs via calcineurin regulation of the plasma membrane H(+)-ATPase PMA1. Taken together, our findings suggest calcineurin plays a general role in the regulation of cation transport and homeostasis.  相似文献   

7.
Cyclosporin A (CsA) and FK506 are potent natural product immunosuppressants that induce their biological effects by forming an initial complex with cytosolic proteins termed immunophilins. These drug immunophilin complexes then bind to and inhibit the serine/threonine protein phosphatase calcineurin (CN). Two classes of immunophilin have been identified with cyclophilins (CyP's) being proteins specifically binding CsA and FKBPs specifically binding FK506. Solution and crystal structures of various CsA-CyP and FK506-FKBP complexes have been determined and show no apparent structural similarity between the two classes of drug protein complexes. These findings raise the question as to how, given their structural differences, these two complexes can both inhibit CN. While the crystal structure of the FK506-FKBP12-CN complex has been reported, no structure for a CsA-CyP CN complex has been determined. Here are reported studies that use various modelling strategies to construct a model for the interaction of the cyclosporin A- cyclophilin A complex with calcineurin. The first stage of constructing this model consisted of using conformational comparison of CsA and FK506, GRID and GROUP analysis and restrained molecular dynamics to dock CsA into the FK506 binding site of the FK506-FKBP12-CN structure. An initial model for the CsA-CyPA-CN complex was then constructed by superimposing the structure of the CsA-CyPA complex onto the docked CsA molecule. This model was then optimised with molecular dynamics simulations run on sterically clashing regions. The validity of the model for the CsA-CyPA-CN complex was then examined with respect to the effect of chemical modifications to CsA and amino acid substitutions within CyPA on the ability of the drug-immunophilin complex to inhibit calcineurin.  相似文献   

8.
Cyclophilin, the cyclosporin A binding protein and member of the immunophilin family of proteins, demonstrates leukocyte chemotactic activity. In this study we demonstrate that FKBP, the FK506 and rapamycin binding protein, also displays leukocyte chemotactic activity. The chemotactic activity of FKBP is inhibited by FK506, however, FK506 was unable to inhibit cyclophilin-stimulated chemotactic activity. Rapamycin was unable to prevent the chemotactic activity of FKBP, similarly, the CsA analogue Me6Ala-CsA while displaying cyclophilin binding was unable to block cyclophilin-stimulated chemotactic activity. These results suggest that in addition to their intracellular role the immunophilins may also function as chemotactic agents, furthermore this activity is modulated by immunosuppressants.  相似文献   

9.
The immunosuppressive drugs FK506 and cyclosporin A block T-lymphocyte proliferation by inhibiting calcineurin, a critical signaling molecule for activation. Multiple intracellular receptors (immunophilins) for these drugs that specifically bind either FK506 and rapamycin (FK506-binding proteins [FKBPs]) or cyclosporin A (cyclophilins) have been identified. We report the cloning and characterization of a new 51-kDa member of the FKBP family from murine T cells. The novel immunophilin, FKBP51, is distinct from the previously isolated and sequenced 52-kDa murine FKBP, demonstrating 53% identity overall. Importantly, Western blot (immunoblot) analysis showed that unlike all other FKBPs characterized to date, FKBP51 expression was largely restricted to T cells. Drug binding to recombinant FKBP51 was demonstrated by inhibition of peptidyl prolyl isomerase activity. As judged from peptidyl prolyl isomerase activity, FKBP51 had a slightly higher affinity for rapamycin than for FK520, an FK506 analog. FKBP51, when complexed with FK520, was capable of inhibiting calcineurin phosphatase activity in an in vitro assay system. Inhibition of calcineurin phosphatase activity has been implicated both in the mechanism of immunosuppression and in the observed toxic side effects of FK506 in nonlymphoid cells. Identification of a new FKBP that can mediate calcineurin inhibition and is restricted in its expression to T cells suggests that new immunosuppressive drugs may be identified that, by virtue of their specific interaction with FKBP51, would be targeted in their site of action.  相似文献   

10.
The mechanism of FK506 immunosuppression has been proposed to proceed by formation of a tight-binding complex with the intracellular 12-kDa FK506-binding protein (FKBP12). The FK506-FKBP12 complex then acts as a specific high-affinity inhibitor of the intracellular protein phosphatase PP2B (calcineurin), interrupting downstream dephosphorylation events required for T-cell activation. Site-directed mutagenesis of many of the surface residues of FKBP12 has no significant effect on its affinity for calcineurin. We have identified, however, three FKBP12 surface residues (Asp-37, Arg-42, and His-87) proximal to a solvent-exposed segment of bound FK506 that may be direct contacts in the calcineurin complex. Site-directed mutagenesis of two of these residues decreases the affinity of FKBP12-FK506 for calcineurin (Ki) from 6 nM for wild-type FKBP12 to 3.7 microM for a R42K/H87V double mutant, without affecting the peptidylprolyl isomerase activity or FK506 affinity of the mutant protein. These FKBP12 mutations along with several substitutions on FK506 known to affect calcineurin binding form a roughly 100-A2 region of the FKBP12-FK506 complex surface that is likely to be within the calcineurin binding site.  相似文献   

11.
12.
Calcineurin is required for virulence of Cryptococcus neoformans.   总被引:13,自引:0,他引:13       下载免费PDF全文
A Odom  S Muir  E Lim  D L Toffaletti  J Perfect    J Heitman 《The EMBO journal》1997,16(10):2576-2589
Cyclosporin A (CsA) and FK506 are antimicrobial, immunosuppressive natural products that inhibit signal transduction. In T cells and Saccharomyces cerevisiae, CsA and FK506 bind to the immunophilins cyclophilin A and FKBP12 and the resulting complexes inhibit the Ca2+-regulated protein phosphatase calcineurin. We find that growth of the opportunistic fungal pathogen Cryptococcus neoformans is sensitive to CsA and FK506 at 37 degrees C but not at 24 degrees C, suggesting that CsA and FK506 inhibit a protein required for C. neoformans growth at elevated temperature. Genetic evidence supports a model in which immunophilin-drug complexes inhibit calcineurin to prevent growth at 37 degrees C. The gene encoding the C. neoformans calcineurin A catalytic subunit was cloned and disrupted by homologous recombination. Calcineurin mutant strains are viable but do not survive in vitro conditions that mimic the host environment (elevated temperature, 5% CO2 or alkaline pH) and are no longer pathogenic in an animal model of cryptococcal meningitis. Introduction of the wild-type calcineurin A gene complemented these growth defects and restored virulence. Our findings demonstrate that calcineurin is required for C. neoformans virulence and may define signal transduction elements required for fungal pathogenesis that could be targets for therapeutic intervention.  相似文献   

13.
14.
Calcineurin is a calcium-activated serine/threonine phosphatase critical to a number of developmental processes in the cardiovascular, nervous and immune systems. In the T-cell lineage, calcineurin activation is important for pre-T-cell receptor (TCR) signaling, TCR-mediated positive selection of thymocytes into mature T cells, and many aspects of the immune response. The critical role of calcineurin in the immune response is underscored by the fact that calcineurin inhibitors, such as cyclosporin A (CsA) and FK506, are powerful immunosuppressants in wide clinical use. We observed sustained calcineurin activation in human B- and T-cell lymphomas and in all mouse models of lymphoid malignancies analyzed. In intracellular NOTCH1 (ICN1)- and TEL-JAK2-induced T-cell lymphoblastic leukemia, two mouse models relevant to human malignancies, in vivo inhibition of calcineurin activity by CsA or FK506 induced apoptosis of leukemic cells and rapid tumor clearance, and substantially prolonged mouse survival. In contrast, ectopic expression of a constitutively activated mutant of calcineurin favored leukemia progression. Moreover, CsA treatment induced apoptosis in human lymphoma and leukemia cell lines. Thus, calcineurin activation is critical for the maintenance of the leukemic phenotype in vivo, identifying this pathway as a relevant therapeutic target in lymphoid malignancies.  相似文献   

15.
Calcineurin   总被引:23,自引:0,他引:23  
  相似文献   

16.
17.
Good fungi gone bad: the corruption of calcineurin   总被引:17,自引:0,他引:17  
Calcineurin is a Ca(2+)/calmodulin-activated protein phosphatase that is conserved in eukaryotes, from yeast to humans, and is the conserved target of the immunosuppressive drugs cyclosporin A (CsA) and FK506. Genetic studies in yeast and fungi established the molecular basis of calcineurin inhibition by the cyclophilin A-CsA and FKBP12-FK506 complexes. Calcineurin also functions in fungi to control a myriad of physiological processes including cell cycle progression, cation homeostasis, and morphogenesis. Recent investigations into the molecular mechanisms of pathogenesis in Candida albicans and Cryptococcus neoformans, two fungi that cause life-threatening infections in humans, have revealed an essential role for calcineurin in morphogenesis, virulence, and antifungal drug action. Novel non-immunosuppressive analogs of the calcineurin inhibitors CsA and FK506 that retain antifungal activity have been identified and hold promise as candidate antifungal drugs. In addition, comparisons of calcineurin function in both fungi and humans may identify fungal-specific components of calcineurin-signaling pathways that could be targeted for therapy, as well as conserved elements of calcium signaling events.  相似文献   

18.
19.
Calcineurin is a Ca2+-calmodulin-regulated protein phosphatase that is the target of the immunosuppressive drugs cyclosporin A and FK506. Calcineurin is a heterodimer composed of a catalytic A and a regulatory B subunit. In previous studies, the calcineurin A homologue was identified and shown to be required for growth at 37 degrees C and hence for virulence of the pathogenic fungus Cryptococcus neoformans. Here, we identify the gene encoding the calcineurin B regulatory subunit and demonstrate that calcineurin B is also required for growth at elevated temperature and virulence. We show that the FKR1-1 mutation, which confers dominant FK506 resistance, results from a 6 bp duplication generating a two-amino-acid insertion in the latch region of calcineurin B. This mutation was found to reduce FKBP12-FK506 binding to calcineurin both in vivo and in vitro. Molecular modelling based on the FKBP12-FK506-calcineurin crystal structure illustrates how this mutation perturbs drug interactions with the phosphatase target. In summary, our studies reveal a central role for calcineurin B in virulence and antifungal drug action in the human fungal pathogen C. neoformans.  相似文献   

20.
Cyclosporin A, the major immunosuppressive drug in transplantation, and the more potent therapeutic drug candidate, FK506, have led to the discovery of two superfamilies of immunosuppressant binding proteins, the cyclophilins and the FK binding proteins. These proteins, enzymes with high kcat values for isomerization of X-Pro bonds in peptides and protein substrates, are distributed in all cell compartments where protein folding normally occurs. It is likely that they play major roles in the protein folding and protein trafficking in the cell. It is also likely that they have been suborned in T cells by the immunosuppressant drugs that are potent pseudosubstrate ligands that selectively block the signal transduction cascade. The discovery of the inhibition of protein phosphatase 2B (calcineurin) by the drug-immunophilin complex (CsA-CyP or FK506-FKBP) provides evidence for a specific downstream target of the drug-immunophilin complexes and may prompt a search for endogenous ligands of cyclophilin and FKBP that may effect signal transduction regulation. The molecular insights gained over a short time in this area have been remarkable; they promise to elucidate the steps in T cell activation and delineate new targets for immunosuppressive therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号